Что значит биссектриса треугольника. Если расстояния равны, то точка лежит на биссектрисе

Биссектриса треугольника – распространенное геометрическое понятие, которое не вызывает особых затруднений в изучении. Владея знаниями о ее свойствах, с решением многих задач можно справиться без особого труда. Что такое биссектриса? Постараемся ознакомить читателя со всеми секретами этой математической прямой.

Вконтакте

Суть понятия

Наименование понятия пошло от использования слов на латыни, значение которых заключается «би» — две, «сектио» — разрезать. Они конкретно указывают на геометрический смысл понятия – разбивание пространства между лучами на две равные части .

Биссектриса треугольника – отрезок, который берет начало из вершины фигуры, а другой конец размещен на стороне, которая расположена напротив него, при этом делит пространство на две одинаковые части.

Многие педагоги для быстрого ассоциативного запоминания учащимися математических понятий пользуются разной терминологией, которая отображена в стихах или ассоциациях. Конечно, использовать такое определение рекомендуется для детей старшего возраста.

Как обозначается эта прямая? Здесь опираемся на правила обозначения отрезков или лучей. Если речь идет об обозначении биссектрисы угла треугольной фигуры, то обычно ее записывают как отрезок, концы которого являются вершиной и точкой пересечения с противоположной вершине стороной . Причем начало обозначения записывается именно из вершины.

Внимание! Сколько биссектрис имеет треугольник? Ответ очевиден: столько же, сколько вершин, – три.

Свойства

Кроме определения, в школьном учебнике можно найти не так уж много свойств данного геометрического понятия. Первое свойство биссектрисы треугольника, с которым знакомят школьников, – центр вписанной , а второе, напрямую связанное с ним, – пропорциональность отрезков. Суть заключается в следующем:

  1. Какая бы ни была делящая прямая, на ней расположены точки, которые находятся на одинаковом расстоянии от сторон , которые составляют пространство между лучами.
  2. Для того чтобы вписать в треугольную фигуру окружность, необходимо определить точку, в которой будут пересекаться эти отрезки. Это и есть центральная точка окружности.
  3. Части стороны треугольной геометрической фигуры, на которые разбивает ее делящая прямая, находятся в пропорциональной зависимости от образующих угол сторон .

Постараемся привести в систему остальные особенности и представить дополнительные факты, которые помогут глубже познать достоинства этого геометрического понятия.

Длина

Одним из видов задач, которые вызывают затруднение у школьников, является нахождение длины биссектрисы угла треугольника. Первый вариант, в котором находится ее длина, содержит такие данные:

  • величина пространства между лучами, из вершины которого выходит данный отрезок;
  • длины сторон, которые образуют этот угол.

Для решения поставленной задачи используется формула , смысл которой заключается в нахождении отношения увеличенного в 2 раза произведения значений сторон, составляющих угол, на косинус его половины к сумме сторон.

Рассмотрим на определенном примере. Допустим, дана фигура АВС, в которой отрезок проведен из угла А и пересекает сторону ВС в точке К. Значение А обозначим Y. Исходя из этого, АК = (2*АВ*АС*cos(Y/2))/(АВ+АС).

Второй вариант задачи, в котором определяется длина биссектрисы треугольника, содержит такие данные:

  • известны значения всех сторон фигуры.

При решении задачи такого типа первоначально определяем полупериметр . Для этого необходимо сложить значения всех сторон и разделить пополам: р=(АВ+ВС+АС)/2. Далее применяем вычислительную формулу, с помощью которой определялась длина данного отрезка в предыдущей задаче. Необходимо только внести некоторые изменения в суть формулы в соответствии с новыми параметрами. Итак, необходимо найти отношение увеличенного в два раза корня второй степени из произведения длин сторон, которые прилегают к вершине, на полупериметр и на разность полупериметра и длины противолежащей ему стороны к сумме сторон, составляющих угол. То есть АК=(2٦АВ*АС*р*(р-ВС))/(АВ+АС).

Внимание! Чтобы легче освоить материал, можно обратиться к имеющимся в Интернете шуточным сказкам, повествующим о «приключениях» этой прямой.

Сегодня будет очень лёгкий урок. Мы рассмотрим всего один объект — биссектрису угла — и докажем важнейшее её свойство, которое очень пригодится нам в будущем.

Только не надо расслабляться: иногда ученики, желающие получить высокий балл на том же ОГЭ или ЕГЭ, на первом занятии даже не могут точно сформулировать определение биссектрисы.

И вместо того, чтобы заниматься действительно интересными задачами, мы тратим время на такие простые вещи. Поэтому читайте, смотрите — и берите на вооружение.:)

Для начала немного странный вопрос: что такое угол? Правильно: угол — это просто два луча, выходящих из одной точки. Например:


Примеры углов: острый, тупой и прямой

Как видно из картинки, углы могут быть острыми, тупыми, прямыми — это сейчас неважно. Часто для удобства на каждом луче отмечают дополнительную точку и говорят, мол, перед нами угол $AOB$ (записывается как $\angle AOB$).

Капитан очевидность как бы намекает, что помимо лучей $OA$ и $OB$ из точки $O$ всегда можно провести ещё кучу лучей. Но среди них будет один особенный — его-то и называют биссектрисой.

Определение. Биссектриса угла — это луч, который выходит из вершины этого угла и делит угол пополам.

Для приведённых выше углов биссектрисы будут выглядеть так:


Примеры биссектрис для острого, тупого и прямого угла

Поскольку на реальных чертежах далеко не всегда очевидно, что некий луч (в нашем случае это луч $OM$) разбивает исходный угол на два равных, в геометрии принято помечать равные углы одинаковым количеством дуг (у нас на чертеже это 1 дуга для острого угла, две — для тупого, три — для прямого).

Хорошо, с определением разобрались. Теперь нужно понять, какие свойства есть у биссектрисы.

Основное свойство биссектрисы угла

На самом деле у биссектрисы куча свойств. И мы обязательно рассмотрим их в следующем уроке. Но есть одна фишка, которую нужно понять прямо сейчас:

Теорема. Биссектриса угла — это геометрическое место точек, равноудалённых от сторон данного угла.

В переводе с математического на русский это означает сразу два факта:

  1. Всякая точка, лежащая на биссектрисе некого угла, находится на одинаковом расстоянии от сторон этого угла.
  2. И наоборот: если точка лежит на одинаковом расстоянии от сторон данного угла, то она гарантированно лежит на биссектрисе этого угла.

Прежде чем доказывать эти утверждения, давайте уточним один момент: а что, собственно, называется расстоянием от точки до стороны угла? Здесь нам поможет старое-доброе определение расстояния от точки до прямой:

Определение. Расстояние от точки до прямой — это длина перпендикуляра, проведённого из данной точки к этой прямой.

Например, рассмотрим прямую $l$ и точку $A$, не лежащую на этой прямой. Проведём перпендикуляр $AH$, где $H\in l$. Тогда длина этого перпендикуляра и будет расстоянием от точки $A$ до прямой $l$.

Графическое представление расстояния от точки до прямой

Поскольку угол — это просто два луча, а каждый луч — это кусок прямой, легко определить расстояние от точки до сторон угла. Это просто два перпендикуляра:


Определяем расстояние от точки до сторон угла

Вот и всё! Теперь мы знаем, что такое расстояние и что такое биссектриса. Поэтому можно доказывать основное свойство.

Как и обещал, разобьём доказательство на две части:

1. Расстояния от точки на биссектрисе до сторон угла одинаковы

Рассмотрим произвольный угол с вершиной $O$ и биссектрисой $OM$:

Докажем, что эта самая точка $M$ находится на одинаковом расстоянии от сторон угла.

Доказательство. Проведём из точки $M$ перпендикуляры к сторонам угла. Назовём их $M{{H}_{1}}$ и $M{{H}_{2}}$:

Провели перпендикуляры к сторонам угла

Получили два прямоугольных треугольника: $\vartriangle OM{{H}_{1}}$ и $\vartriangle OM{{H}_{2}}$. У них общая гипотенуза $OM$ и равные углы:

  1. $\angle MO{{H}_{1}}=\angle MO{{H}_{2}}$ по условию (поскольку $OM$ — биссектриса);
  2. $\angle M{{H}_{1}}O=\angle M{{H}_{2}}O=90{}^\circ $ по построению;
  3. $\angle OM{{H}_{1}}=\angle OM{{H}_{2}}=90{}^\circ -\angle MO{{H}_{1}}$, поскольку сумма острых углов прямоугольного треугольника всегда равна 90 градусов.

Следовательно, треугольники равны по стороне и двум прилежащим углам (см. признаки равенства треугольников). Поэтому, в частности, $M{{H}_{2}}=M{{H}_{1}}$, т.е. расстояния от точки $O$ до сторон угла действительно равны. Что и требовалось доказать.:)

2. Если расстояния равны, то точка лежит на биссектрисе

Теперь обратная ситуация. Пусть дан угол $O$ и точка $M$, равноудалённая от сторон этого угла:

Докажем, что луч $OM$ — биссектриса, т.е. $\angle MO{{H}_{1}}=\angle MO{{H}_{2}}$.

Доказательство. Для начала проведём этот самый луч $OM$, иначе доказывать будет нечего:

Провели луч $OM$ внутри угла

Снова получили два прямоугольных треугольника: $\vartriangle OM{{H}_{1}}$ и $\vartriangle OM{{H}_{2}}$. Очевидно, что они равны, поскольку:

  1. Гипотенуза $OM$ — общая;
  2. Катеты $M{{H}_{1}}=M{{H}_{2}}$ по условию (ведь точка $M$ равноудалена от сторон угла);
  3. Оставшиеся катеты тоже равны, т.к. по теореме Пифагора $OH_{1}^{2}=OH_{2}^{2}=O{{M}^{2}}-MH_{1}^{2}$.

Следовательно, треугольники $\vartriangle OM{{H}_{1}}$ и $\vartriangle OM{{H}_{2}}$ по трём сторонам. В частности, равны их углы: $\angle MO{{H}_{1}}=\angle MO{{H}_{2}}$. А это как раз и означает, что $OM$ — биссектриса.

В заключение доказательства отметим красными дугами образовавшиеся равные углы:

Биссектриса разбила угол $\angle {{H}_{1}}O{{H}_{2}}$ на два равных

Как видите, ничего сложного. Мы доказали, что биссектриса угла — это геометрическое место точек, равноудалённых до сторон этого угла.:)

Теперь, когда мы более-менее определились с терминологией, пора переходить на новый уровень. В следующем уроке мы разберём более сложные свойства биссектрисы и научимся применять их для решения настоящих задач.

Что такое биссектриса угла треугольника? На этот вопрос у некоторых людей с языка срывается небезызвестная крыса, бегающая по углам и делящая угол пополам". Если ответ должен быть "с юмором", то, возможно, он правилен. Но с научной точки зрения ответ на этот вопрос должен был бы звучать примерно так: начинающийся в вершине угла и делящий последний на две равные части". В геометрии эта фигура также воспринимается как отрезок биссектрисы до ее пересечения с противолежащей сторонй треугольника. Это не является ошибочным мнением. А что еще известно о биссектрисе угла, кроме ее определения?

Как и у любого геометрического места точек, у нее имеются свои признаки. Первый из них - скорее, даже не признак, а теорема, которую можно кратко выразить так: "Если биссектрисой разделить противоположную ей сторону на две части, то их отношение будет соответствовать отношению сторон большого треугольника".

Второе свойство, которое она имеет: точка пересечения биссектрис все углов называется инцентром.

Третий признак: биссектрисы одного внутреннего и двух внешних углов треугольника пересекаются в центре одной из трёх в нее вписанных окружностей.

Четвертое свойство биссектрисы угла треугольника в том, что если каждый из них равен, то последний является равнобедренным.

Пятый признак тоже касается равнобедренного треугольника и является главным ориентиром по его распознаванию на чертеже по биссектрисам, а именно: в равнобедренном треугольнике она одновременно выполняет роль медианы и высоты.

Биссектриса угла может быть построена с помощью циркуля и линейки:

Шестое правило гласит, что невозможно построить треугольник с помощью последних только при имеющихся биссектрисах, как и невозможно построить таким способом удвоение куба, квадратуру круга и трисекцию угла. Собственно говоря, это и есть все свойства биссектрисы угла треугольника.

Если вы внимательно читали предыдущий абзац, то, возможно, вас заинтересовало одно словосочетание. "Что такое трисекция угла?" - наверняка спросите вы. Триссектриса немного схожа с биссектрисой, но если начертить последнюю, то угол поделится на две равные части, а при построении трисекции - на три. Естественно, что биссектриса угла запоминается легче, ведь трисекцию в школе не учат. Но для полноты картины расскажу и о ней.

Триссектрису, как я уже сказала, нельзя построить только циркулем и линейкой, но ее возможно создать с помощью правил Фудзиты и некоторых кривых: улитки Паскаля, квадратрисы, конхоиды Никомеда, конических сечений,

Задачи по трисекции угла достаточно просто решаются при помощи невсиса.

В геометрии существует теорема о триссектрисах угла. Называется она теоремой Морли (Морлея). Она утверждает, что точки пересечения находящихся посередине триссектрис каждого угла будут вершинами

Маленький черный треугольник внутри большого всегда будет равносторонним. Эта теорема была открыта британским ученым Фрэнком Морли в 1904 году.

Вот сколько всего можно узнать о разделении угла: триссектриса и биссектриса угла всегда требуют детальных объяснений. А ведь здесь было приведено множество еще не раскрытых мной определений: улитка Паскаля, конхоида Никомеда и т.д. Не сомневайтесь, о них можно написать еще больше.

Сорокина Вика

Приведено доказательства свойств биссектрисы треугольника и рассмотрено применение теориик решению задач

Скачать:

Предварительный просмотр:

Комитет по образованию администрации г. Саратова, Октябрьский район Муниципальное автономное образовательное учреждение Лицей №3 им. А. С. Пушкина.

Муниципальная научно-практическая

конференция

«Первые ступени»

Тема: Биссектриса и ее свойства.

Работу выполнила: ученица 8 г класса

Сорокина Виктория Научный руководитель: Учитель математики высшей категории Попова Нина Федоровна.

Саратов 2011 г

  1. Титульный лист…………………………………………………………...1
  2. Содержание ………………………………………………………………2
  3. Введение и цели………………………………………………………... ..3
  4. Рассмотрение свойств биссектрисы
  • Третье геометрическое место точек………………………………….3
  • Теорема 1……………………………………………………………....4
  • Теорема 2………………………………………………………………4
  • Основное свойство биссектрисы треугольника:
  1. Теорема 3……………………………………………………………...4
  2. Задача 1…………………………………………………………… ….7
  3. Задача 2……………………………………………………………….8
  4. Задача 3…………………………………………………………….....9
  5. Задача 4…………………………………………………………….9-10
  • Теорема 4…………………………………………………………10-11
  • Формулы нахождения биссектрисы:
  1. Теорема 5…………………………………………………………….11
  2. Теорема 6…………………………………………………………….11
  3. Теорема 7…………………………………………………………….12
  4. Задача 5…………………………………………………………...12-13
  • Теорема 8…………………………………………………………….13
  • Задача 6………………………………………………………...…….14
  • Задача 7……………………………………………………………14-15
  • Определение с помощью биссектрисы сторон света………………15
  1. Заключение и вывод……………………………………………………..15
  2. Список используемой литературы ……………………………………..16

Биссектриса

На уроке геометрии, изучая тему подобные треугольники, я встретилась с задачей на теорему об отношении биссектрисы к противолежащим сторонам. Казалось бы, что может быть интересного в теме биссектриса, однако эта тема меня заинтересовала, и мне захотелось изучить ее глубже. Ведь биссектриса очень богата своими удивительными свойствами, помогающими решать разные задачи.

При рассмотрении данной темы можно заметить,что в учебниках геометрии очень мало говорится о свойствах биссектрисы, а на экзаменах, зная их можно значительно проще и быстрее решать задачи. К тому же для сдачи ГИА и ЕГЭ современным ученикам нужно самим изучать дополнительные материалы к школьной программе. Именно поэтому я и решила подробнее изучить тему биссектриса.

Биссектриса (от лат. bi- «двойное», и sectio «разрезание») угла - луч с началом в вершине угла, делящий угол на две равные части. Биссектриса угла (вместе с её продолжением) есть геометрическое место точек равноудалённых от сторон угла (или их продолжений )

Третье геометрическое место точек

Фигура F является геометрическим местом точек (множеством точек), обладающих некоторым свойством А, если выполняются два условия:

  1. из того, что точка принадлежит фигуре F, следует, что она обладает свойством А;
  2. из того, что точка удовлетворяет свойству А, следует, что она принадлежит фигуре F.

Первое геометрическое место точек, рассматриваемое в геометрии - это окружность, т.е. геометрическое место точек, равноудаленных от одной фиксированной точки. Второе - серединный перпендикуляр отрезка, т.е. геометрическое место точек, равноудаленных от конца отрезка. И, наконец, третье - биссектриса - геометрическое место точек, равноудаленных от сторон угла

Теорема 1:

Точки биссектрисы одинаково удалены от стор он угла.

Доказательство:

Пусть Р - точка биссектрисы А. Опустим из точки Р перпендикуляры РВ и PC на стороны угла . Тогда ВАР = САР по гипотенузе и острому углу . Отсюда, РВ = PC

Теорема 2 :

Если точка Р одинаково удалена от сторон угла А, то она лежит на биссектрисе .

Доказательство: РВ = PC => ВАР = САP => BAP= CAP => АР – биссектриса.

К числу основных геометрических фактов следует отнести теорему о том, что биссектриса делит противолежащую сторону в отношении противолежащих сторон. Этот факт долго оставался в тени но повсеместно встречаются задачи, которые гораздо легче решать, если знать этот и другие факты о биссектрисе. Мне стало интересно, и я решила глубже исследовать это свойство биссектрисы.

Основное свойство биссектрисы угла треугольника

Теорема 3 . Биссектриса делит противолежащую сторону треугольника в отношении прилежащих сторон .

Доказательство 1:

Дано : AL - биссектриса треугольника ABC

Доказать:

Доказательство: Пусть F - точка пересечения прямой AL и прямой, проходящей через точку В параллельно стороне АС.

Тогда BFA = FАС = BAF. Следовательно, BAF равнобедренный и АВ = BF. Из подобия треугольников ALC и FLB имеем

соотношение

откуда

Доказательство 2

Пусть F- точка пересеченная прямой AL и прямой, проходящей через точку С параллельно основанию АВ. Тогда можно повторить рассуждения.

Доказательство 3

Пусть К и М - основания перпендикуляров, опущенных на прямую AL из точек В и С соответственно. Треугольники ABL и ACL подобны по двум углам. Поэтому
. А из подобия BKL и CML имеем

Отсюда

Доказательство 4

Применим метод площадей. Вычислим площади треугольников ABL и ACL двумя способами.

Отсюда .

Доказательство 5

Пусть α= ВАС,φ= BLA. По теореме синусов в треугольнике ABL

А в треугольнике ACL .

Так как ,

То, поделив обе части равенства на соответствующие части другого, получим .

Задача 1


Дано: В треугольнике ABC, ВК – биссектриса, ВС=2, КС=1,

Решение:

Задача 2

Дано:

Найдите биссектрисы острых углов прямоугольного треугольника с катетами 24 и 18

Решение:

Пусть катет AC = 18, катет BC = 24,

AM - биссектриса треугольника.

По теореме Пифагора находим,

что AB = 30.

Поскольку , то

Аналогично найдем вторую биссектрису.

Ответ:

Задача 3

В прямоугольном треугольнике ABC с прямым углом B биссектриса угла A пересекает сторону BC

В точке D . Известно, что BD = 4, DC = 6.

Найдите площадь треугольника ADC

Решение:

По свойству биссектрисы треугольника

Обозначим AB = 2 x , AC = 3 x . По теореме

Пифагора BC 2 + AB 2 = AC 2 , или 100 + 4 x 2 = 9 x 2

Отсюда находим, что x = Тогда AB = , S ABC=

Следовательно,

Задача 4

Дано:

В равнобедренном треугольнике ABC боковая сторона AB равна 10, основание AC равно 12.

Биссектрисы углов A и C пересекаются в точке D . Найдите BD .

Решение:

Поскольку биссектрисы треугольника пересекаются в

Одной точке, то BD - биссектриса B . Продолжим BD до пересечения с AC в точке M . Тогда M - середина AC , BM AC . Поэтому

Поскольку CD - биссектриса треугольника BMC , то

Следовательно,.

Ответ:

Теорема 4 . Три биссектрисы треугольника пересекаются в одной точке.

Действительно, рассмотрим сначала точку Р пересечения двух биссектрис, например АК 1 и ВК 2 . Эта точка одинаково удалена от сторон АВ и АС, так как она лежит на биссектрисе А, и одинаково удалена от сторон АВ и ВС, как принадлежащая биссектрисе В. Значит, она одинаково удалена от сторон АС и ВС и тем самым принадлежит третей биссектрисе СК 3 , то есть в точке Р пересекаются все три биссектрисы.


Формулы нахождения биссектрисы
Теорема5: (первая формула для биссектрисы ): Если в треугольнике ABC отрезок AL является биссектрисой A, то AL² = AB·AC - LB·LC.

Доказательство: Пусть M - точка пересечения прямой AL с окружностью, описанной около треугольника ABC (рис. 41). Угол BAM равен углу MAC по условию. Углы BMA и BCA равны как вписанные углы, опирающиеся на одну хорду. Значит, треугольники BAM и LAC подобны по двум углам. Следовательно, AL: AC = AB: AM. Значит, AL · AM = AB · AC AL · (AL + LM) = AB · AC AL² = AB · AC - AL · LM = AB · AC - BL · LC. Что и требовалось доказать.

Теорема6: . (вторая формула для биссектрисы): В треугольнике ABC со сторонами AB=a, AC=b и A, равным 2α и биссектрисой l, имеет место равенство:
l = (2ab / (a+b)) · cosα.

Доказательство : Пусть ABC - данный треугольник, AL - его биссектриса, a=AB, b=AC, l=AL. Тогда S ABC = S ALB + S ALC . Следовательно, ab sin2α = a l sinα + b l sinα 2ab sinα·cosα = (a + b)·l sinα l = 2·(ab / (a+b))· cosα. Теорема доказана.

Теорема 7: Если a,b – стороны треугольника,Ү- угол между ними, - биссектриса этого угла. Тогда .

Среди многочисленных предметов среднеобразовательной школы есть такой, как «геометрия». Традиционно считается, что родоначальниками этой систематической науки являются греки. На сегодняшний день греческую геометрию называют элементарной, так как именно она начала изучение простейших форм: плоскостей, прямых, и треугольников. На последних мы и остановим свое внимание, а точнее на биссектрисе этой фигуры. Для тех, кто уже подзабыл, биссектриса треугольника представляет собой отрезок биссектрисы одного из углов треугольника, который делит его пополам и соединяет вершину с точкой, размещенной на противолежащей стороне.

Биссектриса треугольника имеет ряд свойств, которые необходимо знать при решении тех или иных задач:

  • Биссектриса угла представляет собой геометрическое место точек, удаленных на равных расстояниях от прилегающих к углу сторон.
  • Биссектриса в треугольнике делит противоположную от угла сторону на отрезки, которые пропорциональны прилежащим сторонам. Например, дан треугольник MKB, где из угла K выходит биссектриса, соединяющая вершину этого угла с точкой A на противолежащей стороне MB. Проанализировав данное свойство и наш треугольник, имеем MA/AB=MK/KB.
  • Точка, в которой пересекаются биссектрисы всех трех углов треугольника, является центром окружности, которая вписана в этот же треугольник.
  • Основание биссектрис одного внешнего и двух внутренних углов находятся на одной прямой, при условии, что биссектриса внешнего угла не является параллельной противоположной стороне треугольника.
  • Если две биссектрисы одного то этот

Необходимо отметить, что если заданы три биссектрисы, то построение треугольника по ним, даже с помощью циркуля, невозможно.

Очень часто при решении задач биссектриса треугольника неизвестна, а необходимо определить ее длину. Для решения такой задачи необходимо знать угол, который делится биссектрисой пополам, и прилегающие к этому углу стороны. В этом случае искомая длина определяется как отношение удвоенного произведения прилегающих к углу сторон и косинуса угла деленного пополам к сумме прилегающих к углу сторон. Например, дан все тот же треугольник MKB. Биссектриса выходит из угла K и пересекает противоположную сторону МВ в точке А. Угол, из которого выходит биссектриса, обозначим y. Теперь запишем все то, что сказано словами в виде формулы: KA = (2*MK*KB*cos y/2) / (MK+KB).

Если величина угла, из которого выходит биссектриса треугольника, неизвестна, но известны все его стороны, то для вычисления длины биссектрисы мы воспользуемся дополнительной переменной, которую назовем полупериметр и обозначим буквой P: P=1/2*(MK+KB+MB). После этого внесем некоторые изменения в предыдущую формулу, по которой определялась длина биссектрисы, а именно, в числитель дроби ставим удвоенный из произведения длин сторон, прилегающих к углу, на полупериметр и частное, где из полупериметра вычитается длина третьей стороны. Знаменатель оставим без изменения. В виде формулы это будет выглядеть так: KA=2*√(MK*KB*P*(P-MB)) / (MK+KB).

Биссектриса равнобедренного треугольника вместе с общими свойствами имеет и несколько своих. Вспомним, что это за треугольник. У такого треугольника две стороны равны, и равны прилегающие к основанию углы. Отсюда следует, что биссектрисы, которые опускаются на боковые стороны равнобедренного треугольника, равны между собой. Кроме того, биссектриса, опущенная на основание, одновременно является и высотой, и медианой.