Радиус вписанной окружности в произвольный треугольник. Как найти радиус окружности

Рассмотрим окружность, вписанную в треугольник (рис. 302). Напомним, что ее центр О помещается на пересечении биссектрис внутренних углрв треугольника. Отрезки ОА, ОВ, ОС, соединяющие О с вершинами треугольника ABC, разобьют треугольник на три треугольника:

АОВ, ВОС, СОА. Высота каждого из этих треугольников равна радиусу , и потому их площади выразятся как

Площадь всего треугольника S равна сумме этих трех площадей:

где - полупериметр треугольника. Отсюда

Радиус вписанной окружности равен отношению площади треугольника к его полупериметру.

Для получения формулы для радиуса описанной окружности треугольника докажем следующее предложение.

Теорем а: В любом треугольнике сторона равна диаметру описанной окружности, умноженному на синус противолежащего угла.

Доказательство. Рассмотрим произвольный треугольник ABC и описанную вокруг него окружность, радиус которой обозначим через R (рис. 303). Пусть А - острый угол треугольника. Проведем радиусы ОВ, ОС окружности и опустим из ее центра О перпендикуляр ОК на сторону ВС треугольника. Заметим, что угол а треугольника измеряется половиной дуги ВС, для которой угол ВОС является центральным углом. Отсюда видно, что . Поэтому из прямоугольного треугольника СОК находим , или , что и требовалось доказать.

Приведенный рис. 303 и рассуждение относятся к случаю острого угла треугольника; нетрудно было бы провести доказательство и для случаев прямого и тупого угла (читатель это проделает самостоятельно), но можно использовать теорему синусов (218.3). Так как должно быть откуда

Теорему синусов записывают также в. виде

и сравнение с формой записи (218.3) дает для

Радиус описанной окружности равен отношению произведения трех сторон треугольника к его учетверенной площади.

Задача. Найти стороны равнобедренного треугольника, если его вписанная и описанная окружности имеют соответственно радиусы

Решение. Напишем формулы, выражающие радиусы вписанной и описанной окружностей треугольника:

Для равнобедренного треугольника с боковой стороной и основанием площадь выражается формулой

или, сократив дробь на отличный от нуля множитель , будем иметь

что приводит к квадратному уравнению относительно

Оно имеет два решения:

Подставив вместо его выражения в любое из уравнений для или R, найдем окончательно два ответа к нашей задаче:

Упражнения

1. Высота прямоугольного треугольника, проведенная из вершины прямого угла, делнт гипотенузу в отношении Найти отношение каждого из катетов к гипотенузе.

2. Основания равнобедренной трапеции, описанной около окружности, равны а и b. Найти радиус окружности.

3. Две окружности касаются внешним образом. Их общие касательные наклонены к линии центров под углом 30°. Длина отрезка касательной между точками касания равна 108 см. Найти радиусы окружностей.

4. Катеты прямоугольного треугольника равны а и b. Найти площадь треугольника, сторонами которого служат высота и медиана данного треугольника, проведенные из вершины прямого угла, и отрезок гипотенузы между точками их пересечения с гипотенузой.

5. Стороны треугольника равны 13, 14, 15. Найти проекцию каждой из них на две остальные.

6. В треугольнике известны сторона и высоты Найти стороны b и с.

7. Известны две стороны треугольника и медиана Найти третью сторону треугольника.

8. Даны две стороны треугольника и угол а между ними: Найти радиусы вписанной и описанной окружностей.

9. Известны стороны треугольника а, b, с. Чему равны отрезки, на которые они разбиваются точками касания вписанной окружности со сторонами треугольника?

Если окружность располагается внутри угла и касается его сторон, её называют вписанной в этот угол. Центр такой вписанной окружности располагается на биссектрисе этого угла .

Если же она лежит внутри выпуклого многоугольника и соприкасается со всеми его сторонами, она называется вписанной в выпуклый многоугольник.

Окружность, вписанная в треугольник, соприкасается с каждой стороной этой фигуры лишь в одной точке. В один треугольник возможно вписать лишь одну окружность.

Радиус такой окружности будет зависеть от следующих параметров треугольника:

  1. Длин сторон треугольника.
  2. Его площади.
  3. Его периметра.
  4. Величины углов треугольника.

Для того чтобы вычислить радиус вписанной окружности в треугольник, не всегда обязательно знать все перечисленные выше параметры, поскольку они взаимосвязаны между собой через тригонометрические функции.

Вычисление с помощью полупериметра

  1. Если известны длины всех сторон геометрической фигуры (обозначим их буквами a, b и c), то вычислять радиус придётся путём извлечения квадратного корня.
  2. Приступая к вычислениям, необходимо добавить к исходным данным ещё одну переменную - полупериметр (р). Его можно рассчитать, сложив все длины и полученную сумму разделив на 2. p = (a+b+c)/2. Таким образом можно существенно упростить формулу нахождения радиуса.
  3. В целом формула должна включать в себя знак радикала, под который помещается дробь, знаменателем этой дроби будет величина полупериметра р.
  4. Числителем данной дроби будет представлять собой произведение разностей (p-a)*(p-b)*(p-c)
  5. Таким образом, полный вид формулы будет представлен следующим образом: r = √(p-a)*(p-b)*(p-c)/p).

Вычисление с учётом площади треугольника

Если нам известна площадь треугольника и длины всех его сторон, это позволит найти радиус интересующей нас окружности, не прибегая к извлечению корней.

  1. Для начала нужно удвоить величину площади.
  2. Результат делится на сумму длин всех сторон. Тогда формула будет выглядеть следующим образом: r = 2*S/(a+b+c).
  3. Если воспользоваться величиной полупериметра, можно получить совсем простую формулу: r = S/p.

Расчёт с помощью тригонометрических функций

Если в условии задачи присутствует длина одной из сторон, величина противоположного угла и периметр, можно воспользоваться тригонометрической функцией - тангенсом. В этом случае формула расчёта будет иметь следующий вид:

r = (P /2- a)* tg (α/2), где r - искомый радиус, Р - периметр, а - значение длины одной из сторон, α - величина противоположного стороне, а угла.

Радиус окружности, которую необходимо будет вписывать в правильный треугольник, можно найти по формуле r = a*√3/6.

Окружность, вписанная в прямоугольный треугольник

В прямоугольный треугольник можно вписать только одну окружность . Центр такой окружности одновременно служит точкой пересечения всех биссектрис. Эта геометрическая фигура имеет некоторые отличительные черты, которые необходимо учесть, вычисляя радиус вписанной окружности.

  1. Для начала необходимо выстроить прямоугольный треугольник с заданными параметрами. Построить такую фигуру можно по размеру её одной стороны и величинам двух углов или же по двум сторонам и углу между этими сторонами. Все эти параметры должны быть указаны в условии задачи. Треугольник обозначается как АВС, причём С - это вершина прямого угла. Катеты при этом обозначаются переменными, а и b , а гипотенуза - переменной с .
  2. Для построения классической формулы и вычисления радиуса окружности необходимо найти размеры всех сторон описанной в условии задачи фигуры и по ним вычислить полупериметр. Если в условиях даются размеры двух катетов, по ним можно вычислить величину гипотенузы, исходя из теоремы Пифагора.
  3. Если в условии дан размер одного катета и одного угла, необходимо понять, прилежащий этот угол или противолежащий. В первом случае гипотенуза находится с помощью теоремы синусов: с=a/sinСАВ , во втором случае применяют теорему косинусов с=a/cosCBA .
  4. Когда все расчёты выполнены и величины всех сторон известны, находят полупериметр по формуле, описанной выше.
  5. Зная величину полупериметра, можно найти радиус. Формула представляет собой дробь. Её числителем является произведение разностей полупериметра и каждой из сторон, а знаменателем -величина полупериметра.

Следует заметить, что числитель данной формулы является показателем площади. В этом случае формула нахождения радиуса гораздо упрощается - достаточно разделить площадь на полупериметр.

Определить площадь геометрической фигуры можно и в том случае, если известны оба катета. По сумме квадратов этих катетов находится гипотенуза, далее вычисляется полупериметр. Вычислить площадь можно, умножив друг на друга величины катетов и разделив полученное на 2.

Если в условиях даны длины и катетов и гипотенузы, определить радиус можно по очень простой формуле: для этого складываются длины катетов, из полученного числа вычитается длина гипотенузы. Результат необходимо разделить пополам.

Видео

Из этого видео вы узнаете, как находить радиус вписанной в треугольник окружности.

Не получили ответ на свой вопрос? Предложите авторам тему.

Как найти радиус окружности? Этот вопрос всегда актуален для школьников, изучающих планиметрию. Ниже мы рассмотрим несколько примеров того, как можно справиться с поставленной задачей.

В зависимости от условия задачи радиус окружности вы можете найти так.

Формула 1: R = Л / 2π, где Л - это а π - константа, равная 3,141…

Формула 2: R = √(S / π), где S - это величина площади круга.

Формула 1: R = В/2, где В - гипотенуза.

Формула 2: R = М*В, где В - гипотенуза, а М - медиана, проведенная к ней.

Как найти радиус окружности, если она описана вокруг правильного многоугольника

Формула: R = А / (2 * sin (360/(2*n))), где А - длина одной из сторон фигуры, а n - количество сторон в данной геометрической фигуре.

Как найти радиус вписанной окружности

Вписанной окружность называется тогда, когда она касается всех сторон многоугольника. Рассмотрим несколько примеров.

Формула 1: R = S / (Р/2), где - S и Р - площадь и периметр фигуры соответственно.

Формула 2: R = (Р/2 - А) * tg (а/2), где Р - периметр, А - длина одной из сторон, а - противолежащий этой стороне угол.

Как найти радиус окружности, если она вписана в прямоугольный треугольник

Формула 1:

Радиус окружности, которая вписана в ромб

Окружность можно вписать в любой ромб, как равносторонний, так и неравносторонний.

Формула 1: R = 2 * Н, где Н - это высота геометрической фигуры.

Формула 2: R = S / (А*2), где S - это а А - длина его стороны.

Формула 3: R = √((S * sin А)/4), где S - это площадь ромба, а sin А - синус острого угла данной геометрической фигуры.

Формула 4: R = В*Г/(√(В² + Г²), где В и Г - это длины диагоналей геометрической фигуры.

Формула 5: R = В*sin (А/2), где В - диагональ ромба, а А - это угол в вершинах, соединяющих диагональ.

Радиус окружности, которая вписана в треугольник

В том случае, если в условии задачи вам даны длины всех сторон фигуры, то сначала высчитайте (П), а затем полупериметр (п):

П = А+Б+В, где А, Б, В - длин сторон геометрической фигуры.

Формула 1: R = √((п-А)*(п-Б)*(п-В)/п).

А если, зная все те же три стороны, вам дана еще и то можете рассчитать искомый радиус следующим образом.

Формула 2: R = S * 2(А + Б + В)

Формула 3: R = S/п = S / (А+Б+В)/2), где - п - это полупериметр геометрической фигуры.

Формула 4: R = (п - А) * tg (А/2), где п - это полупериметр треугольника, А - одна из его сторон, а tg (А/2) - тангенс половины противолежащего этой стороне угла.

А ниже приведенная формула поможет отыскать радиус той окружности, которая вписана в

Формула 5: R =А * √3/6.

Радиус окружности, которая вписана в прямоугольный треугольник

Если в задаче даны длины катетов, а также гипотенуза, то радиус вписанной окружности узнается так.

Формула 1: R = (А+Б-С)/2, где А, Б - катеты, С - гипотенуза.

В том случае, если вам даны только два катета, самое время вспомнить теорему Пифагора, чтобы гипотенузу найти и воспользоваться вышеприведенной формулой.

С = √(А²+Б²).

Радиус окружности, которая вписана в квадрат

Окружность, которая вписана в квадрат, делит все его 4 стороны ровно пополам в точках касания.

Формула 1: R = А/2, где А - длина стороны квадрата.

Формула 2: R = S / (Р/2), где S и Р - площадь и периметр квадрата соответственно.

Окружность считается вписанной в границы правильного многоугольника, в случае, если лежит внутри него, касаясь при этом прямых, которые проходят через все стороны. Рассмотрим, как найти центр и радиус окружности. Центром окружности будет являться точка, в которой пересекаются биссектрисы углов многоугольника. Радиус рассчитывается: R=S/P; S – площадь многоугольника, Р – полупериметр окружности.

В треугольнике

В правильный треугольник вписывают лишь одну окружность, центр которой называется инцентром; он от всех сторон удалён на одинаковое расстояние и является местом пересечения биссектрис.

В четырёхугольнике

Часто приходится решать, как найти радиус вписанной окружности в эту геометрическую фигуру. Она должна быть выпуклой (если нет самопересечений). Окружность вписать в неё можно только в случае равенства сумм противоположных сторон: AB+CD=BC+AD.

При этом центр вписанной окружности, середины диагоналей, расположены на одной прямой (согласно теореме Ньютона). Отрезок, концы которого находятся там, где пересекаются противоположные стороны правильного четырёхугольника, лежит на этой же прямой, называемой прямой Гаусса. Центром окружности будет точка, в которой пересекаются высоты треугольника с вершинами, диагоналями (по теореме Брокара).

В ромбе

Им считается параллелограмм с одинаковой длиной сторон. Радиус окружности, вписываемой в него, можно рассчитать несколькими способами.

  1. Чтобы сделать это правильно, найдите радиус вписанной окружности ромба, если известна площадь ромба, длина его стороны. Применяется формула r=S/(2Хa). К примеру, если площадь ромба составляет 200 мм кв., длина стороны 20 мм, то R=200/(2Х20), то есть, 5 мм.
  2. Известен острый угол одной из вершин. Тогда необходимо использовать формулоу r=v(S*sin(α)/4). Например, при площади в 150 мм и известном угле в 25 градусов, R= v(150*sin(25°)/4) ≈ v(150*0,423/4) ≈ v15,8625 ≈ 3,983 мм.
  3. Все углы в ромбе равны. В этой ситуации радиус окружности, вписанной в ромб, будет равен половине длины одной стороны данной фигуры. Если рассуждать по Евклиду, утверждающего, что сумма углов всякого четырёхугольника равна 360 градусов, то один угол будет равен 90 градусам; т.е. получится квадрат.

Окружность вписана в треугольник. В данной статье собрал для вас задачи, в которых даётся треугольник с вписанной в него или описанной около него окружностью. В условии ставится вопрос о нахождении радиуса окружности или стороны треугольника.

Данные задания удобно решать используя представленные формулы. Рекомендую их выучить, бывают очень полезны не только при решении этого типа заданий. Одна формула выражает связь радиуса вписанной в треугольник окружности с его сторонами и площадью, другая радиус описанной около треугольника окружности также с его сторонами и площадью:

S – площадь треугольника

Рассмотрим задачи:

27900. Боковая сторона равнобедренного треугольника равна 1, угол при вершине, противолежащей основанию, равен 120 0 . Найдите диаметр описанной окружности этого треугольника.

Здесь окружность описана около треугольника.

Первый способ:

Диаметр мы сможем найти, если будет известен радиус. Используем формулу радиуса описанной около треугольника окружности:

где a, b, c – стороны треугольника

S – площадь треугольника

Две стороны нам известны (боковые стороны равнобедренного треугольника), третью мы можем вычислить используя теорему косинусов:

Теперь вычислим площадь треугольника:

*Использовали формулу (2) из .

Вычисляем радиус:

Таким образом диаметр будет равен 2.

Второй способ:

Это устные вычисления. Для тех кто имеет навык решения заданий с вписанным в окружность шестиугольником, тот сразу определит, что стороны треугольника АС и ВС «совпадают» со сторонами вписанного в окружность шестиугольника (угол шестиугольника как раз равен 120 0 , как и в условии задачи). А далее на основании того, что сторона вписанного в окружность шестиугольника равна радиусу этой окружности не сложно сделать вывод о том, что диаметр будет равен 2АС, то есть двум.

Подробнее о шестиугольнике посмотрите информацию в (п.5).

Ответ: 2

27931. Радиус окружности, вписанной в равнобедренный прямоугольный треугольник, равен 2. Найдите гипотенузу с этого треугольника. В ответе укажите .

где a, b, c – стороны треугольника

S – площадь треугольника

Нам неизвестны ни стороны треугольника, ни его площадь. Обозначим катеты как х, тогда гипотенуза будет равна:

А площадь треугольника будет равна 0,5х 2 .

Значит


Таким образом, гипотенуза будет равна:

В ответе требуется записать:

Ответ: 4

27933. В треугольнике ABC АС = 4, ВС = 3, угол C равен 90 0 . Найдите радиус вписанной окружности.

Воспользуемся формулой радиуса окружности вписанной в треугольник:

где a, b, c – стороны треугольника

S – площадь треугольника

Две стороны известны (это катеты), можем вычислить третью (гипотенузу), также можем вычислить и площадь.

По теореме Пифагора:

Найдём площадь:

Таким образом:

Ответ: 1

27934. Боковые стороны равнобедренного треугольника равны 5, основание равно 6. Найдите радиус вписанной окружности.

Воспользуемся формулой радиуса окружности вписанной в треугольник:

где a, b, c – стороны треугольника

S – площадь треугольника

Известны все стороны, вычислим и площадь. Её мы можем найти по формуле Герона:


Тогда

Таким образом:

Ответ: 1,5

27624. Периметр треугольника равен 12, а радиус вписанной окружности равен 1. Найдите площадь этого треугольника. Посмотреть решение

27932. Катеты равнобедренного прямоугольного треугольника равны . Найдите радиус окружности, вписанной в этот треугольник.

Небольшой итог.

Если в условии дан треугольник и вписанная или описанная окружность, и речь идёт о сторонах, площади, радиусе, то сразу вспомните об указанных формулах и пробуйте использовать их при решении. Если не получается, то тогда уже ищите другие способы решения.

На этом всё. Успеха вам!

С уважением, Александр Крутицких.

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.