Прямоугольный параллелепипед у которого все стороны равны. Соблюдение вашей конфиденциальности на уровне компании

В переводе с греческого языка параллелограмм означает плоскость. Параллелепипед – это призма, в основании которой лежит параллелограмм. Существуют пять типов параллелограмма: наклонный, прямой и прямоугольный параллелепипед. Куб и ромбоэдр также относятся к параллелепипеду и являются его разновидностью.

Перед тем как перейти к основным понятиям, дадим некоторые определения:

  • Диагональю параллелепипеда является отрезок, который объединяет вершины параллелепипеда, находящиеся напротив друг друга.
  • Если две грани имеют общее ребро, то можно назвать их смежными ребрами. Если же общего ребра нет, то грани именуются противоположными.
  • Две вершины, не лежащие на одной грани, именуются противоположными.

Какие свойства имеет параллелепипед?

  1. Лежащие на противоположных сторонах грани параллелепипеда параллельны друг другу и равны между собой.
  2. Если провести диагонали из одной вершины в другую, то точка пересечения этих диагоналей разделит их пополам.
  3. Стороны параллелепипеда лежащие под одним и тем же углом к основанию будут равны. Другими словами, углы сонаправленных сторон будут равны между собой.

Какие виды параллелепипеда бывают?

Теперь разберёмся в том, какие параллелепипеды бывают. Как уже упомянуто выше, существует несколько типов этой фигуры: прямой, прямоугольный, наклонный параллелепипед, а также куб и ромбоэдр. Чем же они отличаются между собой? Все дело в образующих их плоскостях и углах, которые они образуют.

Разберемся более подробно с каждым из перечисленных видов параллелепипеда.

  • Как уже понятно из названия, наклонный параллелепипед имеет наклонные грани, а именно такие грани, которые находятся по отношению к основанию не под углом 90 градусов.
  • А вот у прямого параллелепипеда угол между основанием и гранью как раз составляет девяносто градусов. Именно по этой причине этот вид параллелепипеда имеет такое название.
  • Если же все грани параллелепипеда – это одинаковые квадраты, то можно считать эту фигуру кубом.
  • Прямоугольный параллелепипед получил такое название из-за образующих его плоскостей. Если все они являются прямоугольниками (и основание в том числе), то это прямоугольный параллелепипед. Такой вид параллелепипеда встречается не так часто. В переводе с греческого ромбоэдр означает грань или основание. Так называют трехмерную фигуру, у которой гранями являются ромбы.



Основные формулы для параллелепипеда

Объём параллелепипеда равен произведению площади основания на его высоту, перпендикулярную основанию.

Площадь боковой поверхности будет равна произведению периметра основания на высоту.
Зная основные определения и формулы можно вычислить площадь основания и объём. Основание можно выбрать по своему усмотрению. Однако, как правило, в качестве основания используется прямоугольник.

На этом уроке все желающие смогут изучить тему «Прямоугольный параллелепипед». В начале урока мы повторим, что такое произвольный и прямой параллелепипеды, вспомним свойства их противоположных граней и диагоналей параллелепипеда. Затем рассмотрим, что такое прямоугольный параллелепипед, и обсудим его основные свойства.

Тема: Перпендикулярность прямых и плоскостей

Урок: Прямоугольный параллелепипед

Поверхность, составленная из двух равных параллелограммов АВСD и А 1 В 1 С 1 D 1 и четырех параллелограммов АВВ 1 А 1 , ВСС 1 В 1 , СDD 1 С 1 , DАА 1 D 1 , называется параллелепипедом (рис. 1).

Рис. 1 Параллелепипед

То есть: имеем два равных параллелограмма АВСD и А 1 В 1 С 1 D 1 (основания), они лежат в параллельных плоскостях так, что боковые ребра АА 1 , ВВ 1 , DD 1 , СС 1 параллельны. Таким образом, составленная из параллелограммов поверхность называется параллелепипедом .

Таким образом, поверхность параллелепипеда - это сумма всех параллелограммов, из которых составлен параллелепипед.

1. Противоположные грани параллелепипеда параллельны и равны.

(фигуры равны, то есть их можно совместить наложением)

Например:

АВСD = А 1 В 1 С 1 D 1 (равные параллелограммы по определению),

АА 1 В 1 В = DD 1 С 1 С (так как АА 1 В 1 В и DD 1 С 1 С - противоположные грани параллелепипеда),

АА 1 D 1 D = ВВ 1 С 1 С (так как АА 1 D 1 D и ВВ 1 С 1 С - противоположные грани параллелепипеда).

2. Диагонали параллелепипеда пересекаются в одной точке и делятся этой точкой пополам.

Диагонали параллелепипеда АС 1 , В 1 D, А 1 С, D 1 В пересекаются в одной точке О, и каждая диагональ делится этой точкой пополам (рис. 2).

Рис. 2 Диагонали параллелепипеда пересекаются и деляться точкой пересечения пополам.

3. Имеются три четверки равных и параллельных ребер параллелепипеда : 1 - АВ, А 1 В 1 , D 1 C 1 , DC, 2 - AD, A 1 D 1 , B 1 C 1 , BC, 3 - АА 1 , ВВ 1 , СС 1 , DD 1 .

Определение. Параллелепипед называется прямым, если его боковые ребра перпендикулярны основаниям.

Пусть боковое ребро АА 1 перпендикулярно основанию (рис. 3). Это означает, что прямая АА 1 перпендикулярна прямым АD и АВ, которые лежат в плоскости основания. А, значит, в боковых гранях лежат прямоугольники. А в основаниях лежат произвольные параллелограммы. Обозначим, ∠BAD = φ, угол φ может быть любым.

Рис. 3 Прямой параллелепипед

Итак, прямой параллелепипед - это параллелепипед, в котором боковые ребра перпендикулярны основаниям параллелепипеда.

Определение. Параллелепипед называется прямоугольным, если его боковые ребра перпендикулярны к основанию. Основания являются прямоугольниками.

Параллелепипед АВСDА 1 В 1 С 1 D 1 - прямоугольный (рис. 4), если:

1. АА 1 ⊥ АВСD (боковое ребро перпендикулярно плоскости основания, то есть параллелепипед прямой).

2. ∠ВАD = 90°, т. е. в основании лежит прямоугольник.

Рис. 4 Прямоугольный параллелепипед

Прямоугольный параллелепипед обладает всеми свойствами произвольного параллелепипеда. Но есть дополнительные свойства, которые выводятся из определения прямоугольного параллелепипеда.

Итак, прямоугольный параллелепипед - это параллелепипед, у которого боковые ребра перпендикулярны основанию. Основание прямоугольного параллелепипеда - прямоугольник .

1. В прямоугольном параллелепипеде все шесть граней прямоугольники.

АВСD и А 1 В 1 С 1 D 1 - прямоугольники по определению.

2. Боковые ребра перпендикулярны основанию . Значит, все боковые грани прямоугольного параллелепипеда - прямоугольники.

3. Все двугранные углы прямоугольного параллелепипеда прямые.

Рассмотрим, например, двугранный угол прямоугольного параллелепипеда с ребром АВ, т. е. двугранный угол между плоскостями АВВ 1 и АВС.

АВ - ребро, точка А 1 лежит в одной плоскости - в плоскости АВВ 1 , а точка D в другой - в плоскости А 1 В 1 С 1 D 1 . Тогда рассматриваемый двугранный угол можно еще обозначить следующим образом: ∠А 1 АВD.

Возьмем точку А на ребре АВ. АА 1 - перпендикуляр к ребру АВ в плоскости АВВ- 1 , AD перпендикуляр к ребру АВ в плоскости АВС. Значит, ∠А 1 АD - линейный угол данного двугранного угла. ∠А 1 АD = 90°, значит, двугранный угол при ребре АВ равен 90°.

∠(АВВ 1 , АВС) = ∠(АВ) = ∠А 1 АВD= ∠А 1 АD = 90°.

Аналогично доказывается, что любые двугранные углы прямоугольного параллелепипеда прямые.

Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений.

Примечание. Длины трех ребер, исходящих из одной вершины прямоугольного параллелепипеда, являются измерениями прямоугольного параллелепипеда. Их иногда называют длина, ширина, высота.

Дано: АВСDА 1 В 1 С 1 D 1 - прямоугольный параллелепипед (рис. 5).

Доказать: .

Рис. 5 Прямоугольный параллелепипед

Доказательство:

Прямая СС 1 перпендикулярна плоскости АВС, а значит, и прямой АС. Значит, треугольник СС 1 А - прямоугольный. По теореме Пифагора:

Рассмотрим прямоугольный треугольник АВС. По теореме Пифагора:

Но ВС и AD - противоположные стороны прямоугольника. Значит, ВС = AD. Тогда:

Так как , а , то. Поскольку СС 1 = АА 1 , то что и требовалось доказать.

Диагонали прямоугольного параллелепипеда равны.

Обозначим измерения параллелепипеда АВС как a, b, c (см. рис. 6), тогда АС 1 = СА 1 = В 1 D = DВ 1 =

Параллелепипедом называется призма, основаниями которой служат параллелограммы. При этом все грани будут параллелограммами .
Каждый параллелепипед можно рассматривать как призму тремя различными способами, так как за основания можно принять каждые две противоположные грани (на черт. 5 грани ABCD и A"B"C"D", или АВА"В" и CDC"D", или ВСВ"С" и ADA"D").
Рассматриваемое тело имеет двенадцать рёбер, по четыре равных и параллельных между собой.
Теорема 3 . Диагонали параллелепипеда пересекаются в одной точке, совпадающей с серединой каждой из них.
Параллелепипед ABCDA"B"C"D" (черт. 5) имеет четыре диагонали AC", BD", CA", DB". Мы должны доказать, что середины двух каких-либо из них, например АС и BD", совпадают. Это следует из того, что фигура ABC"D", имеющая равные и параллельные стороны АВ и C"D", есть параллелограмм.
Определение 7 . Прямым параллелепипедом называется параллелепипед, являющийся одновременно и прямой призмой, т. е. параллелепипед, боковые рёбра которого перпендикулярны к плоскости основания.
Определение 8 . Прямоугольным параллелепипедом называется прямой параллелепипед, основанием которого служит прямоугольник. При этом все его грани будут прямоугольниками.
Прямоугольный параллелепипед представляет собой прямую призму, какую бы из его граней мы ни приняли за основание, так как каждое его ребро перпендикулярно к рёбрам, выходящим с ним из одной вершины, и будет, следовательно, перпендикулярно и к плоскостям граней, определяемых этими рёбрами. В противоположность этому прямой, но не прямоугольный, параллелепипед можно рассматривать как прямую призму только одним способом.
Определение 9 . Длины трёх рёбер прямоугольного параллелепипеда, из которых никакие два не параллельны между собой (например трёх рёбер, выходящих из одной вершины), называются его измерениями. Два |прямоугольных параллелепипеда, имеющих соответственно равные изме- рения, очевидно, равны между собой.
Определение 10 .Кубом называется прямоугольный параллелепипед, все три измерения которого равны между собой, так что все его грани - квадраты. Два куба, рёбра которых равны между собой, равны.
Определение 11 . Наклонный параллелепипед, у которого все рёбра равны между собой и углы всех граней равны или пополнительны, называется ромбоэдром.
Все грани ромбоэдра - равные ромбы. (Форму ромбоэдра имеют некоторые кристаллы, имеющие большое значение, например кристаллы исландского шпата.) В ромбоэдре можно найти такую вершину (и даже две противололожные вершины), что все прилежащие к ней углы равны между собой.
Теорема 4 . Диагонали прямоугольного параллелепипеда равны между собой. Квадрат диагонали равен сумме квадратов трёх измерений.
В прямоугольном параллелепипеде ABCDA"B"C"D" (черт. 6) диагонали АС" и BD" равны, так как четырёхугольник ABC"D" - прямоугольник (прямая АВ перпендикулярна к плоскости ВСВ"С", в которой лежит ВС").
Кроме того, AC" 2 =BD" 2 = AB2+AD" 2 на основании теоремы о квадрате гипотенузы. Но на основании той же теоремы AD" 2 = AA" 2 + +A"D" 2 ; отсюда имеем:
АС" 2 = АВ 2 + АА" 2 +A"D" 2 =АВ 2 + AA" 2 + AD 2 .

В пятом веке до нашей эры древнегреческий философ Зенон Элейский сформулировал свои знаменитые апории, самой известной из которых является апория "Ахиллес и черепаха". Вот как она звучит:

Допустим, Ахиллес бежит в десять раз быстрее, чем черепаха, и находится позади неё на расстоянии в тысячу шагов. За то время, за которое Ахиллес пробежит это расстояние, черепаха в ту же сторону проползёт сто шагов. Когда Ахиллес пробежит сто шагов, черепаха проползёт ещё десять шагов, и так далее. Процесс будет продолжаться до бесконечности, Ахиллес так никогда и не догонит черепаху.

Это рассуждение стало логическим шоком для всех последующих поколений. Аристотель, Диоген, Кант, Гегель, Гильберт... Все они так или иначе рассматривали апории Зенона. Шок оказался настолько сильным, что "... дискуссии продолжаются и в настоящее время, прийти к общему мнению о сущности парадоксов научному сообществу пока не удалось... к исследованию вопроса привлекались математический анализ, теория множеств, новые физические и философские подходы; ни один из них не стал общепризнанным решением вопроса... " [Википедия, " Апории Зенона "]. Все понимают, что их дурят, но никто не понимает, в чем заключается обман.

С точки зрения математики, Зенон в своей апории наглядно продемонстрировал переход от величины к . Этот переход подразумевает применение вместо постоянных. Насколько я понимаю, математический аппарат применения переменных единиц измерения либо ещё не разработан, либо его не применяли к апории Зенона. Применение же нашей обычной логики приводит нас в ловушку. Мы, по инерции мышления, применяем постоянные единицы измерения времени к обратной величине. С физической точки зрения это выглядит, как замедление времени до его полной остановки в момент, когда Ахиллес поравняется с черепахой. Если время останавливается, Ахиллес уже не может перегнать черепаху.

Если перевернуть привычную нам логику, всё становится на свои места. Ахиллес бежит с постоянной скоростью. Каждый последующий отрезок его пути в десять раз короче предыдущего. Соответственно, и время, затрачиваемое на его преодоление, в десять раз меньше предыдущего. Если применять понятие "бесконечность" в этой ситуации, то правильно будет говорить "Ахиллес бесконечно быстро догонит черепаху".

Как избежать этой логической ловушки? Оставаться в постоянных единицах измерения времени и не переходить к обратным величинам. На языке Зенона это выглядит так:

За то время, за которое Ахиллес пробежит тысячу шагов, черепаха в ту же сторону проползёт сто шагов. За следующий интервал времени, равный первому, Ахиллес пробежит ещё тысячу шагов, а черепаха проползет сто шагов. Теперь Ахиллес на восемьсот шагов опережает черепаху.

Этот подход адекватно описывает реальность без всяких логических парадоксов. Но это не полное решение проблемы. На Зеноновскую апорию "Ахиллес и черепаха" очень похоже утверждение Эйнштейна о непреодолимости скорости света. Эту проблему нам ещё предстоит изучить, переосмыслить и решить. И решение нужно искать не в бесконечно больших числах, а в единицах измерения.

Другая интересная апория Зенона повествует о летящей стреле:

Летящая стрела неподвижна, так как в каждый момент времени она покоится, а поскольку она покоится в каждый момент времени, то она покоится всегда.

В этой апории логический парадокс преодолевается очень просто - достаточно уточнить, что в каждый момент времени летящая стрела покоится в разных точках пространства, что, собственно, и является движением. Здесь нужно отметить другой момент. По одной фотографии автомобиля на дороге невозможно определить ни факт его движения, ни расстояние до него. Для определения факта движения автомобиля нужны две фотографии, сделанные из одной точки в разные моменты времени, но по ним нельзя определить расстояние. Для определения расстояния до автомобиля нужны две фотографии, сделанные из разных точек пространства в один момент времени, но по ним нельзя определить факт движения (естественно, ещё нужны дополнительные данные для расчетов, тригонометрия вам в помощь). На что я хочу обратить особое внимание, так это на то, что две точки во времени и две точки в пространстве - это разные вещи, которые не стоит путать, ведь они предоставляют разные возможности для исследования.

среда, 4 июля 2018 г.

Очень хорошо различия между множеством и мультимножеством описаны в Википедии . Смотрим.

Как видите, "во множестве не может быть двух идентичных элементов", но если идентичные элементы во множестве есть, такое множество называется "мультимножество". Подобную логику абсурда разумным существам не понять никогда. Это уровень говорящих попугаев и дрессированных обезьян, у которых разум отсутствует от слова "совсем". Математики выступают в роли обычных дрессировщиков, проповедуя нам свои абсурдные идеи.

Когда-то инженеры, построившие мост, во время испытаний моста находились в лодке под мостом. Если мост обрушивался, бездарный инженер погибал под обломками своего творения. Если мост выдерживал нагрузку, талантливый инженер строил другие мосты.

Как бы математики не прятались за фразой "чур, я в домике", точнее "математика изучает абстрактные понятия", есть одна пуповина, которая неразрывно связывает их с реальностью. Этой пуповиной являются деньги. Применим математическую теорию множеств к самим математикам.

Мы очень хорошо учили математику и сейчас сидим в кассе, выдаем зарплату. Вот приходит к нам математик за своими деньгами. Отсчитываем ему всю сумму и раскладываем у себя на столе на разные стопки, в которые складываем купюры одного достоинства. Затем берем с каждой стопки по одной купюре и вручаем математику его "математическое множество зарплаты". Поясняем математику, что остальные купюры он получит только тогда, когда докажет, что множество без одинаковых элементов не равно множеству с одинаковыми элементами. Вот здесь начнется самое интересное.

В первую очередь, сработает логика депутатов: "к другим это применять можно, ко мне - низьзя!". Дальше начнутся уверения нас в том, что на купюрах одинакового достоинства имеются разные номера купюр, а значит их нельзя считать одинаковыми элементами. Хорошо, отсчитываем зарплату монетами - на монетах нет номеров. Здесь математик начнет судорожно вспоминать физику: на разных монетах имеется разное количество грязи, кристаллическая структура и расположение атомов у каждой монеты уникально...

А теперь у меня самый интересный вопрос: где проходит та грань, за которой элементы мультимножества превращаются в элементы множества и наоборот? Такой грани не существует - всё решают шаманы, наука здесь и близко не валялась.

Вот смотрите. Мы отбираем футбольные стадионы с одинаковой площадью поля. Площадь полей одинакова - значит у нас получилось мультимножество. Но если рассматривать названия этих же стадионов - у нас получается множество, ведь названия разные. Как видите, один и тот же набор элементов одновременно является и множеством, и мультимножеством. Как правильно? А вот здесь математик-шаман-шуллер достает из рукава козырный туз и начинает нам рассказывать либо о множестве, либо о мультимножестве. В любом случае он убедит нас в своей правоте.

Чтобы понять, как современные шаманы оперируют теорией множеств, привязывая её к реальности, достаточно ответить на один вопрос: чем элементы одного множества отличаются от элементов другого множества? Я вам покажу, без всяких "мыслимое как не единое целое" или "не мыслимое как единое целое".

воскресенье, 18 марта 2018 г.

Сумма цифр числа - это пляска шаманов с бубном, которая к математике никакого отношения не имеет. Да, на уроках математики нас учат находить сумму цифр числа и пользоваться нею, но на то они и шаманы, чтобы обучать потомков своим навыкам и премудростям, иначе шаманы просто вымрут.

Вам нужны доказательства? Откройте Википедию и попробуйте найти страницу "Сумма цифр числа". Её не существует. Нет в математике формулы, по которой можно найти сумму цифр любого числа. Ведь цифры - это графические символы, при помощи которых мы записываем числа и на языке математики задача звучит так: "Найти сумму графических символов, изображающих любое число". Математики эту задачу решить не могут, а вот шаманы - элементарно.

Давайте разберемся, что и как мы делаем для того, чтобы найти сумму цифр заданного числа. И так, пусть у нас есть число 12345. Что нужно сделать для того, чтобы найти сумму цифр этого числа? Рассмотрим все шаги по порядку.

1. Записываем число на бумажке. Что же мы сделали? Мы преобразовали число в графический символ числа. Это не математическое действие.

2. Разрезаем одну полученную картинку на несколько картинок, содержащих отдельные цифры. Разрезание картинки - это не математическое действие.

3. Преобразовываем отдельные графические символы в числа. Это не математическое действие.

4. Складываем полученные числа. Вот это уже математика.

Сумма цифр числа 12345 равна 15. Вот такие вот "курсы кройки и шитья" от шаманов применяют математики. Но это ещё не всё.

С точки зрения математики не имеет значения, в какой системе счисления мы записываем число. Так вот, в разных системах счисления сумма цифр одного и того же числа будет разной. В математике система счисления указывается в виде нижнего индекса справа от числа. С большим числом 12345 я не хочу голову морочить, рассмотрим число 26 из статьи про . Запишем это число в двоичной, восьмеричной, десятичной и шестнадцатеричной системах счисления. Мы не будем рассматривать каждый шаг под микроскопом, это мы уже сделали. Посмотрим на результат.

Как видите, в разных системах счисления сумма цифр одного и того же числа получается разной. Подобный результат к математике никакого отношения не имеет. Это всё равно, что при определении площади прямоугольника в метрах и сантиметрах вы получали бы совершенно разные результаты.

Ноль во всех системах счисления выглядит одинаково и суммы цифр не имеет. Это ещё один аргумент в пользу того, что . Вопрос к математикам: как в математике обозначается то, что не является числом? Что, для математиков ничего, кроме чисел, не существует? Для шаманов я могу такое допустить, но для ученых - нет. Реальность состоит не только из чисел.

Полученный результат следует рассматривать как доказательство того, что системы счисления являются единицами измерения чисел. Ведь мы не можем сравнивать числа с разными единицами измерения. Если одни и те же действия с разными единицами измерения одной и той же величины приводят к разным результатам после их сравнения, значит это не имеет ничего общего с математикой.

Что же такое настоящая математика? Это когда результат математического действия не зависит от величины числа, применяемой единицы измерения и от того, кто это действие выполняет.

Табличка на двери Открывает дверь и говорит:

Ой! А это разве не женский туалет?
- Девушка! Это лаборатория по изучению индефильной святости душ при вознесении на небеса! Нимб сверху и стрелочка вверх. Какой еще туалет?

Женский... Нимб сверху и стрелочка вниз - это мужской.

Если у вас перед глазами несколько раз в день мелькает вот такое вот произведение дизайнерского искусства,

Тогда не удивительно, что в своем автомобиле вы вдруг обнаруживаете странный значок:

Лично я делаю над собой усилие, чтобы в какающем человеке (одна картинка), увидеть минус четыре градуса (композиция из нескольких картинок: знак минус, цифра четыре, обозначение градусов). И я не считаю эту девушку дурой, не знающей физику. Просто у неё дугой стереотип восприятия графических образов. И математики нас этому постоянно учат. Вот пример.

1А - это не "минус четыре градуса" или "один а". Это "какающий человек" или число "двадцать шесть" в шестнадцатеричной системе счисления. Те люди, которые постоянно работают в этой системе счисления, автоматически воспринимают цифру и букву как один графический символ.

Учащимся старших классов будет полезно научиться решать задачи ЕГЭ на нахождение объема и других неизвестных параметров прямоугольного параллелепипеда. Опыт предыдущих лет подтверждает тот факт, что подобные задания являются для многих выпускников достаточно сложными.

При этом понимать, как найти объем или площадь прямоугольного параллелепипеда, должны старшеклассники с любым уровнем подготовки. Только в этом случае они смогут рассчитывать на получение конкурентных баллов по итогам сдачи единого госэкзамена по математике.

Основные нюансы, которые стоит запомнить

  • Параллелограммы, из которых состоит параллелепипед, являются его гранями, их стороны - ребрами. Вершины этих фигур считаются вершинами самого многогранника.
  • Все диагонали прямоугольного параллелепипеда равны. Так как это прямой многогранник, то боковые грани представляют собой прямоугольники.
  • Так как параллелепипед - это призма, в основании которой находится параллелограмм, эта фигура обладает всеми свойствами призмы.
  • Боковые ребра прямоугольного параллелепипеда перпендикулярны основанию. Следовательно, они являются его высотами.

Готовьтесь к ЕГЭ вместе со «Школково»!

Чтобы занятия проходили легко и максимально эффективно, выбирайте наш математический портал. Здесь вы найдете весь необходимый материал, который потребуется на этапе подготовки к единому государственному экзамену.

Специалисты образовательного проекта «Школково» предлагают пойти от простого к сложному: сначала мы даем теорию, основные формулы и элементарные задачи с решением, а затем постепенно переходим к заданиям экспертного уровня. Вы можете потренироваться, например, с .

Нужную базовую информацию вы найдете в разделе «Теоретическая справка». Вы также можете сразу приступить к решению задач по теме «Прямоугольный параллелепипед» в онлайн-режиме. В разделе «Каталог» представлена большая подборка упражнений разной степени сложности. База заданий регулярно пополняется.

Проверьте, легко ли вы сможете найти объем прямоугольного параллелепипеда, прямо сейчас. Разберите любое задание. Если упражнение дается вам легко, переходите к более сложным задачам. А если возникли определенные сложности, рекомендуем вам планировать свой день таким образом, чтобы ваше расписание включало занятия с дистанционным порталом «Школково».