Клеточная стенка растительной клетки: рост. Вторичная клеточная стенка

Клеточная оболочка - типичный компонент растительной клетки, является продуктом жизнедеятельности протопласта.

Функции:

1. Прочные и жесткие клеточные оболочки, служат механической опорой для органов растения.

2. Оболочка ограничивает растяжение протопласта вакуолью, а размер и форма зрелой клетки перестают изменяться.

3. В наружных тканях клеточные оболочки, защищают лежащие глубже клетки от высыхания.

4. По клеточным стенкам, примыкающим к друг другу, могут передвигаться различные вещества и вода от клетки к клетке (путь через апопласт).

5. Они оказывают влияние на поглощение, транспирацию и секрецию.

Клеточные стенки, как правило, бесцветны и легко пропускают солнечный свет. Стенки соседних клеток скреплены пектиновой срединной пластинкой . Срединная пластинка - единый слой, общий для двух соседних клеток. Она представляет собой несколько видоизмененную клеточную пластинку, возникшую в процессе цитокинеза. Срединная пластинка менее обводнена, в ней могут присутствовать молекулы лигнина. Углы клеточных стенок в результате внутриклеточного давления могут округляться, и между соседними клетками образуются межклетники. Все стенки клеток растения, связанные одна с другой и примыкающие к заполненным водой межклетникам, обеспечивают существование сплошной обводненной среды, в которой свободно передвигаются водорастворимые вещества.

Строение и химический состав.

Первичная клеточная стенка.

Первоначально кнаружи от плазмалеммы возникает первичная клеточная стенка.

Состав: целлюлоза, гемицеллюлоза, пектин и вода.

Первичные клеточные стенки соседних клеток соединены протопектиновой срединной пластинкой. В клеточной стенке линейные очень длинные (несколько микрон) молекулы целлюлозы, состоящие из глюкозы, собраны в пучки - мицеллы, которые, в свою очередь, объединяются в микрофибриллы – тончайшие (1,5…4 нм) волоконца неопределенной длины, а затем в макрофибриллы. Целлюлоза образует многомерный каркас, который погружен в аморфный сильно обводненный матрикс из нецеллюлозных углеводов: пектинов, гемицеллюлоз и др. Именно целлюлоза обеспечивает прочность клеточной стенки. Микрофибриллы эластичны и по прочности на разрыв сходны со сталью. Полисахариды матрикса определяют такие свойства стенки, как высокая проницаемость для воды, растворенных мелких молекул и ионов, сильная набухаемость. Благодаря матриксу по стенкам, примыкающим к друг другу, могут передвигаться вода и вещества от клетки к клетке (путь через апопласт по «свободному пространству»). Некоторые гемицеллюлозы могут откладываться в стенках клеток семян в качестве запасных веществ.

Рост стенки.

При делении клеток создается заново лишь клеточная пластинка. На нее обе дочерние клетки откладывают собственные стенки, состоящие главным образом из гемицеллюлозы. При этом образование стенки происходит и на внутренней поверхности остальных стенок, принадлежащих материнской клетке. Клеточная пластинка преобразуется в срединную, она обычно тонка и почти неразличима. После деления клетка вступает в фазу растяжения за счет поглощения клеткой воды и роста центральной вакуоли. Тургорное давление растягивает стенку, в которую внедряются мицеллы целлюлозы и вещества матрикса. Такой способ роста носит название интуссусцепции , внедрения. Оболочки делящихся и растущих клеток называют первичными. Они содержат воды до 90 %, в сухом веществе преобладают полисахариды матрикса: у двудольных пектины и гемицеллюлозы в равном соотношении, у однодольных – в основном гемицеллюлозы; содержание целлюлозы не превышает 30 %. Толщина первичной стенки не более 0,1…0,5 мкм.



К моменту, когда рост клетки заканчивается, рост клеточной стенки может продолжаться, но уже в толщину. Этот процесс носит название вторичного утолщения. При этом на внутренней поверхности первичной клеточной стенки откладывается вторичная клеточная стенка. Рост вторичной клеточной стенки происходит в результате аппозиции , наложения новых мицелл целлюлозы на внутреннюю поверхность клеточной стенки. Таким образом, наиболее молодые слои клеточной стенки ближе всего к плазмаллеме.

Для некоторых типов клеток (многие волокна, трахеиды, членики сосудов) образование вторичной стенки – основная функция протопласта, после завершения вторичного утолщения он отмирает. Однако это не обязательно. Вторичная стенка выполняет главным образом механические, опорные функции. В ее составе значительно меньше воды и преобладают микрофибриллы целлюлозы (40…50 % сухого вещества). Во вторичных стенках волокон льна и волосков хлопчатника содержание целлюлозы может достигать 95 %.

Механизм построения клеточной стенки. Клеточная стенка образуется в результате деятельности протопласта. В соответствии с этим вещества поступают в стенку изнутри, со стороны протопласта. Строительные материалы – молекулы целлюлозы пектина, лигнина и других веществ - накапливаются и частично синтезируются в цистернах аппарата Гольджи. Упакованные в пузырьки аппарата Гольджи, они транспортируются к плазмалемме. Разорвав ее, пузырек лопается, и содержимое его оказывается снаружи плазмалеммы. Мембрана пузырька восстанавливает целостность плазмалеммы. Благодаря ферментной активности плазмалеммы идет сборка фибрилл целлюлозы строение клеточной стенки. Образуемые плазмалеммой фибриллы накладываются изнутри, не переплетаясь. В их ориентации большая роль принадлежит микротрубочкам, располагающимся под плазмалеммой параллельно формирующимся фибриллам.

2. Поры. Видоизменения клеточной стенки.

Поры. При образовании первичной клеточной стенки в ней выделяются более тонкие участки, где фибриллы целлюлозы лежат более рыхло. Канальцы эндоплазматической цепи проходят здесь через клеточные стенки, соединяя соседние клетки. Эти участки называются первичными поровыми полями , а канальцы эндоплазматической сети, проходящие в них, - плазмодесмами .

Рост в толщину происходит у клеточной стенки неравномерно, неутолщенными остаются небольшие участки первичной клеточной стенки в местах расположения первичных поровых полей (поровых каналов). Поровые каналы двух соседних клеток располагаются обычно друг против друга и разделяются замыкающей пленкой поры - двумя первичными клеточными стенками с межклеточным веществом между ними. В пленке сохраняются субмикроскопические отверстия, через которые проходят плазмодесмы. Таким образом, пора - это два поровых канала и замыкающая пленка между ними .

Плазмодесмы пронизывают замыкающие пленки пор. В каждой клетке имеется от нескольких сотен до десятков тысяч плазмодесм. Плазмодесмы встречаются только - в растительных клетках, там, где имеются твердые клеточные стенки. Плазмодесмы образуются из канальцев ЭР, которые остаются в клеточной пластинке между двумя дочерними клетками. При воссоздании ЭР обеих клеток они оказываются соединенными через плазмодесмы.

Плазмодесма проходит через плазмодесменный канал в замыкающей пленке поры. Плазмалемма, выстилающая канал, и гиалоплазма между ней и плазмодесмой непрерывны с плазмалеммами и гиалоплазмами смежных клеток. Таким образом, протопласты соседних клеток связаны между собой каналами плазмодесм и плазмодесмами. По ним происходит межклеточный транспорт ионов и молекул, а также гормонов. Объединенные плазмодесмами протопласты клеток в растении образуют единое целое - симпласт. Транспорт веществ через плазмодесмы получил название симпластического в отличие от апопластического транспорта по клеточным стенкам и межклетникам.

В процессе жизнедеятельности клетки целлюлозная клеточная стенка может претерпевать видоизменения.

Изучен слабо. Считается, что целлюлозные микрофибриллы синтезируются на поверхности клетки с помощью ферментного комплекса, связанного с плазматической мембраной, а ориентация микрофибрилл контролируется микротрубочками , расположенными у внутренней поверхности плазматической мембраны. Пектины , гемицеллюлозы и гликопротеиды , вероятно, образуются в комплексе Гольджи и переносятся к стенке в пузырьках, отделяющихся от диктиосом .

В стенках соседних клеток, как правило, одна против другой, образуются поры .

Они чаще всего закладываются там, где есть первичные поровые поля . Порами называют отверстия во вторичной оболочке, где клетки разделяют лишь первичная оболочка и срединная пластинка ( рис. 22). Участки первичной оболочки и срединную пластинку, разделяющие соседствующие поры смежных клеток, называют поровой мембраной , или замыкающей пленкой поры. Замыкающую пленку поры пронизывают плазмодесменные канальцы, но сквозного отверстия в порах обычно не образуется.

Содержимое соседних клеток связано друг с другом через специальные цитоплазматические тяжи - плазмодесмы . Плазмодесмы располагаются в плазмодесменных канальцах поровой мембраны . Посредством плазмодесм осуществляется передача раздражений и активное передвижение некоторых веществ от клетки к клетке.

Зрелых, клеток обычно многослойные, в слоях фибриллы целлюлозы ориентированы по-разному, и количество их также может значительно колебаться. Обычно описывают первичные, вторичные и третичные клеточные оболочки. При делении клеток растений после расхождения хромосом в экваториальной плоскости клеток появляется скопление мелких мембранных пузырьков, которые в центральной части клеток начинают сливаться друг с другом. Этот процесс слияния мелких вакуолей происходит от центра клетки к периферии и продолжается до тех пор, пока мембранные пузырьки не сольются между собой и с плазматической мембраной боковой поверхности клетки. Так образуется клеточная пластинка . В центральной части её распологается аморфное вещество матрикса, которое наполняло сливающиеся пузырьки. Доказано, что эти первичные вакуоли происходят от мембран аппарата Гольджи. По периферии клеточной пластинки при наблюдении ее в поляризованном свете обнаруживается заметное двойное лучепреломление, вызванное тем, что в этом месте располагаются ориентированные фибриллы целлюлозы. Таким образом, растущая клеточная пластинка состоит уже из трех слоев: центральный – срединная пластинка, состоящая только из аморфного матрикса, и два периферических – первичная оболочка, содержащая гемицеллюлозу и целлюлозные фибриллы. Если срединная пластинка – это продукт активности еще исходной клетки, то первичная оболочка образуется за счет выделения гемицеллюлозы и фибрилл целлюлозы уже двумя новыми клеточными телами. И все дальнейшее увеличение толщины клеточной (вернее, межклеточной) стенки будет происходить за счет активности двух дочерних клеток, которые с противоположных сторон будут выделять вещества клеточной оболочки, утолщающейся путем подслаивания все новых и новых пластов. Так же как и с самого начала, выделение веществ матрикса происходит за счет подхода к плазматической мембране пузырьков аппарата Гольджи, слияния их с мембраной и высвобождения их содержимого за пределы цитоплазмы. Здесь же вне клетки на ее плазматической мембране идет синтез и полимеризация целлюлозных фибрилл. Так постепенно образуется вторичная клеточная оболочка . С достаточной точностью определить и суметь отличить первичную оболочку от вторичной трудно, так как они соединены между собой несколькими промежуточными слоями. Основную массу закончившей свое формирование клеточной стенки составляет вторичная оболочка. Она придает клетке ее окончательную форму. После разделения клетки на две дочерних происходит рост новых клеток, увеличение их объема и изменение формы; клетки часто вытягиваются в длину. Одновременно с этим идет наращивание толщины клеточной оболочки и перестройка ее внутренней структуры. При образовании первичной клеточной оболочки в ее составе еще мало целлюлозных фибрилл, и они располагаются более или менее перпендикулярно будущей продольной оси клетки, позже в период растяжения (удлинения клетки за счет роста вакуолей в цитоплазме) ориентация этих поперечно-направленных фибрилл подвергается пассивным изменениям: фибриллы начинают размещаться под прямым углом друг к другу и в конечном счете оказываются вытянутыми более или менее параллельно продольной оси клетки. Постоянно идет процесс: в старых слоях (ближе к центру оболочки) фибриллы подвергаются пассивным сдвигам, а отложение новых фибрилл во внутренних слоях (ближайших к мембране клетки) продолжается в соответствии с исходным планом конструкции оболочки. Этот процесс создает возможность скольжения фибрилл относительно друг друга, а перестройка арматуры клеточной оболочки возможна из-за студенистого состояния компонентов ее матрикса. В дальнейшем при замещении в матриксе гемицеллюлозы на лигнин подвижность фибрилл резко снижается, оболочка становится плотной, происходит одревеснение. Часто под вторичной оболочкой обнаруживают третичную оболочку , которую можно рассматривать как засохший остаток дегенерировавшего слоя собственно цитоплазмы. Следует отметить, что при делении клеток растений формированию первичной оболочки не во всех случаях предшествует образование клеточной пластинки.

42. Строение и свойства клеточных стенок растительных клеток и бактерий

Клеточная стенка растений формируется при участии плазматической мембраны и является экстраклеточным (внеклеточным) многослойным образованием, защищающим поверхность клетки, служащим как бы наружным скелетом растительной клетки. Клеточная стенка состоит из двух компонентов: аморфного пластичного гелеобразного матрикса (основы) с высоким содержанием воды и опорной фибриллярной системы. Часто для придания свойств жесткости, несмачиваемости и др. в состав оболочек входят дополнительные полимерные вещества и соли. В химическом отношении главные компоненты оболочек растений относятся к структурным полисахаридам. В состав матрикса оболочек входят полисахариды, растворяющиеся в концентрированных щелочах, гемицеллюлозы и пектиновые вещества. Гемицеллюлозы представляют собой полимерные цепи, состоящие из различных гексоз (глюкоза, манноза, галактоза и др.), пентоз (ксилоза, арабиноза) и уроновых кислот (глюкуроновая и галактуроновая кислоты). Эти компоненты гемицеллюлоз сочетаются между собой в разных количественных, отношениях и образуют разнообразные комбинации. Цепи гемицеллюлозных молекул не кристаллизуются и не образуют элементарных фибрилл. Из-за наличия полярных групп уроновых кислот они сильно гидратированы. Пектиновые вещества – это полимеры метил-D-глюкуроната. Матрикс представляет собой мягкую пластическую массу, укрепленную фибриллами. Волокнистые компоненты клеточных оболочек состоят обычно из целлюлозы , линейного, неветвящегося полимера глюкозы. Молекулярный вес целлюлозы варьирует от 5*104 до 5*105, что соответствует 300 – 3000 остаткам глюкозы. Такие линейные молекулы целлюлозы могут соединяться в пучки или волокна. В клеточной оболочке целлюлоза образует фибриллы, которые состоят из субмикроскопических микрофибрилл толщиной до 25 нм, которые в свою очередь состоят из множества параллельно лежащих цепей молекул целлюлозы. Количественные соотношения целлюлозы к веществам матрикса (гемицеллюлозам) могут быть весьма различными у разных объектов. Свыше 60% сухого веса первичных оболочек составляет их матрикс и около 30% приходится на скелетное вещество – целлюлозу. В сырых клеточных оболочках почти вся вода связана с гемицеллюлозами, поэтому вес основного вещества в набухшем состоянии достигает 80% сырого веса всей оболочки, тогда как содержание волокнистых веществ сводится всего к 12%. В случае же другого примера, волоски хлопчатника, целлюлозный компонент составляет 90%, в древесине целлюлоза составляет 50% от компонентов клеточной стенки. Кроме целлюлозы, гемицеллюлозы и пектинов в состав клеточных оболочек входят дополнительные компоненты, придающие им особые свойства. Так, инкрустация (включение внутрь) оболочек лигнином (полимер кониферилового спирта) приводит к одревеснению клеточных стенок, повышению их прочности. Лигнин замещает в таких оболочках пластические вещества матрикса и играет роль основного вещества, обладающего высокой прочностью. Часто матрикс бывает укреплен минеральными веществами (SiO2, СаСО3 и др.). На поверхностях клеточной оболочки могут скапливаться различные адкрустирующие вещества, например кутин и суберин, приводящие к опробковению клеток. В клетках эпидермиса на поверхности клеточных оболочек откладывается воск, который образует водонепроницаемый слой, препятствующий потере клеткой воды.

44. Скелетно-двигательный аппарат клетки.

В клетке много движения: движутся хромосомы к полюсам клетки во время митоза, перемещаются вакуоли клеточных органелл, движется клеточная поверхность. Кроме того, в клетках растений и животных наблюдаются токи цитоплазмы (например, в растительных клетках или у амебы). Более того, отдельные клетки (свободноживущие одноклеточные организмы или специфичные типы клеток в многоклеточных животных организмах) обладают способностью активно перемещаться, ползать. Некоторые клетки имеют специализированные структуры, реснички и жгутики, которые позволяют им или самим перемещаться, или перемещать окружающую их жидкость. Наконец, у многоклеточных животных организмов есть специализированные клетки, мышечная работа которых позволяет производить различные движения органов, отдельных его частей и всего организма. Было найдено, что в основе всех этих многочисленных двигательных реакций лежат общие молекулярные механизмы, Кроме того, было показано, что наличие каких-либо двигательных аппаратов должно сочетаться и структурно связываться с существованием опорных, каркасных или скелетных внутриклеточных образований. Поэтому можно говорить (описывать и изучать) об опорно-двигательной системе клеток. К собственно двигательным компонентам клеток относятся различные микрофиламенты и белки, ассоциированные с микротрубочками. К опорным или скелетным внутриклеточным структурам относят микрофибриллы и микротрубочки.

См. билеты 45-55.

51. Промежуточные филаменты.

Промежуточные филаменты, или микрофибриллы, имеют толщину около 10нм, поэтому их еще называют 10-нм (или 100 А0) филаментами. Они обычно собраны в пучки, располагающиеся главным образом по периферии клетки, но выявлены также и в центральных участках клетки вокруг ядра (эндоплазма). По химической природе – это пестрый класс белков. Так, в эпителиальных клетках 10-нм филаменты представлены белками кератанами (тонофиламенты) с мол. весом 42 – 70 тыс., в мезенхимальных клетках (клетки соединительной ткани, в том числе фибробласты) – виментином (мол. вес 52 тыс.), в мышечных – десмином (мол. вес 50 тыс.), участвующем в структурировании а-актинина Z-дисков; в нервных клетках – это белки нейрофибрилл (мол. вес 210, 160, 68 тыс.). Описаны также глиальные промежуточные филаменты. Эти белки могут сополимеризоваться. Так, промежуточные филаменты фибробластов содержат виментин и десмин, эпителиальные – кератин и виментин. Найдено, что в одном типе клеток могут сосуществовать два рода промежуточных филаментов. Например, в некоторых клетках культуры ткани может существовать виментиновая сеть вокруг ядра и одновременно кератиновые филаменты, располагающиеся на стороне, примыкающей к подложке.

Ингибиторы полимеризации этих белков не известны, что затрудняет выяснение их функциональной роли. Считается, что промежуточные филаменты несут главным образом механическую, скелетную функцию, являясь каркасными образованиями внутри клеток. Это представление подтверждается тем, что во многих клетках эпителия, особенно покровного, промежуточные филаменты образуют толстые пучки тонофибрилл (или тонофиламентов). Тонофибриллы придают таким клеткам большую упругость и жесткость. Они связываются с многочисленными десмосомами на поверхности плазматической мембраны и, действительно, являются каркасными структурами, обеспечивающими механическую прочность клеток, постоянно подвергающихся большим деформирующим нагрузкам. Система промежуточных филаментов так же динамично подвижна, как и микрофиламенты и микротрубочки. Так, при распластывании фибробластов на стекле они вначале собраны в околоядерной зоне, но затем скоро выявляются на периферии клеток. При действии на клетки колхицина, вызывающего исчезновение микротрубочек, промежуточные фибриллы собираются в толстые пряди, кольцом окружающие ядро клетки. Кольцо или корзинки из 30-нм филаментов часто наблюдаются и в нормальных условиях. При делении клеток оно распадается на две подковообразные структуры, которые в дочерних клетках снова окружают ядро. Эти наблюдения наводят на мысль, что промежуточные филаменты каким-то образом участвуют в заякоревании ядра в объеме цитоплазмы.

55. Строение жгутиков бактерий

Основная форма движения бактерий – с помощью жгутика. Жгутики бактерий принципиально отличны от жгутиков и ресничек эукариотических клеток. По числу жгутиков их делят на: монотрихи – с одним жгутиком, политрихи – с пучком жгутиков, перитрихи – с множеством жгутиков в разных участках поверхности. Жгутики бактерий имеют очень сложное строение; они состоят, из трех основных частей: внешняя длинная волнистая нить (собственно жгутик), крючок, базальное тельце. Жгутиковая нить построена из белка-флагеллина. Его молекулярный вес колеблется в зависимости от вида бактерий (40 – 60 тыс.). Глобулярные субъединицы флагеллина полимеризуются в спирально закрученные нити так, что образуется трубчатая структура (не путать с микротрубочками эукариотов!) с диаметром 12 – 25 нм, полая изнутри. Флагеллины не способны к движению. Они могут спонтанно полимеризоваться в нити с постоянным шагом волны, характерным для каждого вида. В живых бактериальных клетках нарастание жгутиков происходит на их дистальном конце; вероятно, транспорт флагеллинов происходит через полую середину жгутика. Вблизи клеточной поверхности жгутиковая нить, флагелла, переходит к более широкому участку, так называемому крючку. Он имеет длину около 45 нм и состоит из другого белка. Бактериальное базальное тельце не имеет ничего общего с базальным тельцем эукариотической клетки. Оно состоит из стержня, связанного с крючком, и четырех колец. Два верхних кольца, имеющихся у грамотрицательных бактерий, локализованы в клеточной стенке: одно кольцо погружено в липополисахаридную мембрану, второе – в муреиновый (пептидогликановый) слой. Два остальных кольца локализованы в плазматической мембране клетки. В базальных тельцах грамположительных бактерий имеется только два нижних кольца, связанных с плазматической мембраной. Отделяя жгутиковую нить механическим путем и вызывая затем лизис бактериальных клеток, удалось выделить крючки и бактериальные базальные тельца. Это – белковая структура, в которую входит около 12 разных белков. Закрепляя жгутики бактерий с помощью антител на подложке, исследователи наблюдали вращение бактерии. Следовательно, механизм движения жгутиков заключается во вращении бактериального базального тельца вокруг своей оси. При этом флагеллярная нить описывает конусовидную фигуру. Было показано, что многочисленные мутации по флагеллинам (изменение изгиба нити, «курчавость» и др.) не сказываются на способности клеток к движению. Мутации же по белкам базального компонента часто приводят к потере движения. Движение бактериальных жгутиков не зависит от АТФ, а осуществляется благодаря разности потенциалов на поверхности плазматической мембраны. Другая форма движения, которая встречается у цианобактерий (сине-зеленые водоросли) и у некоторых грамположительных бактерий, – скольжение их по субстрату. Его механизм остается неясным, у этих бактерий до сих пор не найдено никаких специальных органелл движения.

Для выяснения локализации мест синтеза биополимеров, для определения путей переноса веществ в клетке, для наблюдения за миграцией или св-ми отдельных клеток широко используют метод авторадиографии – регистрации веществ, меченных изотопами. При авторадиографическом исследовании клеткам в среду вводятся мономер одного макромолекулярного соединения (напр., аминокислота или нуклеотид), один из атомов которого замещен радиоактивным изотопом. Напр., вместо 12С введен атом 14С, вместо водорода – тритий 3Н и др. В процессе синтеза в биополимер включится и меченая молекула мономера. Регистрировать её присутствие в клетке можно фотоэмульсией. Если клетки в пласте или на срезе покрыть фотоэмульсией, то через некоторое время в результате распада изотопа В-частицы, разлетающихся хаотично в разных направлениях, попадут в зону чувствительного фотослоя и активируют в нем зерна бромистого серебра. Чем больше будет время экспозиции, т. е. контакта такой меченой клетки с фотоэмульсией, тем больше зерен AgBr будет засвечено. После экспозиции надо проявить препарат, при этом происходит восстановление серебра только в засвеченных гранулах, при фиксации незасвеченные гранулы AgBr растворяются. В результате из массы гранул, которые покрывали объект, останутся те, которые были активированы В-излучением. Просматривая в микроскоп такие препараты, поверх которых нанесен слой фотоэмульсии, исследователь находит места локализации зерен серебра, которые располагаются напротив мест, где содержится меченое вещество.

Этот метод имеет ограничения: точность будет зависеть от величины зерна AgBr и от энергии частицы. Чем больше величина заряда, тем с меньшей точностью можно узнать место расположения изотопа. И чем выше энергия частицы и длиннее ее пробег, тем дальше от места распада будет происходить активация зерен AgBr. Поэтому для метода авторадиографии используют особые мелкозернистые фотоэмульсии (0,2-0,3 мкм) и изотопы с малой энергией В-частиц, главным образом изотоп водорода, тритий 3Н. Тритием могут быть мечена любые мономеры биологических макромолекул: нуклеотиды, аминокислоты, сахара, жирные кислоты. Используются также для авторадиографических исследований меченые гормоны, антибиотики , ингибиторы и др. Авторадиографически нельзя изучать растворимые в воде соединения, т. к. в процессе обработки клетки водными растворами (фиксация, проявление и т. д.) они могут потеряться. Другим ограничением метода является достаточно высокая концентрация данных веществ, т. к. при низкой концентрации увеличивается время экспозиции, при этом растет опасность появления фона засвеченных гранул AgBr за счет космического излучения.

Метод авторадиографии – один из основных методов, позволяющих изучать динамику, синтетических процессов, сравнивать интенсивность в разных клетках на одном и том же препарате. Так, напр., с помощью этого метода при использовании меченых мономеров РНК было показано, что вся РНК синтезируется только в интерфазном ядре, а наличие цитоплазматической РНК является результатом миграции синтезированных молекул из ядра.

61. Вакуолярная система

Как известно, сама цитоплазма, отделенная от окружающей клетку среды плазматической мембраной, неоднородна по своей структуре. В ней кроме кажущейся бесструктурной протоплазмы различают разнообразные мембранные и немембранные компоненты. К немембранным компонентам относятся микротрубочки и органеллы построенные из них, и, кроме того, различные микрофиламенты и микрофибриллы. Мембранные структуры цитоплазмы представляют собой отдельные или связанные друг с другом отсеки, содержимое которых отделено мембранами как от собственно гиалоплазмы, так и от плазматической мембраны. Эти цитоплазматические мембранные структуры имеют свое собственное содержимое, отличное по составу, свойствам и функциям от гиалоплазмы. Таким образом, мембранные элементы цитоплазмы представляют собой замкнутые, закрытые объемные зоны (часто употребляют для, их описания термин «компартмент» – купе), распределенные закономерным образом в гиалоплазме. Мембранные структуры цитоплазмы можно разделить на две группы. Одна из них – вакуолярная система. К ней относятся эндоплазматический ретикулум, гранулярный и гладкий, и различные вакуоли, возникающие из этого ретикулума (вакуоли растительных клеток, микротельца, сферосомы и др.). Кроме того, к этой системе нужно отнести вакуолярный комплекс аппарата Гольджи и лизосомы. Для всех представителей вакуолярной мембранной системы характерно наличие одинарной ограничивающей мембраной. К другой группе мембранных компонентов цитоплазмы относятся двумембранные органоиды – митохондрии и пластиды. В этом случае они имеют замкнутые и независимые, не переходящие друг в друга, внешние и внутренние мембраны. Это отличает их от двумембранной ядерной оболочки, где внешняя мембрана может переходить в мембраны эндоплазматического ретикулума цитоплазмы. Несмотря на то что в состав вакуолярной системы входят различные в морфологическом и функциональном отношении компоненты, она представляет собой единое целое. Отдельные ее элементы выполняют разные функции, как бы дополняющие и связывающие друг друга.

50. Микротрубочки интерфазной клетки, строение и функции.

Микротрубочки – нитчатые неветвящиеся структуры, состоящие из белков-тубулинов и ассоциированных с ними белков. Тубулины при полимеризации образуют полые трубки. Длина микротрубочек может достигать нескольких мкм. Самые длинные микротрубочки встречаются в составе аксонемы хвостов спермиев. Микротрубочки встречаются в цитоплазме интерфазных клеток, где они располагаются поодиночке или небольшими рыхлыми пучками либо в виде плотноупакованных микротрубочек в составе центриолей, базальных телец, в ресничках и жгутиках.

Микротрубочки – длинные полые цилиндры, стенки которого состоят из полимеризованного белка тубулина. При полимеризации молекулы тубулина образуют 13 продольных протофиламентов, которые скручиваются в полую трубку. Диаметр глобулы мономера тубулина равен 5 нм. Что соответствует толщине микротрубочки. Молекула тубулина состоит из 2-х субъединиц a - и b-тубулин.

Микротрубочка имеет быстро растущие плюс-конец и медленно растущий минус-конец. При достаточной концентрации белка полимеризация происходит спонтанно, без затраты АТФ, но с гидролизом одной молекулы ГТФ.

Микротрубочки являются динамичными структурами, которые могут достаточно быстро полимеризоваться и разбираться.

В составе выделенных микротрубочек обнаруживаются ассоциированные с ними дополнительные белки, так называемые МАР – белки (напр. тау-белок). Эти белки стабилизируют микротрубочки, ускоряют процесс полимеризации тубулина. Эти белки имеют участки связывания с неполимеризованным тубулинм и участки связывания с другими элементами цитоскелета.

Среднее время полужизни микротрубочек составляет всего 5 минут.

РЕСНИЧКИ

Ресничка состоит из покруженного в цитоплазму базального тела и аксонемы, покрытых плазматической мембраной.

Аксонема состоит из расположенных по окружности 9-ти дуплетов микротрубочек, образующих внешнюю стенку цилиндра аксонемы, и двух центральных микротрубочек. В дублетах микротрубочек различают А-микротрубочку, состоящую из 13 субъединиц и В- микротрубочку, сотоящую из 11 субъединиц А-микротрубочка несет на себе две динеиновые ручки, обращенные к В-микротрубочке соседнего дублета. От А-микротрубочки к центру аксонему отходит спица, оканчивающаяся головкой на центральной муфте, окружающей центральные вакуоли.

Базальное тело состоит из 9 триплетов, имеет ручки спицы и муфту.

МИКРОТРУБОЧКИ ЦИТОПЛАЗМЫ

1. скелетная

2. двигательная

Полимеризация микротрубочек (нуклеация) происходит в ЦОМТ (обычно это центросома). Микротрубочки нарастают от ЦОМТ плюс-концами. Зрелые микротрубочки теряют связь с клеточным центром. Микротрубочки создают эластичный устойчивый клеточный скелет. Микротрубочки участвуют в процессах роста клеток, укрепляя при этом цитоплазму, находясь в её периферических слоях. Микротрубочки играют важную роль во внутриклеточном транспорте, задают своим расположением направления для перемещения разных структур. При этом важную роль играют белки кинезин и динеин. Кинезин при ассоциации с микротрубочкой приобретает АТФ-азную активность. При гидролизе АТФ изменяется конформация молекулы кинезина и генерируется перемещение частицы в направлении к + концу (динеин – минус конец).

47. Микрофиламенты.

Актиновые микрофиламенты встречаются во всех клетках эукариотов. Особенно они обильны в высокоспециализированных мышечных волокнах в клетках, выполняющих функции сокращения мышц. Актиновые филаменты входят также в состав специальных клеточных компонентов таких как микроворсинки, ленточные соединения эпителиальных клеток, в состав цереоцилий чувствительных клеток. Актиновые микрофиламенты образуют пучки в цитоплазме подвижных клеток жив-х и слой под плазматической мембраной – кортикальный слой. У многих растительных клеток и клеток низших грибов они располагаются в слоях движущейся цитоплазмы.

Основной белок микрофиламентов – актин. Этот белок имеет молекулярный вес около 42 тыс. и в мономерной форме имеет вид глобулы (G-актин) При его полимеризации образуется тонкая фибрилла (F-актин) толщиной 6нм, представляющая собой пологую спиральную ленту. Актиновые микрофиламенты полярны по своим свойствам. При достаточной концентрации G-актин начинает самопроизвольно полимеризоваться. При такой спонтанной полимеризации актина на образовавшейся нити микрофиламента, один из её концов быстро связывается с G-актином (+ конец микрофиламента) и поэтому растёт быстрее, чем противоположный (- конец). Если концентрация G - актина недостаточна, то образовавшиеся фибриллы F-актина начинают разбираться. В растворах содержащих так называемую критическую концентрацию G-актина, устанавливается динамическое равновесие между полимеризацией и деполимеризацией, в результате чего длина фибриллы F-актина будет постоянна. Из этого следует, что актиновые микрофиламенты представляют собой очень динамичные структуры, которые могут возникать и расти или же, наоборот, разбираться и исчезать в зависимости от наличия глобулярного актина.

В живых клетках такая, казалось бы, неустойчивая фибриллярная система стабилизируется массой специфических белков, ассоциирующих с F-актином. Так белок-тропомиозин, взаимодействуя, с микрофиламентами, придаёт им необходимую жёсткость. Целый ряд белков, например филамин и a-актинин, образуют поперечные скрепки между нитями F-актина, что приводит к образованию сложной трёхмерной сети, придающей гелеобразное состояние цитоплазме. Другие дополнительные белки могут связывать филаменты в пучки (фимбрин) и т. д. Кроме того, существуют белки, взаимодействующие с концами микрофиламентов и, предотвращая разборку, стабилизирует их. Взаимодействие F-актина со всей этой группой белков регулирует агрегатное состояние микрофиламентов их рыхлое или, наоборот тесное расположение, связь с другими компонентами. Особую роль при взаимодействии с актином играют белки миозинового типа, которые образуют вместе с актином комплекс, способный к сокращению при расщеплении АТФ.

Актин – неоднородный белок, в различных клетках могут быть разные его варианты, или изоформы, кодирующиеся каждая своим геном. Так, у млекопитающих есть 6 различных актинов: по одному в скелетных и сердечной мышцах, два типа - в гладких мышцах (один из них в сосудах) и два, немышечных, цитоплазматических актина, являющихся универсальным компонентом любых клеток млекопитающих. Все изоформы актина очень сходны по аминокислотным последовательностям, вариантными в них являются концевые участки, которые определяют скорость полимеризации, но не влияют на сокращение. Такое сходство актинов, несмотря на некоторые отличия, определяет их общие свойства.

58. Методы электронно-микроскопического изучения клеток

Контрастирование корпускулярных объектов. Корпускулярными объектами можно назвать частички вирусов , фагов, выделенные клеточные компоненты (рибосомы, мембраны, вакуоли и т. д.), молекулы. Одним из широко распространенных методов контрастирования биологических объектов является оттенение металлами. В этом случае в специальных вакуумных установках производится термическое испарение металла. При этом атомы металла разлетаются от места испарения по прямым траекториям. Встречаясь с объектом, они осаждаются на нем в виде слоя; его толщина будет больше в местах, перпендикулярных направлению полета частиц металла. В участках, где объект экранирует пучок частиц, возникнут «тени». Таким образом, напыленная часть объекта обладает большей плотностью, чем напыленная подложка (фон), и поэтому объект будет виден. Этот метод широко применяется не только для контрастирования вирусов, рибосом, но и для достаточно тонких молекул нуклеиновых кислот. Минус этого метода в том, что он приводит к увеличению размеров объекта на толщину напыленного слоя, который в лучшем случае достигает 10 – 15 А0. Другой недостаток его в том, что он дает информацию только о внешнем виде и объеме частиц. Для контрастирования оттенением используется платина, палладий, их сплавы, уран. При негативном контрастировании объектов растворами солей тяжелых металлов применяют молибденовокислый аммоний , уранилацетат, фосфорно-вольфрамовую кислоту (ФВК). Если водные растворы таких веществ смешать с биологическими объектами, а затем их нанести на пленки-подложки и высушить, то объекты (например, вирусы или белковые комплексы) окажутся как бы погруженными в тонкий слой аморфного вещества высокой плотности. В электронном микроскопе они выглядят как светлые объекты на темном фоне (как фотонегатив). Преимущества метода в том, что растворенные соли могут проникать в глубь объекта и выявлять дополнительно его детали. Негативное контрастирование широко применяется при изучении вирусов, ферментных комплексов мембран. Нитчатые молекулы нуклеиновых кислот этим методом выявляются плохо из-за их малой толщины. Соли тяжелых металлов можно использовать при так называемом позитивном контрастировании. В этом случае контрастирующее вещество связывается со структурой, повышает ее электронную плотность. Часто для позитивного контрастирование нуклеиновых кислот используют растворы уранилацетата в спирте или в ацетоне . Уранилацетат, контрастируя нуклеиновые кислоты, хорошо прокрашивает центральные полости сферических вирусов, значительно повышает контраст рибосом и позволяет видеть тонкие нити выделенных нуклеиновых кислот.

Ультрамикротомия . При изучении объектов в электронном микроскопе возникает еще одно осложнение – это их толщина. Дело в том, что при прохождении пучка электронов через объект часть электронов поглощается, что приводит к нагреванию объекта и к его деформации. Поэтому необходимо иметь тонкие объекты (не выше 0,1 мкм). Процедура их изготовления в принципе сходна с той, что используется в световой микроскопии. Клетки и ткани для этого сначала фиксируют. В качестве фиксаторов используются буферные растворы глютарового альдегида или четырехокиси осмия (OsO4). Наиболее часто применяется двойная фиксация: сначала глютаровый альдегид, а затем осмий, который как тяжелый металлструктуры. Затем, после обезвоживания, ткани пропитываются эпоксидными смолами или другими пластиками в жидкой, мономерной форме. При полимеризации таких пластмасс пропитанный ими объект оказывается заключенным в твердые блоки, которые уже можно резать на тонкие срезы. Идеально острой и без зазубрин режущей поверхностью обладают сколы стекла. Но стеклянные ножи очень - недолговечны, их используют только один раз. Применяют алмазные ножи: это специальным образом заточенные мелкие алмазы, они служат в течение нескольких лет. Изготовление сверхтонкого среза осуществляется при помощи термической подачи объекта. Блок с заключенным в пластмассу объектом крепится на металлическом стержне, который нагревается и тем самым продвигает объект вперед на определенную величину за известное время. И если эту термическую подачу согласовать с ритмическими циклами резания, то можно получить серии срезов заданной толщины. Это достигается при использовании специальных приборов – ультрамикротомов. Существуют конструкции ультрамикротомов, где подача объекта осуществляется механически. Площадь получаемых ультратонких срезов обычно очень мала (0,1 – 1 мм2), поэтому все операции при ультрамикротомировании идут под микроскопическим контролем. Срезы, смонтированные на сетках с подложкой, необходимо дополнительно контрастировать – «окрашивать» с помощью солей тяжелых металлов. В этом случае используют также соли свинца и урана, которые, связываясь с внутриклеточными структурами на срезе, позитивно их контрастируют. В электронно-микроскопических исследованиях оказалось возможным применить методы авторадиографии. В этом случае используются сверхтонкозернистые эмульсии (величина гранул около 0,02 – 0,06 мкм). Недостатком этого метода является очень большое время экспозиции, в некоторых случаях достигающее нескольких месяцев. Все большее применение получают методы приготовления, ультратонких срезов без фиксации и заливки клеток в твердые пластмассы. Это методы криоультрамикротомии, т. е. получение срезов с замороженных тканей, моментально охлажденных до температуры жидкого азота (–1960). При этом происходит практически одномоментное торможение всех метаболических процессов, а вода из жидкой фазы переходит в твердую, но не кристаллическую, ее молекулярная структура беспорядочна (стекловидное состояние). Такие твердые блоки при температуре жидкого азота можно резать на ультратонкие срезы (нож при этом также охлажден). Полученные срезы используют для выявления в них активности ферментов, для проведения на них иммунохимических реакций, для ферментативного переваривания и т. п. Изучение срезов, полученных на криоультратомах, показало, что общая структура и композиция клеточных компонентов в данном случае мало отличаются от того, что видно при использовании химической фиксации и обычных приемов получения ультратонких срезов.

Другие специальные методы электронной микроскопии биологических объектов

Метод замораживания – травления – заключается в том, что объект сначала быстро замораживают жидким азотом, а затем при той же температуре переносят в специальную вакуумную установку. Там замороженных объект механическим способом скалывается охлажденным ножом. При этом обнажаются внутренние зоны замороженных клеток. В вакууме часть воды, перешедшей в стекловидную форму, возгоняется («травление»), а поверхность скола последовательно покрывается тонким слоем испаренного углерода, а затем металла. Таким образом с замороженного и сохраняющего прижизненную структуру материала получают реплику с его скола. Затем уже в условиях комнатной температуры ткань или клетки растворяют в кислотах, но пленка-реплика при этом остается цела, ее изучают в электронном микроскопе. Этот метод имеет два преимущества: изучают реплики со сколов нативных образцов; исследуют рельеф поверхности мембран клетки, что недостижимо другими методами. Оказалось, что и в этом случае общая организация клетки и ее компонентов сходна с тем, что мы видим при химической фиксации или при криотомии. Этот метод позволил увидеть, что как на поверхности, так и в толщине клеточных мембран располагаются глобулы, что мембраны не однородны по своей структуре.

В последнее время начинают применять методы высоковольтной (вернее, сверхвысоковольтной) микроскопии. Сконструированы приборы с ускоряющим напряжением 1 – 3 млн. В. Это очень дорогие приборы, что сдерживает их широкое применение. Преимущество этого класса электронных микроскопов не в том, что на них можно получить более высокое разрешение (при более короткой длине волны электронов), а в том, что при высокой энергии электронов, которые меньше поглощаются объектом, можно просматривать образцы большой толщины (1 – 10 мкм). Дополнительное использование стереоскопической съемки позволяет получить информацию о трехмерной организации внутриклеточных структур с высоким их разрешением (около 0,5 нм). Этот метод перспективен и в другом отношении: если при сверхвысокой энергии электронов уменьшается их взаимодействие с объектом, то в принципе это можно использовать при изучении ультраструктуры живых объектов. Сейчас ведутся работы в этом направлении. Метод сканирующей (растровой) электронной микроскопии позволяет изучить трехмерную картину поверхности клетки. При сканирующей электронной микроскопии тонкий пучок электронов (зонд) пробегает по поверхности объекта, и полученная информация передается на электронно-лучевую трубку. Изображение может быть получено в отраженных или вторичных электронах. При этом методе фиксированный и специальным образом высушенный объект покрывается тонким слоем испаренного металла (чаще всего золота), отражаясь от которого электроны попадают в приемное устройство, передающее сигнал на электронно-лучевую трубку. Благодаря огромной глубине фокуса сканирующего микроскопа, которая значительно больше, чем у просвечивающего, получается почти трехмерное изображение исследуемой поверхности. С помощью растровой электронной микроскопии можно получить информацию о химическом составе в тех или иных участках клеток. Так, метод рентгеноспектрального микроанализа основан на идентификации и количественной оценке содержания химических элементов по спектрам характеристического рентгеновского излучения, возникающего при взаимодействии первичных электронов с атомами. Для получения такой информации, конечно, объекты не следует покрывать слоем металла, как при обычном методе сканирующей электронной микроскопии. Более того, объект нужно подготовить так, чтобы не было потери или дополнительного внесения элементов. Для этого используют быстро замороженные и высушенные в вакууме объекты.

1) Клеточная стенка - структурное образование. Функция: придаёт прочность и форму, защищает протопласт от внешних условий, участвует в проведении и поглощении веществ.

Основа клеточной оболочки(состав)- высокополимерные углеводы (целлюлоза, т.е клетчатка - не переваривается, указывает на низкую продуктивность), молекулы целлюлозы собраны в сложные пучки (мицелии), мицелии объединяются в фибриллы, их промежутки заполнены гемицеллюлозой (полуклетчатка - менее стойкое соединение) и пектином (полезные, набухают в воде, являются источником энергии).

Различают первичную и вторичную клеточные оболочки. Меристематические и молодые растущие клетки имеют первичную клеточную оболочку, тонкую, богатую пектином и гемицеллюлозой; фибриллы целлюлозы в матриксе первичной клеточной оболочки расположены неупорядоченно.

Вторичная клеточная оболочка образуется обычно по достижении клеткой окончательного размера и накладывается слоями на первичную со стороны протопласта. Во вторичной клеточной оболочке преобладает целлюлоза, ее фибриллы располагаются упорядочение, параллельно, но направление их в каждом слое иное, что повышает прочность клеточной оболочки. Во вторичной клеточной оболочке есть отверстия (поры), где клетки разделяют лишь первичная оболочка и плазмодесмы (цитоплазматические мостики, соединяющие соседние клетки растений).

Видоизменения клеточной стенки:

  1. Одревеснение клеточной оболочки происходит в результате отложения лигнина (неуглеводный компонент в фибриллах), клетки теряет эластичность, но могут пропускать воду. Эти клетки чаще мертвые, нежели живые. Стенки некоторых клеток могут включать: воск, кутину, суберин. Функции: придает клетке форму; отделяет одну клетку от другой, является скелетом для каждой клетки и придает прочность всему растению, выполняет защитную функцию.
  2. Опробкоеение вызывается особым жироподобным веществом - суберином. Такие оболочки становятся непроницаемыми для воды и газов, также, они не пропускают тепло, содержимое клеток с опробковевшими оболочками отмирает.
  3. Кутинизация заключается в выделении жироподобного вещества кутина. Обычно кутинизируются наружные стенки кожицы листьев и "травянистых стеблей. Это делает их менее проницаемыми для воды, уменьшает испарение воды у растений, охраняет от перегрева и ультрафиолета. Кутин образует на поверхности органа пленку, называемую кутикулой.
  4. Минерализация клеточных оболочек - это отложение: кремнезема и солей кальция. Наиболее сильно инкрустируются оболочки клеток кожицы листьев и стеблей злаков, осок, хвощей. Листьями злаков и осок можно поранить руки.
  5. Ослизнение оболочек - превращение целлюлозы и пектиновых веществ в слизи и камеди. Ослизнение хорошо наблюдается на семенах льна, находившихся в воде. Образование слизей способствует лучшему поглощению воды семенами и прикреплению их к почве.

2) Размножение: способность отдельно взятой особи дать начало целой серии себе подобных.

Делят на: половое и бесполое (собственной бесполое и вегетативное)

Вегетативное : новые особи развиваются из отдельных вегетативных органов или их взаимодействий. Осуществляется благодаря регинираций (св-во восстанавливать из части тела организм). Био значение: новый организм сходен с материнским.

Способы вегетативного размножения:

  1. размножение черенками (частью растения, которое не заражено, садят в субстрат,спородина),
  2. размножение методом прививки (путём осращивания частей нескольких растений, применяющийся в садоводстве),
  3. размножение клубнями (мясистые клубни с пит в-вами садят в землю, живородная гречиха),
  4. размножение отпрысками (образуют побеги на корнях, осина),
  5. размножение луковичками (осенью отсаживают от самого растения в землю)
  6. размножение усами (ползучие побегы,укореняются придат корнями, костяника, земляника)
  7. размножение корневищами (подземный побег, запас пит в-в, ландыш, фиалка, пырей)

Использование вегетативного размножения человеком. Остальное см в 40.

С давних пор человек, культивируя растения, стал использовать вегетативное размножение. Например, выращивание картофеля, земляники, банана во всех странах мира осуществляется только вегетативным путем – клубнями, усами и корневищами.

Использование вегетативного воспроизведения растений в сельскохозяйственной практике получило название искусственного вегетативного размножения .

Основные приемы искусственного вегетативного размножения сводятся к повторению тех, которые происходят у растений в естественных природных условиях.

Люди часто используют размножение черенками – частями зеленого или одревесневшего побега(виноград, смородина, крыжовник, роза, гвоздика, фикус) , клубнями (картофель, георгина, батат, топинамбур) , листьями (сенполия, глоксиния, бегония) , луковицами (лук, чеснок, тюльпан, нарцисс) , делением куста (смородина, пиретрум) и отводками (крыжовник, жимолость, клематис) , усами (клубника) , корневищами (сахарный тростник, ирисы, флоксы) , корневыми отпрысками(слива, малина, вишня, сирень) .

3) Тыквенные . Форма: травы. Корень стержневой. Стебель: лазающий, стелющий, вьющийся Лист: простой, черешковый, без прилистников.

Формула: раздельнополый
1) правильный женский Ca (5) Co (5) A 0 G (3) околоцветник под завязью

2) правильный мужской Ca (5) Со (5) А 2+2+1 G 0

Соцветие одиночное. Плод: тыквина

Представители: огурец, дыня, тыква, арбуз., кабачок

Значение: пищевое,кормовое

Клеточная оболочка способна к утолщению и видоизменению. В результате этого образуется ве вторичная структура. Утолщение оболочки происходит путем наложения новых слоев на нервпчпуго оболочку. Ввиду того что наложепие идет уже иа твердую оболочку, фибриллы целлюлозы в каждом слое лежат параллельно, а в соседних слоях - под углом друг к другу. Этим достигается значительная прочность и твердость вторичной оболочки. По мере того как число слоев фибрилл целлюлозы становится больше и толщина стенки увеличивается, она теряет эластичность и способность к росту. Во вторичной клеточпой стенке содержание целлюлозы значительно возрастает, в некоторых случаях до 60% и более. По мере дальнейшего старения клеток матрикс оболочки может заполняться различными веществами - лигнином, суберином (одревеснение или опробковение оболочки). Лигнин образуется из гемицеллюлозы н пектиновых веществ.[ ...]

Клеточная оболочка древесного волокна имеет несколько слоев: первичный, который называется наружной оболочкой волокна, и вторичный (стенка, состоящая, в свою очередь, из трех слоев: наружного, среднего и внутреннего). Между первичными стенками клеток находится слой межклеточного вещества, при помощи которого волокна соединяются друг с другом. Вторичная стенка относительно толстая и представляет собой главную массу объема клетки.[ ...]

Во вторичных слоях клеточных стенок древесины сосны накапливались в больших количествах маннаны (22%) и уроновый ангидрид (25%).[ ...]

[ ...]

Фаза утолщения клеточной стенки. Как происходит утолщение. В период разрастания протопласт окружен только первичной стенкой. Когда же древесная клетка достигает своего наибольшего размера по поверхности или вскоре после этого, стенка клетки утолщается. Это вызвано наслаиванием вторичной стенки на первичную, причем этот новый слой возникает в результате дальнейшей деятельности протопласта внутри полости клетки. Естественно, что клетки, в которых протопласт исчез, не могут продолжать утолщать свои стенки. Образование вторичной стенки является признаком необратимого изменения в клетке, дальнейшее разрастание которой уже исключено, но не обязательно исключается дальнейшее деление при условии, что получаемые таким образом дочерние клетки занимают такой же объем, как и первоначальная клетка.[ ...]

М.1ип - ковер, покрывало). Он состоит из таблитчатых тонкостенных клеток с густой цитоплазмой. Обычно он однорядный, но иногда бывает дву рядным или многорядным. Клетки «ноту ма сначала одноядерные, по позднее они часто становятся двухъядерными или даже многоядерными. Тапетум представляет собой физиологически чрезвычайно активную ткань: его клетки содержат ферменты, гормоны, и питательный материал, используемый в процессе микроспорогепеза. Имеются некоторые основания считать секреторный тип в эволюционном отношении первичным, а амебоидный - вторичным.[ ...]

Необходимо, однако, отметить, что эти данные следует рассматривать как приближенные, так как исходные препараты не были тщательно очищены.[ ...]

Трудно определить расположение в клеточной стенке полиуронидных гемицеллюлоз, потому что реагенты, используемые для их выявления, оказывают воздействие и на лигнин . Некоторые исследователи предполагают, что цементирующим веществом между фибриллами и различными слоями клеточной стенки являются гемицеллюлозы. Коэн считает даже, что лигнин вторичной стенки имеет одинаковую природу с гемицеллюлозами. Основанием для такого предположения служит, по-видимому, тот факт, что некоторые углеводы при обработке сильными кислотами могут давать нерастворимые остатки определенного рисунка. Следует подчеркнуть, однако, что участки, как тщательно обработанные реагентами, растворяющими гемицеллюлозы, так и не обработанные ими, дают при воздействии 72%-ной серной кислоты остатки очень похожей структуры .[ ...]

Для выяснения состава отдельных слоев клеточных стенок была сделана попытка количественного определения ксилоуронидов в разных слоях трахеид и либриформа . Измерения производились на волокнах из красной японской сосны, европейской пихты, бука и березы. Для этого волокна осторожно нитровали в среде уксусного ангидрида и четыреххлористого углерода. Затем наружный нитрованный слой удаляли растворением в ацетоне, после чего контролировали содержание пентозанов в остатке по фурфуролу. Было установлено, что пентозаны в древесных волокнах по слоям разделены неравномерно. Наибольшее количество пентозанов найдено в наружных слоях волокон и концентрация их падает от периферии к центру. Так, наружные слои волокон хвойной древесины содержат 50-80% пентозанов, а у лиственных почти 100%. Во вторичных слоях клеточных стенок у хвойных содержание пентозанов оказалось не более 2-4%, а у лиственных 8-10%. Таким образом, химический метод подтвердил результаты, полученные ранее методом сорбции ультрафиолетового света.[ ...]

Различают лигнин первичный, находящийся в одревесненных клеточных стенках (природный лигнин) и вторичный - изолированный лигнин. Последний является в значительной степени веществом, измененным в процессе изолирования и загрязненным примесями посторонних веществ. Изменение лигнина выражается в отщеплении метоксильных групп, внутримолекулярной конденсации и в других признаках.[ ...]

Многие различия между типами тканей обусловлены строением клеточной стенки, особенно вторичной. Как мы уже говорили, образование первичной клеточной стенки происходит в процессе растяжения клетки, и, следовательно, она должна обладать свойством растяжимости, тогда как вторичная стенка формируется уже после того, как удлинение прекратилось.[ ...]

Престон

Одновременно с этими внутренними изменениями наружная твердая стенка ооспоры расщепляется на ее вершине на пять зубцов, давая выход проростку, возникающему из центральной клетки (рис. 269, 3). Первое деление центральной клетки происходит поперечной перегородкой, перпендикулярной к ее длинной оси, и приводит к образованию двух функционально различных клеток. Из одной, более крупной клетки в дальнейшем образуется стеблевой побег, который на начальной стадии развития называют предростком, из другой, меньшей клетки - первый ризоид. Оба они растут путем поперечных клеточных делений. Предросток растет вверх и довольно быстро зеленеет, заполняясь хлоропластами, первый ризоид направляется вниз и остается бесцветным (рис. 269, 4). После ряда клеточных делений, сообщающих им строение однорядных нитей, происходит их дифференцировка на узлы и междоузлия, и дальнейший их верхушечный рост протекает уже так, как было описано выше для стебля. Из узлов предростка возникают вторичные предростки, мутовки листьев и боковые ветви стебля, из узлов первого ризоида - вторичные ризоиды и их мутовчатые волоски. Таким путем и формируется таллом, состоящий из нескольких стеблевых побегов в верхней части и нескольких сложных ризоидов в нижней части (рис. 2G9, 5).[ ...]

Надмолекулярная структура. На рис 6.10 приведена модель структуры клеточной стенки. Она включает 2 основных слоя: первичную стенку Р и вторичную Последняя подразделяется на 3 слоя: 5], 5 , Слой М, срединная пластинка, является межклеточным веществом, соединяющим клетки между собой.[ ...]

В последующих разделах (ем. часть II) будет исчерпывающе рассмотрена химия клеточных стенок, относительные количества лигнина в них и другие родственные темы. Однако заканчивая рассмотрение четвертой и конечной фазы онтогенеза древесной клетки, следует упомянуть о некоторых явлениях, которые тем или иным путем связаны с лигннфикацией, как ее пошшают ботаники. Подобно образованию и разрастанию клеток, а также утолщению клеточных стенок, лигнификация может происходить лишь при жизни клеточного протопласта, так как отмершие клетки не могут лигнифи-цировать свои стенки. Процесс лигнификации может быть закончен в слое межклеточного вещества и в первичной стенке, но может продолжаться во вторичной стенке, даже если этот названный последним слой еще центростремительно увеличивается в толщину. В древесине деревьев лигнификация часто очень скоро заканчивается в слое, примыкающем к внутренней стороне камбия, обычно почти одновременно с тем, когда новые клетки достигли своего наибольшего размера, а вторичные стенки - своей конечной толщины. Это объясняет, почему заболонь при одинаковом содержании влаги так же или почти так же крепка, как ядровая древесина.[ ...]

Детальное исследование распределения лигнина и полисахаридов в одревесневших клеточных стенках древесины ели и березы измерением интенсивности абсорбции тонкого пучка ультрафиолетовых лучей при прохождении их через прозрачный срез подтвердило преимущественное расположение лигнина в срединной пластинке и первичной стенке, а также частично в наружных слоях вторичной стенки . В срединной пластинке еловой древесины содержание лигнина достигает 73%, а во вторичной стенке - не более 16%. Отсюда следует, что полисахариды сосредоточены в основном во вторичном слое. Была сделана попытка измерить этим методом взаимное расположение целлюлозы и гемицеллюлоз. Для этого полисахариды вначале были превращены в окрашенные соединения, абсорбирующие свет.[ ...]

В большинстве клеток ясно различаются чередующиеся зоны большего или меньшего отложения лигнина, которые создают видимость концентрических колец. При противоположном процессе, когда клеточная стенка обрабатывается делигнифицирующими. реагентами, рисунок целлюлозы остается прежним. Это свидетельствует о том, что существуют, по-видимому, две взаимопроникающие системы, состоящие одна из целлюлозы и других полисахаридов, а другая из лигнина. Бейли и Керр показали, что размеры частиц доходят до 0,1 ¡х и меньше. Промежутки или полосы объясняют существование относительно больших «фибрилл», замеченных некоторыми исследователями . Кроме преобладающих концентрических рисунков, в волокнах некоторых видов древесины проявляется расположение радиальных линий или комбинация обоих типов. Клетки сжатой древесины часто имеют жесткие, почти твердые полосы лигнина рядом с полостью клетки и радиально-расположенные пластинки его, отделенные зонами полисахаридного вещества, в средней части стенки клетки.[ ...]

В состав лишайников входят многие элементы и вещества. Все их можно разделить на две большие группы - первичные и вторичные. К первичным относятся те вещества, которые непосредственно принимают участие в клеточном обмене веществ; из них построено тело лишайников. К вторичным относятся конечные продукты обмена веществ, располагающиеся обычно на стенках гиф. Многие из этих вторичных лишайниковых веществ (в более старой литературе их называли лишайниковыми кислотами) специфичны для лишайников и не встречаются в организмах из других систематических групп.[ ...]

Риттер , Людтке и др. сообщили, что при обработке древесных волокон различными реагентами, вызывающими набухание, вторичная стенка (а также, вероятно, и первичная) распадается на нитеобразные фрагменты или фибриллы. Риттер разделил эти фибриллы на веретенообразные тела, а их в свою очередь, на сферические единицы . Значение таких относительно крупных структурных единиц (длина веретенообразных тел примерно 4[х) неясно, ввиду описанной выше тонкопористой структуры вторичной стенки. Ни в остатках лигнина после растворения целлюлозы, ни в остатках целлюлозы после растворения лигнина не обнаруживается заметных промежутков, указывающих на границы названных единиц клеточных стенок. Кроме того, недавно проведенными исследованиями с помощью электронного микроскопа в структуре клеточных стенок не было установлено присутствия подобных сравнительно крупных единиц.[ ...]

При оценке действия различных дереворазрушающих грибов на растительную ткань необходимо учитывать, что отдельные гифы их. движутся в толще клеточных стенок избирательно. Так, грибы белой гнили предпочитают срединную пластинку и первичную оболочку, где сосредоточен главным образом лигнин. Грибы красной или бурой гнили, наоборот, предпочитают проходить по вторичной оболочке, наиболее богатой углеводами. Соответственно различается и окраска поврежденной ими древесины. Более подробно эти вопросы будут рассмотрены в дальнейшем.[ ...]

Исследования трахеид и либриформа с помощью поляризационного и электронного микроскопа, а также рентгенографии позволили установить существование в клеточных стенках пяти концентрических слоев : наружной, или первичной, стенки и вторичной стенки. Вторичная стенка в свою очередь разделяется на три слоя, обычно обозначаемых 81, вг и Бз. Кроме того, между первичными стенками соседних клеток располагается склеивающая их срединная пластинка (рис. 35).[ ...]

Повышение выходов при использовании водяного пара объясняется тем, что ускоряется вынос ценных продуктов из реакционного пространства и задерживается развитие реакций вторичного распада. Кроме того, при соприкосновении водяного пара с капиллярной системой древесины на поверхностных слоях ее возможна конденсация пара, что создает условия для термического разложения в кислой водной среде. При этом реакции разложения происходят в первую очередь в слоях клеточной стенки, которые расположены с внутренних сторон клеточных полостей и состоят преимущественно из нетермостойких гемицеллюлоз, легко отщепляющих ацетильные группы и часть связанных с ними метоксилов, образуя соответственно уксусную кислоту и метиловый спирт.[ ...]

Вряд ли правильно называть клетками сегменты, слагающие нити сфероплеи, и не только потому, что они обладают множеством ядер и хлоропластов (и, следовательно, являются явно вторичными образованиями), но и потому, что отделяющие их поперечные перегородки не похожи на клеточные стенки других многоклеточных зеленых водорослей. Они сильно варьируют по форме, а также по способу и месту образования (рис. 226, 4-6). Часто поперечные перегородки имеют вид кольцевых внутренних утолщений на стенках клетки, которые не смыкаются в центре, так что остается отверстие, через которое проходит цитоплазматический тяж (рис. 226, 4). В других случаях вместо перегородок образуются особые пробки. И, наконец, в любом месте нити могут возникать группы радиально сходящихся тяжей, напоминающих скелетные тяжи каулерпы и играющих механическую роль.[ ...]

Снаружи от плазматической мембраны их клеток нет дополнительной плотной клеточной стенки или она состоит из хитина, редко из целлюлозы. Запасные углеводы обычно в форме гликогена (животного крахмала).[ ...]

Маркс-Фигипи и Пепцел изучали изменение СП хлопковой целлюлозы на различных стадиях созревания хлопка. Они показали, что вязкость растворов хлопковой целлюлозы снижается через несколько часов после открытия коробочки. Целлюлоза вторичной клеточной стенки в волокнах нераскрывшихся коробочек хлопка при небольшой зрелости (выход целлюлозы-18%) имеет единственный максимум на кривой распределения при СП 14 000. Около 10% материала имеет более низкий молекулярный вес (СП 1500-2500), эта целлюлоза содержится в первичной клеточной стенке.[ ...]

Положение мест образования микрофибрилл но отношению к поверхности мембраны цитоплазмы может быть различно. Так, у бактерий этот процесс протекает в среде, значительно удаленной от поверхности клетки и, следовательно, от мембраны. По-видимому, аналогичным образом синтез протекает и в утолщенных первичных стенках клеток эпидермиса колеоптилей овса, поскольку синтез целлюлозы в этом случае осуществляется равномерно но толщине клеточной стенки . В оболочках асцидий отложение целлюлозы происходит, по-видимому, также в местах, удаленных от поверхности секреторных клеток , хотя достаточно убедительных доказательств этого предположения нет. Напротив, микрофибриллы вторичных стенок клеток растений, возможно, образуются на внутренней поверхности стенки, в непосредственной близости от мембраны цитоплазмы . Поскольку целлюлозы во вторичных стенках значительно больше, чем в первичных, можно сделать вывод, что большинство целлюлозных микрофибрилл образуется вблизи мембраны цитоплазмы . Однако это не является обязательным.[ ...]

Одним из методов, основанных на этом принципе, является метод определения реакционной способности целлюлозы по картине набухания ксантогенатов в изо-пропилОвом спирте. Процесс набухания при взаимодействии волокна с растворителем схематически можно представить следующим образом: жидкость проникает внутрь волокна, вследствие чего объем волокна увеличивается. Затем происходит разрыв слабого эластичного наружного слоя вторичной клеточной стенки волокна и в местах разрыва образуются вздутия («бусы»). Остатки этого слоя образуют на набухшем волокне перетяжки и манжеты. Затем наружный слой отделяется и волокно равномерно набухает, на нем образуются поперечные полосы и волокно делится на пакеты дисков и отдельные диски, которые в дальнейшем растворяются.[ ...]

Зависимость прочности древесины от содержания влаги. Так как прочность и жесткость древесины частично определяются силами сцепления, связывающими молекулы, то любой агент, уменьшающий эти силы, меняет ее прочность в целом. Одним из таких агентов является вода, поэтому прочность древесины увеличивается по мере уменьшения содержания влаги не только в результате повышенной плотности, происшедшей от усушки, но также из-за присутствия вторичных валентных сил сцепления1. Так как присутствие воды в количестве, превышающем точку насыщения волокна, не изменяет характера клеточной стенки, то потеря или приобретение капиллярной (свободной) воды практически не влияет на показатели прочности древесины.[ ...]

Структуры, содержащие много лигнина, окрашиваются в темно-коричневый цвет до черного, тогда как слабо лигнифицированные зоны окрашиваются в светло-желтый цвет до янтарного. Результаты этой цветной реакции полностью подтверждают предшествующие работы по исследованию химии клеточной стенки. Вторичные стенки волокнистых элементов у древесины лиственных пород, растущих в умеренном климате, более светлые, следовательно, они менее лигнифицированы, чем вторичные стенки хвойных пород. Стенки сосудов у лиственных пород окрашены в более темный цвет, чем окружающие волокнистые элементы, следовательно, они содержат больше лигнина; мембраны пор также сильно лигнифицированы .[ ...]

Эта операция осуществлялась на одревесневших срезах, предварительно освобожденных от лигнина с помощью хлорита натрия в уксуснокислой среде. Затем срезы были обработаны п-фенилаз-; бензоилхлоридом с целью этерификации полисахаридов. Ярко окрашенные в оранжево-красный цвет срезы после набухания в пиридине фотометрировались. Подвергая такой обработке срезы, со стоящие из холоцеллюлозы, до и после удаления гемицеллюлоз, удалось установить, что основная масса гемицеллюлоз в древесине ели и березы сосредоточена в наружных слоях вторичной стенки. Так, при экстракции среза еловой холоцеллюлозы 16%-ньш едким натром было установлено, что из наружных слоев клетки извлекается до 60-80%, из средины клеточной стенки около 50% и из слоя Бз только 16% растворимых в щелочи гемицеллюлоз от общего количества полисахаридов. Аналогичная картина наблюдалась и для поперечных срезов либриформа из древесины березы.[ ...]

Опыты Риттера , а позднее Бейли и др. показали, что независимо от возможного присутствия пектиновых полиуронидов в срединной пластинке,она состоит главным образом из лигнина, как его понимают химики (нерастворим в холодной 72%-ной серной кислоте, растворим после хлорирования и обработки слабыми основаниями или основными солями). Кроме того, Риттер доказал, что большая часть лигнина находится именно в этом слое. Это утверждение противоречило преобладавшему в то время мнению о присутствии большей части лигнина в других слоях, особенно во вторичной стенке. Позднее было доказано , что в таких случаях кажущаяся широкой и объемистой вторичная стенка в действительности подобна паутине, которая после высыхания съеживается и превращается в разрозненные кусочки. Исли первичные стенки включены в сложную срединную пластинку, то весьма вероятно, что здесь находится и большая часть лигнина.[ ...]

Кальциевые каналы обнаружены и в мембранах растительных клеток. Показана регуляция входа 45Са2+ микросомы, выделенные из колеоп-тилей кукурузы и гипокотилей тыквы, светом, ПУК и зависимость этой реакции от кальмодулина. Для функционирования потенциалзависимых Са2+-каналов (харовая водоросль Ыие11ор,ш) необходимо наличие М§2+. Состояние этих потенциалзависимых каналов контролируется системой ферментов, рейдирующих уровень цАМФ в клетке. Были также получены данные, свидетельствующие о прямом действии экзогенного цАМФ на поглощение 45Са2+ в клетках СМатуёотопт гетскагсШ (мутант без клеточной стенки). Данные, приведенные на рис. 4.1, свидетельствуют о регуляторном действии цАМФ на поглощение Са2+ клетками. Это указывает на возможность взаиморегуляции двух систем вторичных посредников - цАМФ и Са2+. В опытах с животными клетками усиление поглощения Са2+ под действием цАМФ объясняется фосфорилированием белков потенциалзависимых Са2+-каналов и вследствие этого увеличением пребывания их в открытом состоянии.[ ...]

Изучению действия ультразвука на целлюлозные волокна посвящено много исследований . Некоторые исследователи сопоставляли или сочетали влияние ультразвука с различными механическими воздействиями. Так, Яйме, Кронерт и Нейхауз изучали действие ультразвука на целлюлозные волокна по сравнению с высокочастотными механическими колебаниями и показали, что ультразвук с частотой 20-3000 кгц разрыхляет структуру волокна, увеличивает степень его набухания и обезвоживания. Механическая прочность бумаги, изготовленной из таких целлюлоз, повышается, особенно прочность к раздиранию. Аналогично действуют и высокочастотные механические колебания. Ивасаки, Линдберг и Мейер считают, что общая картина изменений структуры волокна под действием ультразвука в водной среде сходна с изменениями структуры волокон при механическом размоле. При этом происходят глубокие изменения морфологической структуры волокон, приводящие к сдвигам во вторичной клеточной стенке, отрыву крупных кусков от первичной стенки, затем к набуханию вторичной стенки и ее дефибриллированию. В работе Сафоновой и Клен-ковой при изучении микрофотографий волокон, подвергнутых ультразвуковому воздействию в воде, показано, что имеются и другие, более глубокие нарушения в структуре волокна, которое становится пронизанным целой сетью многочисленных поперечных каналов. Отмечается , что волокна ранней древесины и волокна, не подвергавшиеся высушиванию, более восприимчивы к действию ультразвука.