Сравнение крахмала и целлюлозы структурное звено. Физические и химические свойства крахмала, целлюлозы,гликогена

Полисахариды: крахмал, целлюлоза

Полисахариды являются высокомолекулярными соедине­ниями, содержащими сотни и тысячи остатков моносахаридов. Общим для строения полисахаридов является то, что остатки мо­носахаридов связываются за счет полуацетального гидроксила одной молекулы и спиртового гидроксила другой и т.д. Каждый остаток моносахарида связан с соседними остатками гликозидными связями.

Полигликозиды могут содержать разветвленные и неразвет­вленные цепи. Остатки моносахаридов, входящие в состав моле­кулы, могут быть одинаковыми или разными. Наибольшее значение из высших полисахаридов имеют крахмал, гликоген (животный крахмал), клетчатка (или целлюлоза). Все эти три полисахарида состоят из молекул глюкозы, по-разному соединен­ных друг с другом. Состав всех трех соединений можно выразить общей формулой: (С 6 Н 10 О 5) n

Крахмал

Крахмал относится к полисахаридам. Молекулярная масса этого вещества точно не установлена, но известно, что очень вели­ка (порядка 100000) и для разных образцов может быть различна. Поэтому формулу крахмала, как и других полисахаридов, изо­бражают в виде (С 6 Н 10 О 5) n . Для каждого полисахарида n имеет различные значения.

Физические свойства

Крахмал представляет собой безвкусный порошок, нераствори­мый в холодной воде. В горячей воде набухает, образуя клейстер.

Крахмал широко распространен в природе. Он является для различных растений запасным питательным материалом и содер­жится в них в виде крахмальных зерен. Наиболее богато крахма­лом зерно злаков: риса (до 86%), пшеницы (до 75%), кукурузы (до 72%), а также клубни картофеля (до 24%). В клубнях картофеля крахмальные зерна плавают в клеточном соке, а в злаках они плотно склеены белковым веществом клейковиной. Крахмал яв­ляется одним из продуктов фотосинтеза.

Получение

Из растений извлекают крахмал, разрушая клетки и отмывая его водой. В промышленном масштабе его получают главным об­разом из клубней картофеля (в виде картофельной муки), а также из кукурузы.

Химические свойства

1) При действии ферментов или при нагревании с кислотами (ионы водорода служат катализатором) крахмал, как и все сложные углеводы, подвергается гидролизу. При этом сначала образуется растворимый крахмал, затем менее сложные веще­ства - декстрины. Конечным продуктом гидролиза является глюкоза. Можно выразить суммарное уравнение реакции сле­дующим образом:

Происходит постепенное расщепление макромолекул. Гидро­лиз крахмала - его важное химическое свойство.

2) Крахмал не дает реакции «серебряного зеркала», но ее дают про­дукты его гидролиза. Макромолекулы крахмала состоят из мно­гих молекул циклической a-глюкозы. Процесс образования крахмала можно выразить так (реакция поликонденсации):

3) Характерной реакцией является взаимодействие крахмала с растворами иода. Если к охлажденному крахмальному клейс­теру добавить раствор иода, то появляется синее окрашивание. При нагревании клейстера оно исчезает, а при охлаждении появляется вновь. Этим свойством пользуются при определе­нии крахмала в пищевых продуктах. Так, например, если каплю иода нанести на срез картофеля или ломтик белого хлеба, то появляется синее окрашивание.

Применение

Крахмал является основным углеводом пищи человека, он в больших количествах содержится в хлебе, крупах, картофе­ле, овощах. В значительных количествах крахмал перерабаты­вается на декстрины, патоку, глюкозу, которые используются в кондитерской промышленности. Крахмал используется как клеящее средство, применяется для отделки тканей, накрахма­ливания белья. В медицине на основе крахмала готовят мази, присыпки и т.д.

Целлюлоза, или клетчатка

Целлюлоза - еще более распространенный углевод, чем крахмал. Из него состоят в основном стенки растительных кле­ток. В древесине содержится до 60%, в вате и фильтровальной бумаге - до 90% целлюлозы.

Физические свойства

Чистая целлюлоза - белое твердое вещество, нерастворимое в воде и в обычных органических растворителях, хорошо раство­римо в концентрированном аммиачном растворе гидроксида меди (II) (реактив Швейцера). Из этого раствора кислоты осаждают целлюлозу в виде волокон (гидратцеллюлоза). Клетчатка облада­ет довольно большой механической прочностью.

Состав и строение

Состав целлюлозы, так же как и крахмала, выражают форму­лой (С 6 Н 10 О 5) n . Значение n в некоторых видах целлюлозы дости­гает 10-12 тыс., а молекулярная масса доходит до нескольких миллионов. Молекулы ее имеют линейное (неразветвленное) строение, вследствие чего целлюлоза легко образует волокна. Мо­лекулы же крахмала имеют как линейную, так и разветвленную структуру. В этом основное отличие крахмала от целлюлозы.

Имеются различия и в строении этих веществ: макромолеку­лы крахмала состоят из остатков молекул a-глюкозы, а макромо­лекулы целлюлозы - из остатков b-глюкозы. Процесс образова­ния фрагмента макромолекулы целлюлозы можно изобразить схемой:

Химические свойства. Применение целлюлозы Небольшие различия в строении молекул обуславливают зна­чительные различия в свойствах полимеров: крахмал - продукт питания, целлюлоза для этой цели непригодна.

1) Целлюлоза не дает реакции «серебряного зеркала» (нет альде­гидной группы). Это позволяет рассматривать каждое звено С 6 Н 10 О 5 как остаток глюкозы, содержащий три гидроксильные группы. Последние в формуле целлюлозы часто выделяют:

За счет гидроксильных групп целлюлоза может образовывать простые и сложные эфиры.

Например, реакция образования сложного эфира с уксусной кислотой имеет вид:

[С 6 Н 7 O 2 (ОН) 3 ] n +3nСН 3 СООН®[С 6 Н 7 O 2 (ОСОСН 3) 3 ] n +3nН 2 O

При взаимодействии целлюлозы с концентрированной азотной кислотой в присутствии концентрированной серной кислоты в качестве водоотнимающего средства образуется сложный эфир - тринитрат целлюлозы:

Это - взрывчатое вещество, применяемое для изготовления порохов.

Таким образом, при обычной температуре целлюлоза взаимо­действует лишь с концентрированными кислотами.

2) Подобно крахмалу, при нагревании с разбавленными кисло­тами целлюлоза подвергается гидролизу с образованием глюкозы:

(С 6 Н 10 0 6) n +nН 2 O®nС б Н 12 O 6

Гидролиз целлюлозы, иначе называемый осахариванием, - очень важное свойство целлюлозы, он позволяет получить из дре­весных опилок и стружек целлюлозу, а сбраживанием послед­ней - этиловый спирт. Этиловый спирт, полученный из древеси­ны, называется гидролизным.



На гидролизных заводах из 1 т древесины получают до 200 л этилового спирта, что позволяет заменить 1,5 т картофеля или 0,7 т зерна.

Сырая глюкоза, полученная из древесины, может служить кормом для скота.

Это только отдельные примеры применения целлюлозы. Цел­люлоза в виде хлопка, льна или пеньки идет на изготовление тканей - хлопчатобумажных и льняных. Большие количества ее расходуются на производство бумаги. Дешевые сорта бумаги из­готовляют из древесины хвойных пород, лучшие сорта - из льня­ной и хлопчатобумажной макулатуры. Подвергая целлюлозу химической переработке, получают несколько видов искусствен­ного шелка, пластмассы, кинопленку, бездымный порох, лаки и многое другое.

  • 5.Биохимические превращения протеиногенных а-аминокислот (аланина, лизина): дезаминирование и декарбоксилирование.
  • 6.Биохимические превращения протеиногенных а-аминокислот: а) трансаминирование; б) дезаминирование.
  • 7. Понятие об изоэлектрической точке а-аминокислот и белков.
  • 8. Первичная структура белков: определение, пептидная группа, тип химической связи.
  • 9. Вторичная структура белков: определение, основные виды
  • 10.Третичная и четвертичная структуры белков: определение, типы связей участвующие в их образовании.
  • 11.Строение полипептидной цепи пептидов белков. Привести примеры.
  • 12.Структурная формула трипептида аланилсерилтирозин.
  • 13.Структурная формула трипептида цистеилглицинфенилаланина.
  • 14.Классификация белков по: а) химическому строению; б) пространственной структуре.
  • 15.Физико-химические свойства белков: а) амфотерность; б) растворимость; в) электрохимические; г) денатурация; д) реакция осаждения.
  • 16.Углеводы: общая характеристика, биологическая роль, классификация. Доказательство строения моносахаридов на примере глюкозы и фруктозы.
  • Классификация углеводов
  • 17. Реакции окисления и восстановления моносахаридов на примере глюкозы и фруктозы.
  • 18. Гликозиды: общая характеристика, образование.
  • Классификация гликозидов
  • 19. Брожение моно- и дисахаридов (спиртовое, молочнокислое, маслянокислое, пропионовокислое).
  • 20.Восстанавливающие дисахариды (мальтоза, лактоза): строение, биохимические превращения (окисление, восстановление).
  • 21. Невосстанавливающие дисахариды (сахароза): строение, инверсия, применение.
  • 22.Полисахариды (крахмал, целлюлоза, гликоген): строение, отличительные биологические функции.
  • 23.Нуклеиновые кислоты (днк,рнк):биологическая роль,общая характеристика,гидролиз.
  • 24.Структурные компоненты нк: главные пуриновые и пиримидиновые основания, углеводная составляющая.
  • Азотистое основание Углеводный компонент Фосфорная кислота
  • Пуриновые Пиримидиновые Рибоза Дезоксирибоза
  • 26.Строение полинуклеотидпой цепи (первичная структура), например, построить фрагмент Ade-Thy-Guo; Cyt-Guo-Thy.
  • 27.Вторичная структура днк. Правила Чартгоффа Вторичная структура днк характеризуется правилом э. Чаргаффа (закономерность количественного содержания азотистых оснований):
  • 28.Основные функции т рнк, м рнк, р рнк. Структура и функции рнк.
  • Этапы репликации:
  • Транскрипция
  • Этапы транскрипции:
  • 29.Липиды (омыляемые, неомыляемые): общая характеристика, классификация.
  • Классификация липидов.
  • 30.Структурные компоненты омыляемых липидов (вжк, Спирты).
  • 31.Нейтральные жиры, масла: общая характеристика, окисление, гидрогенизация.
  • 32.Фосфолипиды: общая характеристика, представители (фосфатидилэтаноламины, фосфатидилхолины, фосфатидилсерины, фосфатидилглицерины).
  • 33.Ферменты: определение, химическая природа и строение.
  • 34.Общие свойства химических ферментов и биокатализаторов.
  • 35.Факторы, влияющие на каталитическую активность ферментов:
  • 36.Механизм действия ферментов.
  • 37.Номенклатура, классификация ферментов.
  • 38.Общая характеристика отдельных классов ферментов: а)оксидоредуктазы; б) трансферазы; в) гидролазы.
  • 39.Общая характеристика классов ферментов: а) лиазы; б) изомеразы; в)л и газы.
  • 40.Общая характеристика витаминов, классификация витаминов; представители водорастворимых и жирорастворимых витаминов. Их биологическая роль.
  • 1)По растворимости:
  • 2)По физиологической активности:
  • 41.Понятие о метаболических процессах: катаболические и анаболические реакции.
  • 42.Особенности метаболических процессов.
  • 22.Полисахариды (крахмал, целлюлоза, гликоген): строение, отличительные биологические функции.

    Полисахариды – высокомолекулярные продукты поликонденсации моносахаридов, связанных друг с другом гликозидными связями и образующие линейные или разветвленные цепи. Наиболее часто встречающимся моносахаридным звеном полисахаридов является D-глюкоза. В качестве компонентов полисахаридов могут быть также D-манноза, D- и L- галактоза, D-ксилоза и L-арабиноза, D-галактуроновая и D-маннуроновая кислоты, D- глюкозамин, D-галактозамин и др. Каждый моносахарид, входящий в состав полимерной молекулы, может находиться в пиранозной или фуранозной форме. Полисахариды можно разделить на 2 группы: гомополисахариды и гетерополисахариды.

    Гомополисахариды состоят из моносахаридных единиц только одного типа. Гетерополисахариды содержат два и более типов мономерных звеньев.

    Гомополисахариды. По своему функциональному назначению гомополисахариды могут быть разделены на 2 группы: структурные (гликоген и крахмал) и резервные (целлюлоза) полисахариды.

    Крахмал. Это высокомолекулярное соединение, включающее сотни тысяч остатков глюкозы. Он является главным резервным полисахаридом растений.

    Крахмал представляет собой смесь двух гомополисахаридов: линейного – амилозы(10-70%) и разветвленного – амилопектина(30-90%). Общая формула крахмала (С 6 Н 10 О 5)n. Как правило, содержание амилозы в крахмале составляет 10-30%, амилопектина – 70-90%. Полисахариды крахмала построены из остатков D-глюкозы, соединенных в амилозе и линейных цепях амилопектина α-1,4-связями, а в точках ветвления амилопектина – межцепочечными α-1,6-связями.

    Рис. Структура крахмала. а - амилоза с характерной для нее спиральной структурой, б – амилопектин.

    В молекуле амилозы линейно связаны 200-300 остатков глюкозы. Благодаря α-конфигурации глюкозного остатка, полисахаридная цепь амилозы имеет конфигурацию спирали. В воде амилоза не дает истинные растворы, в растворе при добавлении йода амилоза окрашивается в синий цвет.

    Амилопектин имеет разветвленную структуру. Отдельные линейные участки молекулы амилопектина содержат 20-30 остатков глюкозы. При этом формируется древовидная структура. Амилопектин окрашивается йодом в красно-фиолетовый цвет.

    Крахмал имеет молекулярную массу 10 5 -10 8 Да. При частичном кислотном гидролизе крахмала образуются полисахариды меньшей степени полимеризации – декстрины, при полном идолизе – глюкоза.

    Гликоген. Это главный резервный полисахарид высших животных и человека, построенный из остатков D-глюкозы. Общая формула гликогена как и у крахмала (С 6 Н 10 О 5)n. Он содержится почти во всех органах и тканях животных и человека, но наибольшее количество гликогена обнаружено в печени и мышцах. Молекулярная масса гликогена 10 5 -10 8 Да и более. Его молекула построена из ветвящихся полиглюкозидных цепей, в которых остатки глюкозы соединены α-1→4-гликозидными связями. В точках ветвления - α-1→6-связями. Гликоген характеризуется более разветвленной структурой, чем амилопектин; линейные отрезки в молекуле гликогены включают 11-18 остатков α-D-глюкозы.

    При гидролизе гликоген, подобно крахмалу, расщепляется с образованием сначала декстринов, затем мальтозы и глюкозы.

    Главные функции крахмала и гликогена:1)энергетическая функция (являются источником энергии в метаболических процессах);

    Целлюлоза (клетчатка) – наиболее широко распространенный структурный полисахарид растительного мира. Он состоит из β-глюкопиранозных мономерных (D-глюкозы), соединенных между собой β-(1→4)-связями. При частичном гидролизе целлюлозы образуются целлодекстрины, дисахарид целлобиоза, а при полном гидролизе D-глюкоза. Молекулярная масса целлюлозы порядка 10 6 Да. Клетчатка не переваривается ферментами пищеварительного тракта, т.к. набор этих ферментов у человека не содержит гидролаз, расщепляющих β-связи.

    Структурная ф-я целлюлозы –основа растений,клеток стебля,листьев,деревьев,грибов,лишайников.Целлюлоза выполняет в организме функцию пищевых волокон.

    Полисахариды. Крахмал и целлюлоза Филон М.В. учитель химии МБОУ СОШ № 266


    Сравнительная характеристика крахмала и целлюлозы

    Признаки сравнения

    Крахмал

    Формула

    Целлюлоза

    Структурное звено

    Структура молекулы

    Физические свойства

    Химические свойства

    Применение


    Структурная формула крахмала

    Остатки α - глюкозы



    Структурная формула целлюлозы

    Остатки β - глюкозы


    Физические свойства

    крахмала

    целлюлозы

    • твердое волокнистое белое вещество
    • белый аморфный порошок
    • не растворяется в холодной воде
    • не растворяется в воде
    • в горячей воде разбухает
    • не обладает сладким вкусом
    • не обладает сладким вкусом

    Химические свойства крахмала

    • Качественная реакция

    (С 6 Н 10 О 5) n + I 2 → синее окрашивание

    2. Гидролиз

    Крахмал → декстрины → мальтоза → глюкоза


    Химические свойства целлюлозы

    1. Гидролиз

    (С 6 Н 10 О 5) n + nH 2 O → nC 6 H 12 O 6

    2. Образование сложных эфиров






    Проверим себя

    1. Макромолекула крахмала состоит из остатков молекул…

    α - глюкозы

    фруктозы

    β - глюкозы


    Проверим себя

    2. Качественная реакция на крахмал – взаимодействие с …

    гидроксидом меди (II)

    аммиачным раствором оксида серебра


    Проверим себя

    3. При гидролизе целлюлозы образуется…


    Проверим себя

    4. Тринитрат целлюлозы используется как…

    лекарственное средство

    взрывчатое вещество

    для тушения пожаров

    Крахмал и целлюлоза – важнейшие представители полисахаридов

    Урок с использованием технологии развития
    критического мышления 10 класс

    Технология развития критического мышления через чтение и письмо позволяет развивать критическое мышление учащихся при организации их работы с различными источниками информации (специально написанные тексты, параграфы учебника, видеофильмы, лекции учителя). Мотивацию учащихся к изучению нового материала осуществляют, привлекая их к самостоятельному целеполаганию, рефлексии, а также организуя коллективную, парную и индивидуальную самостоятельную работу на уроке. Использование этой технологии дает возможность учесть индивидуальные особенности познавательных интересов учащихся, обучать каждого в зоне ближайшего развития*.

    В соответствии с этой технологией процесс обучения состоит из трех стадий. Первая – стадия вызова ; она заключается в актуализации и обобщении имеющихся знаний по изучаемой теме, возбуждении интереса к ней, мотивации учащихся к активной учебной деятельности.

    На второй стадии – стадии осмысления – задачи другие: получение новой информации, ее осмысление и соотнесение с собственными знаниями.

    Заключительная стадия – стадия размышления и рефлексии , подразумевающая целостное осмысление, присвоение и обобщение полученной информации, выработку собственного отношения к изучаемому материалу, выявление еще не познанного – вопросов и проблем для дальнейшей работы («новый вызов»), анализ всего процесса изучения материала.

    Что дает учащимся эта технология? Во-первых, повышается ответственность за качество собственного образования. Во-вторых, развиваются навыки работы с текстами любого типа и с большими объемами информации. В-третьих, формируются творческие и аналитические способности, умение эффективно работать совместно с другими людьми.

    Технология развития критического мышления наиболее эффективна при изучении материала, по которому может быть составлен интересный, познавательный текст. Возможны несколько форм (стратегий) применения этой технологии: «Чтение текста с пометками», «Заполнение таблицы ЗХУ (знаю, хочу узнать, узнал)», «Зигзаг», «Продвинутая лекция».

    Положительные стороны предлагаемой технологии: самостоятельное добывание знаний, осмысление собственной деятельности в учебном процессе, повышение ответственности обучающихся. Полноценное занятие получается при сдвоенном уроке. Возможна организация практического занятия и изучение нового материала. Сложность заключается в неодинаковом темпе чтения и оформления письменной работы учащимися.

    Цели урока. Обобщить знания учащихся о классификации углеводов и отличиях полисахаридов от моносахаридов; изучить особенности строения, нахождение в природе, физические и химические свойства крахмала и целлюлозы в сравнении; рассмотреть биологическую роль полисахаридов.

    ХОД УРОКА

    Стадия вызова

    Учитель. На предыдущих уроках вы изучили классификацию углеводов и подробно рассмотрели особенности моносахаридов. Сегодня вам предстоит изучить строение, нахождение в природе, физические и химические свойства полисахаридов. Но сначала вспомним основные отличия полисахаридов от моносахаридов. С этой целью вам предлагается выполнить тест. (Листы с тестом заранее разложены на столах у учащихся.)

    Тест

    Выберите из предложенных утверждений только те, которые справедливы:

    I в а р и а н т – для моносахаридов;

    II в а р и а н т – для полисахаридов.

    1. Их представителями являются глюкоза, фруктоза, галактоза, рибоза, дезоксирибоза.

    2. Их представителями являются крахмал, гликоген, декстрины, целлюлоза, хитин.

    3. Молекулы состоят из множества одинаковых повторяющихся групп атомов.

    4. Подразделяются на триозы, тетрозы, пентозы, гексозы.

    5. Имеют общую формулу (С 6 Н 10 О 5) n .

    6. Молярная масса невелика и обычно не превышает нескольких сотен г/моль.

    7. Молярная масса велика и может достигать нескольких миллионов г/моль.

    8. Не вступают в реакцию гидролиза.

    9. Способны подвергаться гидролизу.

    10. Остатки молекул некоторых из них входят в состав нуклеотидов ДНК и РНК.

    Ответы. I вариант: 1, 4, 6, 8, 10; II вариант: 2, 3, 5, 7, 9.

    Учащиеся выполняют тест, после чего осуществляют взаимную проверку в парах.

    Стадия осмысления

    Учитель предлагает учащимся в течение 20 мин. по учебнику О.С.Габриеляна «Химия. 10 класс» (М.: Дрофа, 2004) проработать текст – § 24, с. 206–210, используя специальные пометки карандашом:

    «V» – это я знаю;

    «+» – новая информация;

    «–» – информация, противоречащая моим знаниям;

    «?» – информация, требующая пояснения;

    «!» – это интересно.

    Учащиеся работают в группах по 3–4 человека, обмениваются мнениями по изучаемому вопросу, помогают друг другу преодолеть возникающие затруднения, делая необходимые пояснения.

    Стадия размышления и рефлексии

    Учащиеся возвращаются в па"ры и составляют таблицу по характеристике крахмала и целлюлозы (таблица). При этом в каждой паре один учащийся заполняет столбец о крахмале, а второй – о целлюлозе, после чего обмениваются результатами.

    Таблица

    Характеристика крахмала и целлюлозы

    Характеристика

    Полисахарид

    Целлюлоза

    Молекулярная формула (С 6 Н 10 O 5) n (С 6 Н 10 O 5) n
    Особенности строения Структурное звено – остаток циклической молекулы -глюкозы. Степень полимеризации от нескольких сотен до нескольких тысяч. Молярная масса достигает нескольких сотен тысяч г/моль. Структура макромолекул: линейная (амилоза) и разветвленная (амилопектин). В крахмале на долю амилозы приходится 10–20 %, а на долю амилопектина – 80–90 % Структурное звено – остаток циклической молекулы -глюкозы. Степень полимеризации от нескольких тысяч до нескольких десятков тысяч. Молярная масса достигает нескольких миллионов г/моль. Структура макромолекул: линейная
    Нахождение в природе и биологические функции В цитоплазме растительных клеток в виде зерен запасного питательного вещества. Содержание (по массе): в рисе – до 80 %, в пшенице и кукурузе – до 70 %, в картофеле – до 20 % Обязательный элемент клеточной оболочки растений, выполняющий строительную, конструкционную функцию. Содержание (по массе): в волокнах хлопка – до 95 %, в волокнах льна и конопли – до 80 %, в древесине – до 50 %
    Физические свойства Белый аморфный порошок, не растворяется в холодной воде, в горячей воде разбухает и образует коллоидный раствор – крахмальный клейстер (при этом амилоза, как составная часть крахмала, растворяется в горячей воде, а амилопектин только набухает) Твердое волокнистое вещество, нерастворимое в воде
    Химические свойства

    (С 6 Н 10 O 5) n + n Н 2 О -> n С 6 Н 12 O 6 .

    2) Образование сложных эфиров за счет гидроксигрупп (практического значения не имеет).

    3) Качественная реакция с йодом – синее окрашивание

    1) Образование глюкозы в результате полного гидролиза:

    (С 6 Н 10 O 5) n + n Н 2 О -> n С 6 Н 12 O 6 .

    2) Образование сложных эфиров за счет гидроксигрупп: при взаимодействии с азотной кислотой (в присутствии серной кислоты) – мононитратов, динитратов и тринитратов; при взаимодействии с уксусной кислотой (или уксусным ангидридом) – диацетатов и триацетатов. Все сложные эфиры получили широкое применение.

    3) Реакции с йодом не дает

    Домашнее задание. Дополнить таблицу строками «Получение» и «Применение», используя § 24 учебника и справочную литературу; решить задачу № 1, стр. 210.

    Л и т е р а т у р а

    Габриелян О.С., Маскаев Ф.Н., Пономарев С.Ю., Теренин В.И. Химия. 10 класс. Учебник для общеобразовательных учреждений. М.: Дрофа, 2004, с. 206–210; Бессуднова Н.В., Евдокимова Т.А., Клочкова В.А . Развитие критического мышления учащихся на уроках биологии. Биология в школе, 2008, № 3, с. 24–30.

    А.С.ГОРДЕЕВ,
    учитель химии и экологии
    гимназии № 20
    (г. Донской, Тульская обл.)

    * Понятие, введенное Л.С.Выготским, обозначающее расхождение между существующим уровнем развития ребенка и потенциальным, которого он способен достигнуть под руководством педагога и в сотрудничестве со сверстниками.

    Крахмал - это аморфный порошок с характерным хрустом (картофельного крахмала), нерастворимый в воде в обычных условиях. При попадании в горячую воду зерна крахмала сильно набухают, их оболочки разрываются, образуется коллоидный раствор.

    Целлюлоза представляет собой волокнистое вещество белого цвета, не растворимый в воде. В отличие от крахмала, целлюлоза совсем не взаимодействует с водой даже йри кипячении. Чистая целлюлоза в нашей жизни встречается в виде ваты.

    Строение молекул крахмала и целлюлозы

    Самая простая формула крахмала (целлюлозы и) - (С 6 Н 10 О 5) n . В этой формуле значение n - от нескольких сотен до нескольких тысяч. Итак, крахмал - это природный полимер, состоящий из многократно повторяющихся структурных звеньев С 6 Н 10 О 5 . Он состоит из молекул двух типов. По этой причине крахмал даже считают смесью двух веществ - амилозы и амилопектина. Амилоза (ее в крахмале 20%) имеет линейные молекулы и более растворимая. Молекулы амилопектина (80%) разветвленные, и он менее растворим в воде. Эти молекулы отличаются и по относительной молекулярной массой: для линейных молекул (амилозы) она достигает порядка сотен тысяч, для разветвленных молекул (амилопектина) - нескольких миллионов.

    Самая простая и молекулярная формулы целлюлозы аналогичны формул крахмала. Очевидно, что при одинаковом составе эти вещества существенно отличаются по свойствам. По сравнению с крахмалом у целлюлозы более высокая относительная молекулярная масса. Причина прочности и нерастворимости целлюлозы заключается в том, что она имеет пространственную трехмерную структуру. Однако целлюлоза не имеет не только трехмерной, но и разветвленной структуры. Но в этом и заключается причина прочности молекул целлюлозы, потому что они имеют линейную структуру, и отдельные макромолекулы расположены упорядочено плотно друг к другу. Вследствие этого значительно возрастает сила межмолекулярного взаимодействия между отдельными макромолекулами. Между упорядоченно расположенными макромолекулами целлюлозы устанавливаются многочисленные водородные связи: атомы Кислорода гидроксильных групп одной молекулы электростатически взаимодействуют с атомами Водорода гидроксильных групп другой молекулы. По этой же причине целлюлоза образует прочные волокна, что не характерно для крахмала. Тем временем в крахмале большинство молекул имеет разветвленную структуру, поэтому возможностей для. установление водородных связей меньше.

    Молекулы крахмала состоят из остатков α -глюкозы, а целлюлозы - из остатков молекул β -глюкозы, В этом также заключается причина различий химических свойств крахмала и целлюлозы:

    Крахмал

    Целлюлоза


    Химические свойства крахмала и целлюлозы

    1.Комплексообразование крахмала с йодом.

    Свойство крахмала образовывать синее окрашивание с йодом используют как качественную реакцию для обнаружения крахмала. С йодом реагирует в основном амилоза, образуя окрашенное соединение. Молекула амилозы в виде спирали окружает молекулы йода, при этом вокруг каждой молекулы йода оказывается шесть глюкозных остатков. Нагревание разрушает такой комплекс, и окраска исчезает.

    2.Гидролиз.

    Для сахарозы характерна реакция гидролиза. Такая же свойство присуще и крахмала. При длительном кипячении крахмала в присутствии кислоты (чаще всего сульфатной) молекулы подвергаются гидролизу. Причем конечным продуктом гидролиза есть только α -глюкоза. Однако процесс гидролиза происходит ступенчато с образованием промежуточных продуктов гидролиза. Ступенчатый процесс гидролиза может быть выражен следующей схеме:

    Аналогичную свойство имеет и целлюлоза. Однако гидролиз целлюлозы проходит в более жестких условиях, и конечным продуктом гидролиза является β -глюкоза.

    Промежуточные продукты гидролиза целлюлозы не представляют особого интереса, поэтому их можно не указывать и уравнения реакции составлять в суммарном виде:

    3. Термическое разложение.

    При нагревании древесины до высокой температуры без доступа воздуха выделяется достаточно большое количество продуктов. Кроме углерода и воды, образуются жидкие продукты, в том числе и метиловый спирт (который именно потому и называют древесным спиртом), ацетон, уксусная кислота.

    4. Естерифікацїя.

    Поскольку остатки глюкозы, входящие в состав целлюлозы, сохраняют гидроксильные группы, то она способна вступать в реакцию эстерификации с кислотами.

    В каждом звене целлюлозы содержатся три гидроксильные группы. Все они могут вступать в реакции образования естеріз. В обычной формуле целлюлозы эти гидроксильные группы выделяют так:

    Больше всего значение имеют эфиры целлюлозы с нітратною кислотой (нитроцеллюлоза) и уксусной кислотой (ацетилцелюлоза).

    Применение крахмала

    Крахмал - это основной углевод нашей пищи; непосредственно он, подобно жиров, организмом не усваивается. Гидролиз крахмала под действием ферментов начинается в рту при пережевывании пищи, продолжается в желудке и кишечнике. Образована в результате гидролиза глюкоза всасывается в кровь и поступает в печень, а оттуда - во все ткани организма. Избыток глюкозы откладывается в печени в виде высокомолекулярного углевода гликогена, который снова гидролизуется до глюкозы по мере расходования ее в клетках организма.

    Для добывания глюкозы крахмал нагревают с разбавленной серной кислотой в течение нескольких часов. Когда процесс гидролиза закончится, кислоту нейтрализуют мелом, образующийся осадок кальций сульфата отфильтровывают и раствор упаривают. При охлаждении из раствора кристаллизуется глюкоза.

    Если процесс гидролиза не доводить до конца, то в результате образуется густая сладкая масса - смесь декстринов и глюкозы - патока.

    Декстрины, добытые из крахмала, используют как клей. Крахмал применяют для накрохмалювання белья под действием нагревания горячим утюгом он превращается в декстрины, которые склеивают волокна ткани и образуют плотную пленку, предохраняющую ткань от быстрого загрязнения. Кроме того, это облегчает следующее стирки, поскольку частички грязи, связанные с декстринами, значительно легче смываются водой.

    Крахмал используют для производства этилового спирта. Во время этого процесса его сначала гидролизуют под действием фермента, который содержится в солоде, а потом продукт гидролиза сбраживают в присутствии дрожжей в спирт.

    Этиловый спирт, который используют для промышленных нужд (синтез каучука), добывают синтетическим путем из этилена и гидролизом целлюлозы.

    Применение целлюлозы

    Благодаря своей механической прочности целлюлоза в составе древесины используется в строительстве, из нее изготовляют всевозможные столярные изделия. В виде волокнистых материалов (хлопка, льна, конопли), ее используют для изготовления нитей, тканей, канатов. Выделенная из древесины (освобожденная от сопутствующих веществ), целлюлоза идет на изготовление бумаги.

    Эстеры целлюлозы используют для изготовления нитролаков, кинопленки, медицинского коллодия, искусственного волокна и взрывчатых веществ.