Чему равна сумма углов треугольника в градусах. I

Вдогонку ко вчерашнему:

Играем с мозаикой под сказку по геометрии:

Жили-были треугольники. Такие похожие, что просто копия друг друга.
Стали они как-то рядышком на прямую линию. А так как были они все одного роста -
то и верхушки их были на одном уровне, под линеечку:

Треугольники любили кувыркаться и стоять на голове. Взобрались в верхний ряд и стали на уголок, как акробаты.
А мы уже знаем - когда они стоят верхушками ровно в линию,
то и подошвы у них тоже по линеечке - потому что если кто одного роста, то он и верх ногами одного роста!

Во всем они были одинаковые - и высота одинаковая, и подошвы один в один,
и горки по сторонам - одна круче, другая более пологая - по длине одинаковые
и наклон у них одинаковый. Ну просто близнецы! (только в разных одежках, у каждого свой кусочек пазла) .

- Где у треугольников одинаковые стороны? А где уголки одинаковые?

Постояли треугольники на голове, постояли, да и решили соскользнуть и улечься в нижнем ряду.
Заскользили и съехали как с горки; а горки-то у них одинаковые!
Вот и поместились аккурат между нижними треугольниками, без зазоров и никто никого не потеснил.

Огляделись треугольники и заметили интересную особенность.
Везде, где их углы вместе сошлись - непременно встретились все три угла:
самый большой - "угол-голова", самый острый угол и третий, средний по величине угол.
Они даже ленточки цветные повязали, что б сразу было заметно, где какой.

И получилось, что три угла треугольника, если их совместить -
составляют один большой угол, "угол нараспашку" - как обложка раскрытой книги,

______________________о ___________________

он так и называется: развернутый угол.

У любого треугольника - будто паспорт: три угла вместе равны развернутому углу.
Постучится к вам кто-нибудь: - тук-тук, я треугольник, пустите меня переночевать!
А вы ему - Предъяви-ка сумму углов в развернутом виде!
И сразу понятно - настоящий ли это треугольник или самозванец.
Не прошел проверку - Разворачивайся на сто восемьдесят градусов и ступай восвояси!

Когда говорят "повернуть на 180° - это значит развернуться задом наперед и
идти в обратном направлении.

То же самое в более привычных выражениях, без "жили были":

Совершим параллельный перенос треугольника АВС вдоль оси ОХ
на вектор АВ равный длине основания АВ.
Прямая, DF проходящая через вершины С и С 1 треугольников
параллельна оси ОХ, в силу того, что перпендикулярные оси ОХ
отрезки h и h 1 (высоты равных треугольников) равны.
Таким образом основание треугольника А 2 В 2 С 2 параллельно основанию АВ
и равно ему по длине (т.к. вершина С 1 смещена относительно С на величину АВ).
Треугольники А 2 В 2 С 2 и АВС равны по трем сторонам.
А стало быть углы ∠А 1 ∠В ∠С 2 , образующие развернутый угол, равны углам треугольника АВС.
=> Сумма углов треугольника равна 180°

С движениями - "трансляциями" так называемыми доказательство короче и наглядней,
на кусочках мозаики даже малышу может быть понятно.

Зато традиционное школьное:

опирающееся на равенство внутренних накрест-лежащих углов, отсекаемых на параллельных прямых

ценно тем, что дает представление о том - почему это так,
почему сумма углов треугольника равна развернутому углу?

Потому что иначе параллельные прямые не обладали бы привычными нашему миру свойствами.

Теоремы работают в обе стороны. Из аксиомы о параллельных прямых следует
равенство накрест лежащих и вертикальных углов, а из них - сумма углов треугольника.

Но верно и обратное: пока углы треугольника составляют 180° - существуют параллельные прямые
(такие, что через точку не лежащую на прямой можно провести единственную прямую || данной).
Если однажды в мире появится треугольник, у которого сумма углов не равна развернутому углу -
то параллельные перестанут быть параллельны, весь мир искривится и перекособочится.

Если полосы с орнаментом из треугольников расположить друг над другом -
можно покрыть все поле повторяющимся узором, будто пол плиткой:


можно обводить на такой сетке разные фигуры - шестиугольники, ромбы,
звездные многоугольники и получать самые разные паркеты


Замощение плоскости паркетами - не только занятная игра, но и актуальная математическая задача:

________________________________________ _______________________-------__________ ________________________________________ ______________
/\__||_/\__||_/\__||_/\__||_/\__|)0(|_/\__||_/\__||_/\__||_/\__||_/\=/\__||_/ \__||_/\__||_/\__||_/\__|)0(|_/\__||_/\__||_/\__||_/\__||_/\

Поскольку каждый четырехугольник - прямоугольник, квадрат, ромб и проч.,
может быть составлен из двух треугольников,
соответственно сумма углов четырехугольника: 180° + 180°= 360°

Одинаковые равнобедренные треугольники складываются в квадраты разными способами.
Маленький квадратик из 2-х частей. Средний из 4-х. И самый большой из 8-ми.
Сколько на чертеже фигур, состоящих из 6-ти треугольников?

Предварительные сведения

Вначале рассмотрим непосредственно понятие треугольника.

Определение 1

Треугольником будем называть геометрическую фигуру, которая составлена из трех точек, соединенных между собой отрезками (рис. 1).

Определение 2

Точки в рамках определения 1 будем называть вершинами треугольника.

Определение 3

Отрезки в рамках определения 1 будем называть сторонами треугольника.

Очевидно, что любой треугольник будет иметь 3 вершин, а также три стороны.

Теорема о сумме углов в треугольнике

Введем и докажем одну из основных теорем, связанную с треугольников, а именно теорему о сумме углов в треугольнике.

Теорема 1

Сумма углов в любом произвольном треугольнике равняется $180^\circ$.

Доказательство.

Рассмотрим треугольник $EGF$. Докажем, что сумма углов в этом треугольнике равняется $180^\circ$. Сделаем дополнительное построение: проведем прямую $XY||EG$ (рис. 2)

Так как прямые $XY$ и $EG$ параллельны, то $∠E=∠XFE$ как накрест лежащие при секущей $FE$, а $∠G=∠YFG$ как накрест лежащие при секущей $FG$

Угол $XFY$ будет развернутым, следовательно, равняется $180^\circ$.

$∠XFY=∠XFE+∠F+∠YFG=180^\circ$

Следовательно

$∠E+∠F+∠G=180^\circ$

Теорема доказана.

Теорема о внешнем угле треугольника

Еще одной теоремой о сумме углов для треугольника можно считать теорему о внешнем угле. Для начала введем это понятие.

Определение 4

Внешним углом треугольника будем называть такой угол, который будет смежным с каким-либо углом треугольника (рис. 3).

Рассмотрим теперь непосредственно теорему.

Теорема 2

Внешний угол треугольника равняется сумме двух углов треугольника, которые не являются смежным для него.

Доказательство.

Рассмотрим произвольный треугольник $EFG$. Пусть он имеет внешний угол треугольника $FGQ$ (рис. 3).

По теореме 1 ,будем иметь, что $∠E+∠F+∠G=180^\circ$, следовательно,

$∠G=180^\circ-(∠E+∠F)$

Так как угол $FGQ$ внешний, то он смежен с углом $∠G$, тогда

$∠FGQ=180^\circ-∠G=180^\circ-180^\circ+(∠E+∠F)=∠E+∠F$

Теорема доказана.

Пример задач

Пример 1

Найти все углы треугольника, если он является равносторонним.

Так как у равностороннего треугольника все стороны равны, то будем иметь, что и все углы в нем также равны между собой. Обозначим их градусные меры через $α$.

Тогда, по теореме 1 будем получать

$α+α+α=180^\circ$

Ответ: все углы равняются по $60^\circ$.

Пример 2

Найти все углы равнобедренного треугольника, если один его угол равняется $100^\circ$.

Введем следующие обозначения углов в равнобедренном треугольнике:

Так как нам не дано в условии, какой именно угол равняется $100^\circ$, то возможны два случая:

    Угол, равный $100^\circ$ - угол при основании треугольника.

    По теореме об углах при основании равнобедренного треугольника получим

    $∠2=∠3=100^\circ$

    Но тогда только их сумма будет больше, чем $180^\circ$, что противоречит условию теоремы 1. Значит, этот случай не имеет места.

    Угол, равный $100^\circ$ - угол между равными сторонами, то есть

    Вопрос открыт 08.04.2017 в 12:25

    Да___ Нет___
    2.В равнобедренном треугольнике углы при основании тупые.
    Да___ Нет___
    3.При пересечении двух параллельных прямых секущей накрест лежащие углы равны
    соответственным углам.
    Да___ Нет___
    4.При пересечении двух параллельных прямых секущей сумма односторонних углов равна 180°.
    Да___ Нет___
    5.Внешний угол треугольника равен разности двух углов треугольника, не смежных с ним.
    Да___ Нет___
    6.Диагонали параллелограмма равны.
    Да___ Нет___
    7.Диагонали квадрата взаимно перпендикулярны.
    Да___ Нет___
    8.Диагонали прямоугольника делят углы прямоугольника пополам.
    Да___ Нет___
    9.Медиана треугольника делит стороны треугольника в отношении 2:1, считая от вершины.
    Да___ Нет___
    10.Биссектрисы треугольника пересекаются в одной точке.
    Да___ Нет___
    11.Высота равнобедренного треугольника, проведенная к основанию, является медианой и биссектрисой.
    Да___ Нет___
    12.Треугольник, у которого квадрат одной из сторон равен сумме квадратов двух других сторон, прямоугольный.
    Да___ Нет___
    13.Четырехугольник, у которого две стороны параллельны,- трапеция.
    Да___ Нет___
    14.В параллелограмме сумма квадратов диагоналей равна сумме квадратов всех его сторон.
    Да___ Нет___
    15.Площадь ромба равна произведению квадрата стороны на синус угла ромба.
    Да___ Нет___
    16.Площадь прямоугольника равна половине произведения квадрата диагонали на синус угла между диагоналями.
    Да___ Нет___
    17.Тангенс острого угла прямоугольного треугольника равен отношению прилежащего катета к противолежащему.
    Да___ Нет___
    18.Радиус окружности, описанной около прямоугольного треугольника равен отношению прилежащего катета к противолежащему.
    Да___ Нет___
    19.Середины сторон любого четырехугольника являются вершинами параллелограмма.
    Да___ Нет___
    20.Если диагонали параллелограмма равны, то этот параллелограмм - квадрат.
    Да___ Нет___
    21.Отрезок, соединяющий середины диагоналей трапеции, равен полуразности ее оснований.
    Да___ Нет___
    22.Точка пересечения продолжения боковых сторон трапеции и середины её оснований лежат на одной прямой.
    Да___ Нет___
    23.Если углы при основании трапеции равны, то она равнобедренная.
    Да___ Нет___
    24.Средняя линия трапеции равна полуразности ее оснований.
    Да___ Нет___
    25.Отношение площадей подобных фигур равно коэффициенту подобия.
    Да___ Нет___
    26.Диаметр, перпендикулярный хорде, делит стягиваемые ею дуги пополам.
    Да___ Нет___
    27.Из двух хорд больше та,которая более удалена от центра.
    Да___ Нет___
    28.Радиус окружности в два раза больше диаметра.
    Да___ Нет___
    29.Прямая, имеющая с окружностью две общие точки,-касательная.
    Да___ Нет___
    30.Центр окружности вписанной в угол, лежит на биссектрисе этого угла.
    Да___ Нет___
    31.Вершина вписанного угла лежит в центре окружности.
    Да___ Нет___
    32.Центры вписанной и описанной окружности равностороннего треугольника совпадают.
    Да___ Нет___
    33.В четырехугольник можно вписать окружность, если сумма противоположных углов равна 180°.
    Да___ Нет___
    34.Длина окружности равна ∏d, где d- диаметр окружности.
    Да___ Нет___
    35.Сумма углов многоугольника равна 180°:(n-2).
    Да___ Нет___
    36.Гипотенуза прямоугольного треугольника равна катету, деленному на синус угла, противолежащего этому катету.
    Да___ Нет___
    37.Биссектриса треугольника делит его сторону на отрезки, пропорциональные двум другим сторонам.
    Да___ Нет___
    38.Прямые, содержащие высоты треугольника, пересекаются в трех точках.
    Да___ Нет___
    39.точка пересечения биссектрис треугольника - центр окружности, описанной около этого треугольника.
    Да___ Нет___
    40.Угол между биссектрисами вертикальных углов равен 180°.
    Да___ Нет___

    Эта теорема сформулирована и в учебнике Атанасяна Л.С. , и в учебнике Погорелова А.В. . Доказательства этой теоремы в этих учебниках существенно не отличаются, а поэтому приведем ее доказательство, например, из учебника Погорелова А.В.

    Теорема: Сумма углов треугольника равна 180°

    Доказательство. Пусть АВС - данный треугольник. Проведем через вершину В прямую, параллельную прямой АС. Отметим на ней точку D так, чтобы точки А и D лежали по разные стороны от прямой ВС (рис.6).

    Углы DВС и АСВ равны как внутренние накрест лежащие, образованные секущей ВС с параллельными прямыми АС и ВD. Поэтому сумма углов треугольника при вершинах В и С равна углу АВD. А сумма всех трех углов треугольника равна сумме углов АВD и ВАС. Так как эти углы внутренние односторонние для параллельных АС и ВD и секущей АВ, то их сумма равна 180°. Теорема доказана.

    Идея этого доказательства состоит в проведение параллельной линии и обозначении равенства нужных углов. Реконструируем идею такого дополнительного построения, доказав эту теорему с использованием понятия о мысленном эксперименте. Доказательство теоремы с использованием мысленного эксперимента. Итак, предмет мысли нашего мысленного эксперимента - углы треугольника. Поместим его мысленно в такие условия, в которых его сущность может раскрыться с особой определенностью(1этап).

    Такими условиями будут являться такое расположение углов треугольника, при котором все их три вершины будут совмещены в одной точке. Такое совмещение возможно, если допустить возможность «перемещения» углов, посредством движения сторон треугольника не меняя при этом угол наклона (рис.1). Такие перемещения по сути есть последующие мысленные трансформации (2 этап).

    Производя обозначение углов и сторон треугольника (рис.2), углов получаемых при «перемещении», мы тем самым мысленно формируем ту среду, ту систему связей, в которую помещаем наш предмет мысли (3 этап).

    Линия АВ «перемещаясь» по линии ВС и не меняя к ней угла наклона, переводит угол 1 в угол 5, а «перемещаясь» по линии АС, переводит угол 2 в угол 4. Поскольку при таком «перемещении» линия АВ не меняет угла наклона к линиям АС и ВС, то очевиден вывод: лучи а и а1 параллельны АВ и переходят друг в друга, а лучи в и в1 являются продолжением соответственно сторон ВС и АС. Так как угол 3 и угол между лучами в и в1 - вертикальные, то они равны. Сумма этих углов равна развернутому углу аа1 - а значит 180°.

    ЗАКЛЮЧЕНИЕ

    В дипломной работе проведены «сконструированные» доказательства некоторых школьных геометрических теорем, с использованием структуры мысленного эксперимента, что явилось подтверждением сформулированной гипотезы.

    Излагаемые доказательства, опирались на такие наглядно-чувственные идеализации: «сжатие», «растягивание», «скольжение», которые позволили особым образом трансформировать исходный геометрический объект и выделить его существенные характеристики, что характерно для мысленного эксперимента. При этом мысленный эксперимент выступает в роли определенного «креативного инструмента», способствующего появлению геометрического знания (например, о средней линии трапеции или об углах треугольника). Такие идеализации позволяют схватить в целом идею доказательства, идею проведения «дополнительного построения», что позволяет говорить о возможности более осознанного понимания школьниками процесса формально-дедуктивного доказательства геометрических теорем.

    Мысленный эксперимент является одним из базовых методов получения и открытия геометрических теорем. Необходимо разработать методику передачи метода ученику. Остается открытым вопрос о приемлемом для «принятия» метода возрасте ученика, о «побочных эффектах» излагаемых таким образом доказательств.

    Эти вопросы требуют дополнительного изучения. Но в любом случаи, несомненно, одно: мысленный эксперимент развивает у школьников теоретическое мышление, является его базой и, поэтому, способности к мысленному экспериментированию нужно развивать.