С нее начинается любая физическая теория. Физические теории: «Гравитация», «Электродинамика» и «Единая теория поля

Cтраница 1


Любая физическая теория должна быть количественной, ее объекты характеризуются физическими величинами, а связь между физическими величинами и их изменение описываются соответствующими физическими законами.  

Любая физическая теория должна быть построена таким образом, чтобы ее основные законы были инвариантны к преобразованиям Лоренца. Выясним, инвариантен ли к преобразованиям Лоренца основной закон механики - второй закон Ньютона.  

В любой физической теории центральным является вопрос о том, какие допускаются преобразования. Допущение, как это предлагает Шульман , новых преобразований (если только оно не производится с величайшей осторожностью в качестве эвристического приема, как в гл.  

В основе любой физической теории всегда лежат аксиоматические (первичные) определения или понятия, а также вспомогательные определения и экспериментальные факты, связывающие эти определения или понятия и образующие, таким образом, физические законы. В основу теории электромагнитизма положены такие первичные понятия как заряд, ток и электромагнитное поле, являющееся носителем взаимодействия между зарядами или токами. Электромагнитное поле описывается парой вспомогательных векторных величин Е и Н, называемых напряженностями электрического (созданного зарядами) и магнитного (созданного токами или движением зарядов) поля. Вто-ричность напряженностей связана с тем, что они характеризуют меру силового воздействия электромагнитного поля, определенную двумя экспериментальными законами - Кулона и Ампера.  

Между тем математический аппарат любой физической теории всегда строится исходя из формулировки законов природы в форме соотношений между параметрами системы. Здесь нужно отметить две стороны вопроса - открытие уравнения и выбор параметров.  

Таким образом, развивая любую физическую теорию, следует стартовать с поля рациональных чисел Q, которому принадлежат все экспериментальные данные, а затем пополнять Q, строя математическую модель. В силу теоремы Островского такая программа может быть реализована только двумя способами: вещественным или р-адическим.  

Негер [ 7] (1918 г.) дает рецепт составления интегралов движения, отвечающих любой физической теории, которая допускает лагранжево описание. Случай систем с конечным числом степеней свободы специально не выделяется. Указывается способ построения интегралов движения, соответствующих инвариантности действия по Гамильтону по отношению к R-параметрической группе Ли.  

В завершение, в качестве вывода, понятия локализации и сепарации, требуемые реализмом от любой физической теории квантов и которые так откровенно нарушены как квантовой механикой, так и Природой, подразумевают, что в любой реалистической физической теории квантов их четкое объективное определение должно быть логически и структурно невозможным. Такая ситуация поддерживается (имеет место быть) в КТП, где локализация и сепарация являются (approximate) физическими качествами измерительных аппаратов и никак не могут быть тесно связанными с реальностью поля. Таким образом, насколько нам сегодня известно, квантовые поля являются единственными теоретическими построениями, которые вписываются в реалистическую картину мира.  

С другой стороны, Максвелл выступает против фетишизации субъективных ощущений, но разве не он же считает опыт высшим критерием правильности любой физической теории.  

Так и в нашем построении анализа заложена, если угодно, некоторая теория континуума, которая (преодолевая рамки своей логической последовательности) должна быть явлена разуму vernunftig aufzuweisen, так же, как и любая физическая теория. Я не могу приводить здесь более глубокое обоснование, однако и из сказанного должно быть понятно, что если для понятий действительного числа и (непрерывной) функции, как мы их здесь обрисовали, справедлива теорема А предыдущего параграфа, наличествует очень существенная часть подобного разумного оправдания: это свидетельствует о том, что указанные понятия пригодны для точного выражения того, что означает движение в мире физической реальности.  

Существование пределов теории следует уже из того факта, что все, что нарождается, достойно гибели. Вообще любая физическая теория имеет свои пределы применимости, и неограниченно экстраполировать ее нельзя.  

В сущности ведь любое обобщение носит характер догадки. Любая физическая теория - это своего рода догадка, Но догадки тоже бывают разные: хорошие и плохие, близкие и далекие. Тому, как делать наилучшие догадки, учит нас теория вероятностей. Язык вероятностей позволяет нам количественно говорить о таких ситуациях, когда исход весьма и весьма неопределенен, но о котором все же в среднем можно что-то сказать.  

Обычно в любой физической теории исследователь сначала понимает именно смысл своих уравнений и только потом их записывает.  

Соотношения (43) указывают, какими свойствами должны обладать силы F в релятивистской механике. Эти силы должны быть такими, чтобы составленные по ним в соответствии с (37), (38) силы Минковского 3 преобразовывались как четырехмерные векторы в пространстве Минковского. Последнее условие удовлетворяется для электромагнитных сил, действующих на заряженную частицу; требование теории состоит в том, чтобы это условие соблюдалось для всех сил вообще. Таким образом, оно является руководящим принципом для построения любой физической теории, описывающей силовые взаимодействия.  

Рассмотренные выше основные понятия и законы классической механики: понятия о материальной точке, о пространстве и времени, о силе и массе, понятие об инерциальной системе отсчета, законы Ньютона и принцип относительности Галилея - являются фундаментом классической механики. Этот фундамент был построен в результате деятельности многих поколений, был роздан в результате анализа и теоретического обобщения экспериментальных данных. Проверкой правильности основ классической механики, ее соответствия природе является сопоставление выводов теории опять-таки с экспериментом. Так как теория создается человеком в определенные исторические эпохи с определенными воззрениями и техническими возможностями, то любая физическая теория является приближенной, ограниченной. В том числе приближенными, ограниченными являются основные понятия и законы классической механики.  

Аннотация

Современное учение об электрическом и гравитационном взаимодействиях является феноменологическим и потому правильно описывает только те области действительности, в границах которых проводились испытания для выявления эмпирических формул. Вне этих областей действительность эмпирическими формулами, естественно, искажается. Поэтому, взамен всех феноменологических описаний, представлены проекты двух научных теорий на основе единого для каждого из взаимодействий переносчика воздействий. Содержания этих теорий опираются на законы механики Ньютона и находятся в гармонии с результатами всех известных экспериментов.

1. Введение

2. Физическая теория электрических взаимодействий

2.1. Обзор учения об электрических взаимодействиях

2.2. Физическая модель переносчика электрических воздействий

2.3. «Электростатическое поле»

2.4. «Магнитное поле» проводника с током

2.5. «Переменное электромагнитное поле»

2.5.1. Поперечные электрические волны

2.5.2. Продольные волны и дискретные порции воздействий

2.6. Физические основы теории лазерного излучения

2.7. Заключение по теории электрических взаимодействий

3. Физическая теория гравитационных взаимодействий

3.1. Обзор современного учения о гравитации

3.2. Физическая модель переносчика гравитационных воздействий

3.3. Отражение концепции близкодействия в теории тяготения

3.4. Заключение по теории гравитации

4. К вопросу о создании «единой теории поля»

5. Вывод

Автореферат статьи

Сейчас учения об электрическом и гравитационном взаимодействиях представлены сразу несколькими теориями; причем содержание каждой следует из своей индивидуальной физической модели переносчика воздействий. Эти теории противоречат друг другу в объяснениях одной и той же действительности, базируются на предположениях о свойствах природы и в своих содержаниях отражают концепцию дальнодействия: не учитывают запаздывание взаимодействий и механический принцип относительности. В результате, все теории в своих содержаниях искажают действительность. Правильно отражены только количественные закономерности при статических и квазистатических условиях взаимодействий через эмпирические формулы: Ньютона, Кулона и Лапласа.

Отсутствие представлений об изучаемой области действительности (о фундаментальных взаимодействиях) как едином и цельном и весь очевидный «негатив» в содержаниях теорий приводят к заключению: в современной физической науке существует архиважная и срочная необходимость создания по одной новой теории для каждого взаимодействия, взамен всех существующих.

Проекты таких теорий представлены в статье, для обсуждения. В каждом из проектов заново, по результатам экспериментов, накопленных со времен Фарадея и Ньютона (без каких либо предположений) создана единая для рассматриваемого взаимодействия физическая модель переносчика воздействий. Такой переносчик для электрических взаимодействий представляется в виде двух сферических зеркально симметричных потоков материальной сжимаемой среды, образующих с истинно элементарной частицей единую первичную физическую систему (ПФС). Причем, оказалось, что ПФС отражает в себе решение проблемы по созданию «единой теории поля» в постановке Лоренца. Модель переносчика гравитационных воздействий аналогична модели переносчика электрических воздействий, но структурно, зеркально симметрична с ней.

Предлагаемые теории опираются на законы механики Ньютона и непротиворечиво объясняют результаты всех известных экспериментов. Последнее качество лишает смысла ту цель, ради которой была придумана специальная теория относительности (СТО): согласование теории с результатами испытаний. В такой ситуации СТО становится ненужной для науки, просто лишней.

1. Введение

Фундаментальная физическая теория это единая в своем содержании система знаний об изучаемой области действительности. Эта система должна непрерывно совершенствоваться в соответствии с вновь обнаруженными или осознанными свойствами этой действительности и никогда, принципиально, не может считаться завершенной, а, иногда, от неё даже необходимо отказаться и заменить новой, более достоверно отражающей действительность. То есть, научная теория это не догмат, это продукт субъективного осмысления совокупности располагаемых фактов. Но далеко не все факты уже «представились» нам; и, к тому же, людям часто свойственно неправильное понимание скрытых за фактами закономерностей, и, в соответствии со своей природой, упорствовать в своих непониманиях.

Любая фундаментальная теория в естественных науках, в историческом плане, претерпевает эволюцию от этапа накопления и систематизации эмпирических знаний до создания наиболее совершенной по форме «зрелой» научной теории . На этапе накопления эмпирических знаний каждое явление воспринимается как первичная изначальная природная сущность или закономерность, со своей индивидуальной физической моделью этого явления в сознании изучающих их людей, и описывается без связи с другими явлениями. Отличительной особенностью «зрелой» теории является объяснение фактов, а не просто их описание; причем содержание такой теории выводится из единой физической модели (теоретической модели) первичного материального объекта в выделенной изучаемой области действительности. Физическая модель это абстрактный, в сознании людей, образ первичного объекта, содержащий представления о его физических свойствах и связях в структурах характерных для изучаемой области действительности. «Зрелая» теория это наиболее рациональная и совершенная форма организации фундаментальных физических знаний.

Замена модели первичного объекта и, соответственно, содержания теории в истории фундаментальных естественных наук явление обычное, но очень редкое и сопровождается изменением коллективного мировоззрения, что всегда связано с ожесточенной борьбой мнений и, если заглянуть в историю, никогда только методом научных дискуссий. Вспомним события при переходе от геоцентрической планетарной модели к гелиоцентрической или становление генетической теории наследственности в СССР.

К фундаментальным взаимодействиям относят взаимные силовые воздействия вещественных тел друг на друга на расстоянии, при отсутствии промежуточных носителей этих воздействий в виде вещественной среды, и потому переносимые через пустое от вещественных тел пространство. А целью теорий этих взаимодействий является объяснение поведения промежуточных переносчиков воздействий, приводящее к конкретному внешнему проявлению этих взаимодействий в наблюдаемых явлениях природы. Поэтому в теориях фундаментальных взаимодействий наиболее трудной и определяющей конечный результат задачей является выявление облика промежуточных переносчиков воздействий.

Сейчас в физической науке существуют представления о четырех фундаментальных взаимодействиях: электрическом, гравитационном, сильном и слабом. Характеризовать их удобнее всего по тем задачам, которые им выпали в структурировании вещественной материи.

Электрические взаимодействия способны образовать связи между элементарными микрочастицами и потому являются «ответственными» за структурирование материи в области микро масштабов; это такие системы как кристаллы, молекулы, атомы. Для электрических связей характерны структуры кристаллического типа.

Гравитационные взаимодействия наблюдаются в пространстве макро масштабов при взаимодействиях вещественных электрически нейтральных тел, преимущественно между астрономическими телами. Поэтому гравитационные взаимодействия «ответственны» за образование структур в области макро масштабов, которые представлены исключительно динамическими орбитальными системами.

Два других взаимодействия не выявлены из действительности, а представления о них введены в науку субъективно. Их основные свойства запрограммированы наперед, чтобы иметь в теории замкнутую систему обоснования и объяснения используемой сейчас в науке орбитальной (ядерной) модели атома. Поэтому они здесь не рассматриваются.

Для двух первых, достоверно существующих, фундаментальных взаимодействий, к которым обеспечен прямой доступ для качественных наблюдений и для проведения измерений, до сих пор нет единых, целостных и гармоничных физических теорий, что очень и очень странно.

В статье решаются две конкретные задачи. Первая – это разобраться и понять, почему учение о реально существующих электрическом и гравитационном взаимодействиях сейчас одновременно представлено несколькими теориями, причем, не совместимых друг с другом в толкованиях одной и той же действительности. Вторая задача: это, по результатам решения первой, сформулировать конкретные, конструктивные предложения для создания единых теорий для каждого из взаимодействий в форме «зрелых» теорий.

По какой причине, возникли эти задачи? Физическое толкование фундаментальных взаимодействий в современном учении при относительных скоростях взаимодействующих тел, сопоставимых со скоростью света, явно противоречит представлениям классической физики, которые мы воспринимаем, как естественные и, в соответствии с собственным жизненным опытом, как само собой разумеющиеся. В то же время известно, что результаты некоторых экспериментов с видимым светом противоречат официальным классическим теориям.

Разрешение этой проблемы, начиная с момента её осознания, искалось с позиций, что знания в рамках существующих классических теорий абсолютно верны, но мы еще чего-то не знаем о свойствах природы, и этот пробел необходимо заполнить. Автор, как не профессионал и, вообще, случайный гость в физике, сформулировал вопрос «по детски»: а нет ли дефекта в классических теориях? Тогда решение проблемы надо искать не в пополнении недостающих знаний, которое сейчас осуществляется путем изобретательства разного рода предположений о еще неизвестных науке свойств у природы, а в ревизии представлений, считающихся классическими, на пересмотр которых наложено не гласное (не формальное) табу. Такая версия для современных творцов науки, естественно, не приемлема изначально. Однако, результаты проверки, представленные в статье, показали, что эта версия оказалась верной: первопричины всех бед скрыты именно в содержаниях классической электродинамики (Максвелла) и в теории тяготения Ньютона.

4. К вопросу о создании «Единой теории поля»

«Единая теория поля» это название еще не существующей теории (формулировка еще не решенной проблемы), задачей которой является единое описание элементарных заряженных частиц и переносчиков электрических воздействий.

С позиций этой статьи постановка задачи создания единой теории поля при современном состоянии дел в теории атома, в теориях фундаментальных взаимодействий представляется совершенно не своевременной и в этих условиях не имеющей решения. Этот вывод исходит из того, что все теории в этой области знаний построены на предположениях. Поэтому ответ на сформулированную задачу о создании единой теории поля с позиций существующих научных теорий может быть представлен тоже только в духе этих самых теорий: то есть возможны только проекты, созданные путем абстрактного изобретательства новых предположений. Так это реально и происходит, хотя даже в таком виде, еще нет завершенного проекта.

Первую попытку создать такую теорию предпринял Х.А. Лоренц . Он исходил из классической электродинамики и пытался дать общее описание электрону и окружающему его физическому полю. Для этого он придумал модель, в которой электрон представлял некий сгусток электромагнитного поля. Хотя Лоренц уже в самой постановке задачи предвосхитил характерные особенности ПФС, обосновать эту модель с позиций классической электродинамики не удалось.

В более универсальном виде (применительно ко всем частицам) единую теорию поля пытался создать А. Эйнштейн , опираясь на свои идеи о геометризации и кривизне четырех мерного пространства – времени, которые лежат в основе его же теория гравитации. Для этого он придумал новые гипотезы, касающиеся ещё и аналогичной геометризации электромагнитных полей, и там же пытался учесть квантовые эффекты.

Существует проект, основанный на предположении Луи де Бройля , что фотон это пара нейтрино, слившихся в одно целое. Существуют еще ряд моделей частиц, конструкции которых тоже представляются состоящими из связанных между собой каких-то предполагаемых фундаментальных частиц. Особенно модной в наше время является модель частиц, образуемых тремя особыми субчастицами, кварками, обладающими, по замыслу, дробными электрическими зарядами, и из соответствующих им трех анти кварков.

Очень серьезно рассматривается проект теории, которая исходит опять же из предположения об универсальном едином физическом поле, которое вообще не связано ни с какими частицами, и по замыслу описывает всю «материю в целом». Её предложил В. Гейзенберг и отразил свойства этого гипотетического единого поля в уравнениях, носящих его имя. Эти формулы по процедуре своего происхождения представляют аналог формул Максвелла: свойства описываемых ими объектов, как и сами объекты, являются предположениями, и решения этих уравнений не найдено.

Сложилось так, что объект, выбранный Лоренцем для создания единого описания частицы и связанному с ней физическим полем полностью совпадает с физической моделью, лежащей в основе «зрелой» теории электрических взаимодействий. И поэтому в «зрелой» теории, по ходу дела, не предумышленно, решена задача, которую ставил перед собой Лоренц: из действительности выделена и обоснована единая система, из частицы и окружающего её электрического поля, в виде ПФС и дано единое физическое описание этой системы. Наблюдаемые в природе феномены (электростатическое поле, магнитное поле, волновое поле, потоки дискретных порций энергии) являются естественным проявлением свойств структур из потоков ЭС, которые являются следствием (функцией) от конфигурации вещественных структур из частиц носителей этих потоков ЭС и характера относительного движения этих частиц.

Все остальные выше описанные проекты единой теории поля, априори, неверно описывают действительность, по причине методологии в отыскании решения: они все исходят не из фактов, а из чисто субъективных предположений о свойствах природы.

Из представленных на обсуждение проектов двух «зрелых» теорий фундаментальных взаимодействий следует заключение, что формулировка проблемы создания единой теории поля должна быть уточнена. Зеркальная симметрия между структурами переносчиков воздействий в электрических и в гравитационных взаимодействиях подсказывает, что существует материальное и причинно следственное единство между двумя рассмотренными реально существующими фундаментальными взаимодействиями. Эта теория должна дать объяснение механизма и свойств этих двух фундаментальных взаимодействий, как проявление свойств чего-то единого и цельного. Это единство – предмет будущих специальных исследований для науки, результаты которых совместно с будущей, без предположений, теорией атома должны привести к созданию фундаментальной теории структурирования материи.

5. Вывод

В современной физике создалась чрезвычайная ситуация: в ней отсутствуют теории гравитационного и электрического взаимодействий, правильно отражающие действительность. Поэтому перед физической наукой стоит требующая срочного решения задача создания «зрелых» по форме теорий фундаментальных взаимодействий, исходя только из фактов, выявленных в воспроизводимых испытаниях. Объем таких фактов, накопленных со времен Ньютона и Фарадея, вполне достаточен для решения сформулированной задачи, что подтверждается проектами теорий, представленных в статье для обсуждения. Эти проекты не содержат предположений, отражают в своем содержании концепцию близкодействия и базируются на законах механики Ньютона. Они оказались гармоничными, предсказательными и непротиворечивыми к результатам всех известных экспериментов.

Литература:

  1. Статья «Теория», Большая Советская Энциклопедия (БСЭ). М.: «Советская Энциклопедия», 1976, том 25, с. 434.
  2. Зельдович Я.Б. Высшая математика для начинающих. М.: «Наука», 1970.
  3. Диментова А.А., Рекстин Ф.С., Рябов В.А. Таблицы газодинамических функций. М., Л.: «Машиностроение», 1966.

Что такое наука? - Область знаний, которая позволяет выдавать точные предсказания.

С места в карьер! В физике есть три главные константы: скорость света (с = 3 *10 10 см/с), гравитационная постоянная (G = 6,67 * 10 -8 см 3 /гр сек) и постоянная Планка (h/2pi = 1,05 * 10 -27 эрг сек). Теории делятся по тому, как они учитывают эти константы.

1.
Исторически первой была создана классическая (Ньютоновская) механика. Она стоит на законах Ньютона и преобразованиях Галилея.

Преобразования линейны, интуитивны и просты. Машина едет со скоростью 5 [бананов в полторы минуты] относительно меня, я еду на автобусе в том же направлении относительно плакучей ивы со скоростью 2 [банана в полторы минуты], значит относительно ивы машина едет со скоростью 7 [бананов в полторы минуты].

Первый закон Ньютона об опытах в поезде премиум-класса на прямом (!) магнитном монорельсе в вагоне-термосе.

Второй: производная по времени от импульса равна силе (dp /dt = F , жирные - вектора). Именно так, не фе равно ма. Кстати, в его времена не знали что такое производная и придумал ее он (Математические начала натуральной философии). Правда, это было не строго математически и ни о каких пределах тогда не слышали (вы же помните как вводится производная в матане?), но теоретические расчеты (читай --предсказания) сходились с экспериментом.

Третий для решения статических задач и для сглаживания некоторых противоречий.

Так вот, эта теория из трех Констант не учитывает ни одной! Закон всемирного тяготения вводится ручками и является уступкой опыту.

2.
Далее (хронологически) появилась специальная теория относительности. Конечно, математический аппарат для нее уже был готов, но только молодому тогда Эйнштейну удалось обосновать перед серьезными физиками состоятельность теории, использующую его (аппарат).

Суть - все как раньше (про поезд), но есть максимальная предельная скорость, скорость света, которая, более того, для света одна и та же для любого(!) наблюдателя, стоите Вы или бежите и не важно в какую сторону. Если хотите, я честно выведу преобразования Лоренца только из этих соображений и только с помощью ловкости рук!

Вот это и называется учесть скорость света. Прям так сразу, как постулат в основании теории.

Кстати сказать, завершенная к тому моменту электродинамика уже удовлетворяла этим условиям. Я про скорость света.

3.
Следующей вехой была общая теория относительности. Здесь мы имеем искривление пространства-времени, как реакцию пространства на (если я скажу «на массу», серьезные ребята меня побьют. Но по сути энергия и масса одно и то же и так как у всего, что имеет массу есть энергия, но не у всего с энергией есть масса. Например фотон. Поэтому говорим -->), так называемый, тензор энергии-импульса, который можно считать гравитационным зарядом. Этим искривлением и объясняется то, что даже безмассовые частицы заворачивают черные дыры. Они-то летят прямо, но это «прямо» неправильное, не совсем прямое.

В наши удивительные времена мы используем и эту теорию во всю! Ярким примером служат системы навигации. На спутниках GPS/ГЛОНАСС/… должны быть очень точно синхронизированы часы. Очень! Учитывается замедление времени при движении с большими скоростями, плюс движение с ускорением (центростремительное), плюс искривление пространства-времени при движении вблизи массивного тела.

Вот тут G и c такие, какими должны быть.

4.
Если предыдущие теории были почти целиком плодом одного человека, то квантовая механика это дитя мозгового штурма. В двадцатых годах того века интенсивная переписка оформила теорию и была проведена проверка на экспериментах.

Ничего, казалось не предвещало беды, но три вещи были как бельмо на глазу (на самом деле больше, например зависимость проводимости металлов от температуры):
а) Фотоэффект, за который Эйнштейн получил Нобелевку (ну конееечно, за нее!). Классика, говорившая что свет - волны предсказывала что-то ну совсем не то. Но если представить, что это частицы и написать «шарик стукнул другой и остановился, а второй полетел почти так же быстро, только трение чуть затормозило» в виде формулы, то можно предсказывать все точно.
б) Спектр абсолютно черного тела. Была выведена одними формула для высокой температуры, другими для низкой, третий аппроксимировал, да так удачно, что все стало всегда сходиться. Только эта формула кричала о том, что свет - частица. Этого «третьего» звали Макс Планк и он потратил всю жизнь, чтобы опровергнуть свою формулу, являясь сторонником классической физики.
в) Эффект Комптона. Если свет - волна, то электрон должен качаться на волнах и испускать вторичное излучение такой же длинны волны (читай - энергии, ведь E = hv, где v - длина волны света), что и первичное, падающие. Но в опыте энергия оказывается меньше.

Кстати, еще после выдвижения планетарной модели атома встал вопрос о падении электрона на ядро. Действительно, почему он не падает? По расчетам электродинамики должен за пару наносекунд (если интересно, то напишу подробнее и про это). Так родился один из постулатов (о существовании стационарных орбит). На самом деле есть что-то в том, что в «длину» орбиты электрона должно помещаться целое число волн (Де Бройль предложил рассматривать и частицы как волны, почему нет. Мы же электромагнитные волны стали рассматривать как частицы)

Так мы учли постоянную Планка. Кстати, про перечеркнутую h: когда Нильс Бор приезжал к нам и читал лекции, ему задали вопрос о символе

Заголовок спойлера



Это было 3/2pi.

5.
Поженить квантовую механику и специальную теорию относительности не составило особого труда. Просто вместо уравнения Шредингера, которое является местным аналогом закона сохранения энергии, записываем уравнения Дирака, суть которого - E 2 = p 2 c 2 + m 2 c 4 и дальше аналогично 4.

Тут сидит квантовая электродинамика, квантовая теория электрослабого взаимодействия (про фундаментальные виды взаимодействия, если интересно, в следующей статье напишу) и квантовая хромодинамика. Все понятно «качественно», многое понятно «совсем».

Вот мы учли c и h/2pi.

6.
Теории, которые стараются учесть гравитацию почему-то часто имеют приставку супер-. Суперструны, суперсимметрия и т.д. Но ничего не выходит.

Суть проблемы в принципе неопределенности и искривлении пространства-времени. Если мы локализуем частицу в все более маленьком объеме, неопределенность импульса будет увеличиваться вместе с его максимальным возможным значением. С ростом импульса растет (говорим правильно!) тензор энергии-импульса (напомню, гравитационный заряд), а вместе с ним, как говорит ОТО, пространство-время сильнее искривляется, становится «меньше», а это значит бОльшую локализацию и по кругу. Со второй парой (энергия-время) не так интуитивно, но принцип тот же.

Вот и нет у нас пока теории, которая учитывала бы все.

С экспериментом все еще хуже. Приведу числа: два протона на некотором расстоянии (Планковская длина, если Вы понимаете о чем я. Если нет, то не страшно, тут это не важно) взаимодействуют посредством сильного взаимодействия (простите за тавтологию) - 1, электромагнитного - 10 -2 (0,01), слабого - 10 -5 (0,00001), гравитационного - 10 -38 (написать?)

Ты - не раб!
Закрытый образовательный курс для детей элиты: "Истинное обустройство мира".
http://noslave.org

Материал из Википедии - свободной энциклопедии

Теорети́ческая фи́зика - раздел физики, в котором в качестве основного способа познания природы используется создание теоретических (в первую очередь математических) моделей явлений и сопоставление их с реальностью. В такой формулировке теоретическая физика является самостоятельным методом изучения природы, хотя её содержание, естественно, формируется с учётом результатов экспериментов и наблюдений за природой.

Методология теоретической физики состоит в выделении ключевых физических понятий (таких, как атом , масса , энергия , энтропия , поле и т. д.) и формулировки на математическом языке законов природы, связывающих эти понятия; объяснении наблюдаемых явлений природы на основе сформулированных законов природы; предсказании новых явлений природы, которые могут быть обнаружены.

Дополнительными, но необязательными, при построении «хорошей» физической теории могут являться следующие критерии:

  • «Математической красоты»;
  • «Бритвы Оккама », а также общности подхода ко многим системам;
  • Возможность не только описывать уже имеющиеся данные, но и предсказывать новые;
  • Возможность редукции в какую-либо уже известную теорию в какой-либо их общей области применимости (принцип соответствия );
  • Возможность выяснить внутри самой теории её область применимости. Так, например, классическая механика «не знает» границ своей применимости, а термодинамика «знает» где она может и где не может использоваться.

Отрывок, характеризующий Теоретическая физика

– Но ведь они ушли самоубийством!.. А разве это не карается кармой? Разве это не заставило их и там, в том другом мире, так же страдать?
– Нет, Изидора... Они ведь просто «ушли», выводя из физического тела свои души. А это ведь самый натуральный процесс. Они не применяли насилия. Они просто «ушли».
С глубокой грустью я смотрела на эту страшную усыпальницу, в холодной, совершенной тишине которой время от времени звенели падающие капли. Это природа начинала потихоньку создавать свой вечный саван – дань умершим... Так, через годы, капля за каплей, каждое тело постепенно превратится в каменную гробницу, не позволяя никому глумиться над усопшими...
– Нашла ли когда-либо эту усыпальницу церковь? – тихо спросила я.
– Да, Изидора. Слуги Дьявола, с помощью собак, нашли эту пещеру. Но даже они не посмели трогать то, что так гостеприимно приняла в свои объятия природа. Они не посмели зажигать там свой «очистительный», «священный» огонь, так как, видимо, чувствовали, что эту работу уже давно сделал за них кто-то другой... С той поры зовётся это место – Пещера Мёртвых. Туда и намного позже, в разные годы приходили умирать Катары и Рыцари Храма, там прятались гонимые церковью их последователи. Даже сейчас ты ещё можешь увидеть старые надписи, оставленные там руками приютившихся когда-то людей... Самые разные имена дружно переплетаются там с загадочными знаками Совершенных... Там славный Домом Фуа, гонимые гордые Тренкавели... Там грусть и безнадёжность, соприкасаются с отчаянной надеждой...

И ещё... Природа веками создаёт там свою каменную «память» печальным событиям и людям, глубоко затронувшим её большое любящее сердце... У самого входа в Пещеру Мёртвых стоит статуя мудрого филина, столетиями охраняющего покой усопших...

– Скажи, Север, Катары ведь верили в Христа, не так ли? – грустно спросила я.
Север искренне удивился.
– Нет, Изидора, это неправда. Катары не «верили» в Христа, они обращались к нему, говорили с ним. Он был их Учителем. Но не Богом. Слепо верить можно только лишь в Бога. Хотя я так до сих пор и не понял, как может быть нужна человеку слепая вера? Это церковь в очередной раз переврала смысл чужого учения... Катары верили в ЗНАНИЕ. В честность и помощь другим, менее удачливым людям. Они верили в Добро и Любовь. Но никогда не верили в одного человека. Они любили и уважали Радомира. И обожали учившую их Золотую Марию. Но никогда не делали из них Бога или Богиню. Они были для них символами Ума и Чести, Знания и Любви. Но они всё же были ЛЮДЬМИ, правда, полностью дарившими себя другим.
Смотри, Изидора, как глупо церковники перевирали даже собственные свои теории... Они утверждали, что Катары не верили в Христа-человека. Что Катары, якобы, верили в его космическую Божественную сущность, которая не была материальной. И в то же время, говорит церковь, Катары признавали Марию Магдалину супругою Христа, и принимали её детей. Тогда, каким же образом у нематериального существа могли рождаться дети?.. Не принимая во внимание, конечно же, чушь про «непорочное» зачатие Марии?.. Нет, Изидора, ничего правдивого не осталось об учении Катар, к сожалению... Всё, что люди знают, полностью извращено «святейшей» церковью, чтобы показать это учение глупым и ничего не стоящим. А ведь Катары учили тому, чему учили наши предки. Чему учим мы. Но для церковников именно это и являлось самым опасным. Они не могли допустить, чтобы люди узнали правду. Церковь обязана была уничтожить даже малейшие воспоминания о Катарах, иначе, как могла бы она объяснить то, что с ними творила?.. После зверского и поголовного уничтожения целого народа, КАК бы она объяснила своим верующим, зачем и кому нужно было такое страшное преступление? Вот поэтому и не осталось ничего от учения Катар... А спустя столетия, думаю, будет и того хуже.
– А как насчёт Иоанна? Я где-то прочла, что якобы Катары «верили» в Иоанна? И даже, как святыню, хранили его рукописи... Является ли что-то из этого правдой?
– Только лишь то, что они, и правда, глубоко чтили Иоанна, несмотря на то, что никогда не встречали его. – Север улыбнулся. – Ну и ещё то, что, после смерти Радомира и Магдалины, у Катар действительно остались настоящие «Откровения» Христа и дневники Иоанна, которые во что бы то ни стало пыталась найти и уничтожить Римская церковь. Слуги Папы вовсю старались доискаться, где же проклятые Катары прятали своё опаснейшее сокровище?!. Ибо, появись всё это открыто – и история католической церкви потерпела бы полное поражение. Но, как бы ни старались церковные ищейки, счастье так и не улыбнулось им... Ничего так и не удалось найти, кроме как нескольких рукописей очевидцев.
Вот почему единственной возможностью для церкви как-то спасти свою репутацию в случае с Катарами и было лишь извратить их веру и учение так сильно, чтобы уже никто на свете не мог отличить правду от лжи… Как они легко это сделали с жизнью Радомира и Магдалины.
Ещё церковь утверждала, что Катары поклонялись Иоанну даже более, чем самому Иисусу Радомиру. Только вот под Иоанном они подразумевали «своего» Иоанна, с его фальшивыми христианскими евангелиями и такими же фальшивыми рукописями... Настоящего же Иоанна Катары, и правда, чтили, но он, как ты знаешь, не имел ничего общего с церковным Иоанном-«крестителем».
– Ты знаешь, Север, у меня складывается впечатление, что церковь переврала и уничтожила ВСЮ мировую историю. Зачем это было нужно?
– Чтобы не разрешить человеку мыслить, Изидора. Чтобы сделать из людей послушных и ничтожных рабов, которых по своему усмотрению «прощали» или наказывали «святейшие». Ибо, если человек узнал бы правду о своём прошлом, он был бы человеком ГОРДЫМ за себя и своих Предков и никогда не надел бы рабский ошейник. Без ПРАВДЫ же из свободных и сильных люди становились «рабами божьими», и уже не пытались вспомнить, кто они есть на самом деле. Таково настоящее, Изидора... И, честно говоря, оно не оставляет слишком светлых надежд на изменение.
Север был очень тихим и печальным. Видимо, наблюдая людскую слабость и жестокость столько столетий, и видя, как гибнут сильнейшие, его сердце было отравлено горечью и неверием в скорую победу Знания и Света... А мне так хотелось крикнуть ему, что я всё же верю, что люди скоро проснутся!.. Несмотря на злобу и боль, несмотря на предательства и слабость, я верю, что Земля, наконец, не выдержит того, что творят с её детьми. И очнётся... Но я понимала, что не смогу убедить его, так как сама должна буду скоро погибнуть, борясь за это же самое пробуждение.
Но я не жалела... Моя жизнь была всего лишь песчинкой в бескрайнем море страданий. И я должна была лишь бороться до конца, каким бы страшным он ни был. Так как даже капли воды, падая постоянно, в силах продолбить когда-нибудь самый крепкий камень. Так и ЗЛО: если бы люди дробили его даже по крупинке, оно когда-нибудь рухнуло бы, пусть даже не при этой их жизни. Но они вернулись бы снова на свою Землю и увидели бы – это ведь ОНИ помогли ей выстоять!.. Это ОНИ помогли ей стать Светлой и Верной. Знаю, Север сказал бы, что человек ещё не умеет жить для будущего... И знаю – пока это было правдой. Но именно это по моему пониманию и останавливало многих от собственных решений. Так как люди слишком привыкли думать и действовать, «как все», не выделяясь и не встревая, только бы жить спокойно.
– Прости, что заставил тебя пережить столько боли, мой друг. – Прервал мои мысли голос Севера. – Но думаю, это поможет тебе легче встретить свою судьбу. Поможет выстоять...
Мне не хотелось об этом думать... Ещё хотя бы чуточку!.. Ведь на мою печальную судьбу у меня оставалось ещё достаточно предостаточно времени. Поэтому, чтобы поменять наболевшую тему, я опять начала задавать вопросы.
– Скажи мне, Север, почему у Магдалины и Радомира, да и у многих Волхвов я видела знак королевской «лилии»? Означает ли это, что все они были Франками? Можешь ли объяснить мне?
– Начнём с того, Изидора, что это неправильное понимание уже самого знака, – улыбнувшись, ответил Север. – Это была не лилия, когда его принесли во Франкию Меравингли.

Трёхлистник – боевой знак Славяно-Ариев

– ?!.
– Разве ты не знала, что это они принесли знак «Трёхлистника» в тогдашнюю Европу?.. – искренне удивился Север.
– Нет, я никогда об этом не слышала. И ты снова меня удивил!
– Трёхлистник когда-то, давным-давно, был боевым знаком Славяно-Ариев, Изидора. Это была магическая трава, которая чудесно помогала в бою – она давала воинам невероятную силу, она лечила раны и облегчала путь уходящим в другую жизнь. Эта чудесная трава росла далеко на Севере, и добывать её могли только волхвы и ведуны. Она всегда давалась воинам, уходившим защищать свою Родину. Идя на бой, каждый воин произносил привычное заклинание: «За Честь! За Совесть! За Веру!» Делая также при этом магическое движение – касался двумя пальцами левого и правого плеча и последним – середины лба. Вот что поистине означал Трёхлистник.
И таким принесли его с собою Меравингли. Ну, а потом, после гибели династии Меравинглей, новые короли присвоили его, как и всё остальное, объявив символом королевского дома Франции. А ритуал движения (или кресчения) «позаимствовала» себе та же христианская церковь, добавив к нему четвёртую, нижнюю часть... часть дьявола. К сожалению, история повторяется, Изидора...
Да, история и правда повторялась... И становилось от этого горько и грустно. Было ли хоть что-нибудь настоящим из всего того, что мы знали?.. Вдруг я почувствовала, будто на меня требовательно смотрят сотни незнакомых мне людей. Я поняла – это были те, кто ЗНАЛИ... Те, которые погибали, защищая правду... Они будто завещали мне донести ИСТИНУ до незнающих. Но я не могла. Я уходила... Так же, как ушли когда-то они сами.
Вдруг дверь с шумом распахнулась – в комнату ураганом ворвалась улыбающаяся, радостная Анна. Моё сердце высоко подскочило, а затем ухнуло в пропасть... Я не могла поверить, что вижу свою милую девочку!.. А она как ни в чём не бывало широко улыбалась, будто всё у неё было великолепно, и будто не висела над нашими жизнями страшная беда. – Мамочка, милая, а я чуть ли тебя нашла! О, Север!.. Ты пришёл нам помочь?.. Скажи, ты ведь поможешь нам, правда? – Заглядывая ему в глаза, уверенно спросила Анна.
Север лишь ласково и очень грустно ей улыбался...
* * *
Пояснение
После кропотливых и тщательных тринадцатилетних (1964-1976) раскопок Монтсегюра и его окрестностей, Французская Группа Археологических Исследований Монтсегюра и окрестностей (GRAME), обьявила в 1981 году своё окончательное заключение: Никакого следа руин от Первого Монтсегюра, заброшенного хозяевами в XII веке, не найдено. Так же, как не найдено и руин Второй крепости Монтсегюр, построенной её тогдашним хозяином, Раймондом де Перейль, в 1210 году.
(See: Groupe de Recherches Archeologiques de Montsegur et Environs (GRAME), Montsegur: 13 ans de rechreche archeologique, Lavelanet: 1981. pg. 76.: "Il ne reste aucune trace dan les ruines actuelles ni du premier chateau que etait a l"abandon au debut du XII siecle (Montsegur I), ni de celui que construisit Raimon de Pereilles vers 1210 (Montsegur II)...")
Соответственно показаниям, данным Священной Инквизиции на 30 марта 1244 года совладельцем Монтсегюра, арестованным сеньором Раймондом де Перейль, фортифицированный замок Монтсегюр был «восстановлен» в 1204 году по требованию Совершенных – Раймонда де Миропуа и Раймонда Бласко.
(According to a deposition given to the Inquisition on March 30, 1244 by the captured co-seigneur of Montsegur, Raymond de Pereille (b.1190-1244?), the fortress was "restored" in 1204 at the request of Cather perfecti Raymond de Mirepoix and Raymond Blasco.)

В такой формулировке теоретическая физика не вытекает из «опыта», а является самостоятельным методом изучения Природы. Однако область её интересов, естественно, формируется с учетом результатов эксперимента и наблюдений.

Теоретическая физика не рассматривает вопросы вида «почему математика должна описывать природу?». Она принимает за постулат то, что, в силу неких причин, математическое описание природных явлений оказывается крайне эффективным, и изучает последствия этого постулата. Строго говоря, теоретическая физика изучает не свойства самой природы, а свойства предлагаемых математических моделей. Кроме того, часто теоретическая физика изучает какие-либо модели «сами по себе», без привязки к конкретным природным явлениям.

Физическая теория

Продуктом теоретической физики являются физические теории . Поскольку теоретическая физика работает именно с математическими моделями, крайне важным требованием является математическая непротиворечивость завершенной физической теории. Вторым обязательным свойством, отличающим теоретическую физику от математики, является возможность получать внутри теории предсказания для поведения Природы в тех или иных условиях (то есть предсказания для экспериментов) и, в тех случаях, где результат эксперимента уже известен, давать согласие с экспериментом.

Сказанное выше позволяет обрисовать общую структуру физической теории. Она должна содержать:

  • описание круга явлений, для которых строится математическая модель,
  • аксиомы, определяющую математическую модель,
  • аксиомы, сопоставляющие (по крайней мере, некоторым) математическим объектам наблюдаемые, физические объекты,
  • непосредственные следствия математических аксиом и их эквиваленты в реальном мире, которые истолковываются как предсказания теории.

Из этого становится ясно, что утверждения типа «а вдруг теория относительности неверна?» бессмысленны. Теория относительности, как физическая теория, удовлетворяющая нужным требованиям, уже верна. Если же окажется, что она не сходится с экспериментом в каких-то предсказаниях, то значит, она в этих явлениях не применима к реальности. Потребуется поиск новой теории, и может статься, что теория относительности окажется каким-то предельным случаем этой новой теории. С точки зрения теории, катастрофы в этом нет. Более того, сейчас подозревается, что в определённых условиях (при плотности энергии порядка планковской) ни одна из существующих физических теорий не будет адекватной.

В принципе, возможна ситуация, когда для одного и того же круга явлений существуют несколько разных физических теорий, приводящих к похожим или совпадающим предсказаниям. История науки показывает, что такая ситуация обычно временна: рано или поздно либо одна теория оказывается более адекватна, чем другая, либо показывается, что эти теории эквивалентны (см. ниже пример с квантовой механикой).

Построение физических теорий

Фундаментальные физические теории, как правило, не выводятся из уже известных, а строятся с нуля. Первый шаг в таком построении - это самое настоящее «угадывание» того, какую математическую модель следует взять за основу. Часто оказывается, что для построения теории требуется новый (причем, обычно более сложный) математический аппарат, непохожий на тот, что использовался в теорфизике где-либо ранее. Это - не прихоть, а необходимость: обычно новые физические теории строятся там, где все предыдущие теории (то есть основанные на «привычном» матаппарате) показали свою несостоятельность в описании природы. Иногда оказывается, что соответствующий матаппарат отсутствует в арсенале чистой математики, и его приходится изобретать.

Дополнительными, но необязательными, критериями при построении «хорошей» теории могут являться понятия

  • «математической красоты»,
  • «бритвы Оккама », а также общности подхода ко многим системам,
  • возможность не только описывать уже имеющиеся данные, но и предсказывать новые.
  • возможность редукции в какую-либо уже известную теорию в какой-либо их общей области применимости (принцип соответствия ),
  • возможность выяснить внутри самой теории её область применимости. Так, например, классическая механика «не знает» границ своей применимости, а термодинамика «знает», в каком пределе она и не должна работать.

Примеры принципиально новых физических теорий

  • Классическая механика . Именно при построении классической механики Ньютон столкнулся с необходимостью введения производных и интегралов, т. е. создал дифференциальное и интегральное исчисление.
  • Общая теория относительности , в формулировке которой постулируется, что пустое пространство тоже обладает определёнными нетривиальными геометрическими свойствами, и его можно описать методами дифференциальной геометрии.
  • Квантовая механика . После того, как классическая физика не смогла описать квантовые явления, были предприняты попытки переформулировать сам подход к описанию эволюции микроскопических систем. Это удалось Шрёдингеру , который постулировал, что каждой частице сопоставляется новый объект - волновая функция , а также Гейзенбергу , который постулировал существование матрицы рассеяния. Однако наиболее удачную математическую модель для квантовой механики нашел фон Нейман (теория гильбертовых пространств и действующих в них операторов) и показал, что как волновая механика Шрёдингера, так и матричная механика Гейзенберга являются лишь вариантами этой теории, получающимися при добавлении в теорию необязательных слов. Формулировка фон Неймана «лучше», чем формулировки Шрёдингера и Гейзенберга, так как она отбрасывает все лишнее, несущественное.
  • В настоящее время мы, по-видимому, находимся на пороге создания ещё одной принципиально новой теории, М-теории , которая объединила бы все пять построенных суперструнных теорий. Существование М-теории подозревается уже давно, однако сформулировать её пока не удается. Э.Виттен , ведущий специалист в этой области, высказал мысль, что необходимый для её построения математический аппарат ещё не изобретён.

Wikimedia Foundation . 2010 .

Смотреть что такое "Физическая теория" в других словарях:

    ТЕОРИЯ СУПЕРСТРУН, физическая теория, пытающаяся объяснить свойства ЭЛЕМЕНТАРНЫХ ЧАСТИЦ и их взаимодействие. Она объединяет КВАНТОВУЮ ТЕОРИЮ и ТЕОРИЮ ОТНОСИТЕЛЬНОСТИ, в особенности, в объяснении ядерных сил и силы тяжести (см. ФУНДАМЕНТАЛЬНЫЕ… … Научно-технический энциклопедический словарь

    Теория относительности Эйнштейна - физическая теория, рассматривающая пространственно временные свойства физических процессов. Эти свойства зависят от полей тяготения в данной области пространства времени. Теория, описывающая свойства пространства времени в приближении, когда… … Концепции современного естествознания. Словарь основных терминов

    ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ - физическая теория, основной смысл которой состоит в утверждении: в физическом мире все происходит благодаря структуре пространства и изменению его кривизны. Различают частную и общую теорию относительности. В основе частной теории,… … Философия науки: Словарь основных терминов

    Теория суперструн Теория … Википедия

    Теория, рассматривающая всевозможные колебания, абстрагируясь от их физической природы. Для этого используется аппарат дифференциального исчисления. Содержание 1 Гармонические колебания … Википедия

    ФИЗИЧЕСКАЯ ХИМИЯ - ФИЗИЧЕСКАЯ ХИМИЯ, «наука, объясняющая на основании положений и опытов физическую причину того, что происходит через хим. операции в сложных телах». Это определение, к рое ей дал первый физико химик М. В. Ломоносов в курсе, прочитанном …

    Физическая культура сфера социальной деятельности, направленная на сохранение и укрепление здоровья, развитие психофизических способностей человека в процессе осознанной двигательной активности. физическая культура часть культуры,… … Википедия

    ФИЗИЧЕСКАЯ КУЛЬТУРА - ФИЗИЧЕСКАЯ КУЛЬТУРА. Содержание: I. История Ф. к................. 687 II. Система советской Ф. к............. 690 «Готов к труду и обороне» .......... Ф. к. в процессе производства......... 691 Ф. к. и оборона СССР.............. 692 Ф … Большая медицинская энциклопедия

    Теория катастроф раздел математики, включающий в себя теорию бифуркаций дифференциальных уравнений (динамических систем) и теорию особенностей гладких отображений. Термины «катастрофа» и «теория катастроф» были введены Рене Томом (René Thom) и… … Википедия

    Представление о мире и его процессах, выработанное физикой на основе эмпирического исследования и теоретического осмысления. Физическая картина мира следует за ходом развития науки; сначала она основывалась на механике атома (атомизм), затем – на … Философская энциклопедия