Свойствами что гарантирует целостность и. Понятие системы

В основе теории организаций лежит теория систем.

Система – это 1) целое, созданное из частей и элементов целенаправленной деятельности и обладающее новыми свойствами, отсутствующими у элементов и частей, его образующих; 2) объективная часть мироздания, включающая схожие и совместимые элементы, образующие особое целое, которое взаимодействует с внешней средой. Допустимы и многие другие определения. Общим в них является то, что система есть некоторое правильное сочетание наиболее важных, существенных свойств изучаемого объекта.

Признаками системы являются множество составляющих ее элементов, единство главной цели для всех элементов, наличие связей между ними, целостность и единство элементов, наличие структуры и иерархичности, относительная самостоятельность и наличие управления этими элементами. Термин «организация» в одном из своих лексических значений означает также «систему», но не любую систему, а в определенной мере упорядоченную, организованную.

Система может включать большой перечень элементов и ее целесообразно разделить на ряд подсистем.

Подсистема – набор элементов, представляющих автономную внутри системы область (экономическая, организационная, техническая подсистемы).

Большие системы (БС) – системы, представляемые совокупностью подсистем постоянно уменьшающегося уровня сложности вплоть до элементарных подсистем, выполняющих в рамках данной большой системы базовые элементарные функции.

Система обладает рядом свойств.

Свойства системы – это качества элементов, дающие возможность количественного описания системы, выражения ее в определенных величинах.

Базовые свойства систем сводятся к следующему:

  • – система стремится сохранить свою структуру (это свойство основано на объективном законе организации – законе самосохранения);
  • – система имеет потребность в управлении (существует набор потребностей человека, животного, общества, стада животных и большого социума);
  • – в системе формируется сложная зависимость от свойств входящих в нее элементов и подсистем (система может обладать свойствами, не присущими ее элементам, и может не иметь свойств своих элементов). Например, при коллективной работе у людей может возникнуть идея, которая бы не пришла в голову при индивидуальной работе; коллектив, созданный педагогом Макаренко из беспризорных детей, не воспринял воровства, матерщины, беспорядка, свойственных почти всем его членам.

Помимо перечисленных свойств большие системы обладают свойствами эмерджентности, синергичности и мультипликативности.

Свойство эмерджентности – это 1) одно из первично-фундаментальных свойств больших систем, означающее, что целевые функции отдельных подсистем, как правило, не совпадают с целевой функцией самой БС; 2) появление качественно новых свойств у организованной системы, отсутствующих у ее элементов и не характерных для них.

Свойство синергичности – одно из первично-фундаментальных свойств больших систем, означающее однонаправленность действий в системе, которое приводит к усилению (умножению) конечного результата.

Свойство мультипликативности – одно из первично-фундаментальных свойств больших систем, означающее, что эффекты, как положительные, так и отрицательные, в БС обладают свойством умножения.

Каждая система имеет входное воздействие, систему обработки, конечные результаты и обратную связь

Классификация систем может быть проведена по различным признакам, однако основной является группировка их в трех подсистемах: технической, биологической и социальной.

Техническая подсистема включает станки, оборудование, компьютеры и другие работоспособные изделия, имеющие инструкции для пользователя. Набор решений в технической системе ограничен и последствия решений обычно предопределены. Например, порядок включения и работы с компьютером, порядок управления автомобилем, методика расчета мачтовых опор для ЛЭП, решение задач по математике и др. Такие решения носят формализованный характер и выполняются в строго определенном порядке. Профессионализм специалиста, принимающего решения в технической системе, определяет качество принятого и выполненного решения. Например, хороший программист может эффективно использовать ресурсы компьютера и создавать качественный программный продукт, а неквалифицированный может испортить информационную и техническую базу компьютера.

Биологическая подсистема включает флору и фауну планеты, в том числе относительно замкнутые биологические подсистемы, например муравейник, человеческий организм и др. Эта подсистема обладает большим разнообразием функционирования, чем техническая. Набор решений в биологической системе также ограничен из-за медленного эволюционного развития животного и растительного мира. Тем не менее последствия решений в биологических подсистемах часто оказываются непредсказуемыми. Например, решения врача, связанные с методами и средствами лечения пациентов, решения агронома о применении тех или иных химикатов в качестве удобрений. Решения в таких подсистемах предполагают разработку нескольких альтернативных вариантов и выбор лучшего из них по каким-либо признакам. Профессионализм специалиста определяется его способностью находить лучшее из альтернативных решений, т.е. он должен правильно ответить на вопрос: что будет, если..?

Социальная (общественная) подсистема характеризуется наличием человека в совокупности взаимосвязанных элементов. В качестве характерных примеров социальных подсистем можно привести семью, производственный коллектив, неформальную организацию, водителя, управляющего автомобилем, и даже одного отдельного человека (самого по себе). Эти подсистемы существенно опережают биологические по разнообразию функционирования. Набор решений в социальной подсистеме характеризуется большим динамизмом, как в количестве, так и в средствах и методах реализации. Это объясняется высоким темпом изменения сознания человека, а также нюансов в его реакциях на одинаковые однотипные ситуации.

Перечисленные виды подсистем обладают различным уровнем неопределенности (непредсказуемости) в результатах реализации решений


Соотношение неопределенностей в деятельности различных подсистем

Не случайно в мировой практике легче получить статус профессионала в технической подсистеме, значительно труднее – в биологической и чрезвычайно трудно – в социальной!

Можно привести очень большой список выдающихся конструкторов, изобретателей, рабочих, физиков и других специалистов-техников; значительно меньше – выдающихся врачей, ветеринаров, биологов и т.д.; на пальцах можно перечислить выдающихся руководителей государств, организаций, глав семей и т.д.

Среди выдающихся личностей, работавших с технической подсистемой, достойное место занимают: И. Кеплер (1571–1630) – немецкий астроном; И. Ньютон (1643–1727) – английский математик, механик, астроном и физик; М.В. Ломоносов (1711–1765) – российский естествоиспытатель; П.С. Лаплас (1749–1827) – французский математик, астроном, физик; А. Эйнштейн (1879–1955) – физик-теоретик, один из основателей современной физики; С.П. Королев (1906/07–1966) – советский конструктор и др.

Среди выдающихся ученых, работавших с биологической подсистемой, можно назвать следующих: Гиппократ (ок. 460 – ок. 370 до н. э.) – древнегреческий врач, материалист; К. Линней (1707–1778) – шведский естествоиспытатель; Ч. Дарвин (1809–1882) – английский естествоиспытатель; В.И. Вернадский (1863–1945) – естествоиспытатель, гео- и биохимик и др.

Среди персоналий, работавших в социальной подсистеме, нет общепризнанных лидеров. Хотя по ряду признаков к ним относят российского императора Петра I, американского бизнесмена Г . Форда и других личностей.

Социальная система может включать биологическую и техническую подсистемы, а биологическая – техническую


Социальные, биологические и технические системы могут быть: искусственными и естественными, открытыми и закрытыми, полностью и частично предсказуемыми (детерминированные и стохастические), жесткими и мягкими. В дальнейшем классификация систем будет рассматриваться на примере социальных систем.

Искусственные системы создаются по желанию человека или какого-либо общества для реализации намеченных программ или целей. Например, семья, конструкторское бюро, студенческий профсоюз, предвыборное объединение.

Естественные системы создаются природой или обществом. Например, система мироздания, циклическая система землепользования, стратегия устойчивого развития мировой экономики.

Открытые системы характеризуются широким набором связей с внешней средой, сильной зависимостью от нее. Например, коммерческие фирмы, средства массовой информации, органы местной власти.

Закрытые системы характеризуются главным образом внутренними связями и создаются людьми или компаниями для удовлетворения потребностей и интересов преимущественно своего персонала, компании или учредителей. Например, профсоюзы, политические партии, масонские общества, семья на Востоке.

Детерминированные (предсказуемые) системы функционируют по заранее заданным правилам, с заранее определенным результатом. Например, обучение студентов в институте, производство типовой продукции.

Стохастические (вероятностные) системы характеризуются трудно предсказуемыми входными воздействиями внешней и (или) внутренней среды и выходными результатами. Например, исследовательские подразделения, предпринимательские компании, игра в русское лото.

Мягкие системы характеризуются высокой чувствительностью к внешним воздействиям, а вследствие этого – слабой устойчивостью. Например, система котировок ценных бумаг, новые организации, человек при отсутствии твердых жизненных целей.

Жесткие системы – это обычно авторитарные, основанные на высоком профессионализме небольшой группы руководителей организации. Такие системы обладают большой устойчивостью к внешним воздействиям, слабо реагируют на небольшие воздействия. Например, церковь, авторитарные государственные режимы.

Кроме того, системы могут быть простыми и сложными, активными и пассивными.

Каждая организация должна обладать всеми признаками системы. Выпадение хотя бы одного из них неизбежно приводит организацию к ликвидации. Таким образом, системный характер организации – это необходимое условие ее деятельности.


Система (греческое systema - целое, составленное из частей, соединения) – совокупность взаимодействия элементов, объединенных единством целей и образующих определенную целостность; это целенаправленное множество взаимосвязанных элементов любой природы; это объект, который определяется множествами элементов, преобразований, правил образования последовательностей элементов; это объект, состоящий из элементов, свойства которых не сводятся к свойству самого объекта.

Основные свойства систем : 1. Организованная сложность системы характеризуется наличием взаимосвязи между элементами (существует три типа связи: функционально-необходимые, избыточные (резервные), сингерические (дающие увеличение эффекта системы за счет взаимодействия элементов)). 2. Декомпоризуемость. 3. Целостность системы - принципиальная несводимость свойств системы к сумме свойств составляющих ее элементов, и, в то же время, зависимость свойств каждого элемента от его места и функций внутри системы. 4. Ограниченность системы. Ограниченность системы связана с внешней средой. В понятие внешняя среда включают все системы элементов любой природы, оказывающие влияние на систему или находящиеся под ее воздействием. Возникает задача локализации системы (определения ее границ и существенных связей). Выделяют открытые и замкнутые системы. Открытые системы имеют связи с внешней средой, закрытые не имеют. 5. Структурность системы. Структурность - группирование элементов внутри системы по определенному правилу или принципу в подсистемы. Структура системы – совокупность связей между элементами системы, отражающих их взаимодействие. Разделяют связи двух типов: горизон­тальные и вертикальные. Внешние связи, направленные внутрь системы называют входами, из системы во внешнюю среду - выходами. Внутренние связи - связи между подсистемами. 6. Функциональная направленность системы, функции системы можно представить в виде набора некоторых преобразований, которые делятся на две группы.

Виды систем: 1. Простая система – это система, которая состоит из небольшого числа элементов, не имеющая разветвленной структуры (нельзя выделить иерархические уровни). 2. Сложная система – это система с разветвленной структурой и значительным количеством взаимосвязанных и взаимодействующих элементов (подсистем). Под сложной динамической системой следует понимать развивающиеся во времени и в пространстве целостные объекты, состоящие из большого числа элементов и связей и обладающие свойствами, которые отсутствуют у элементов и связей, их образующих. Структура системы – совокупность внутренних, устойчивых связей между элементами системы, определяющих ее основные свойства. Системы бывают: социальные, биологические, механические, химические, экологические, простые, сложные, вероятностные, детерминированные, стохастические. 3. Централизованная система – система, в которой некоторый элемент (подсистема) играет доминирующую роль. 4. Децентрализованная система – система, в которой нет доминирующей подсистемы. 5. Организационная система – система, которая представляет собой набор людей или коллективов людей. 6. Открытые системы – такие, в которых внутренние процессы существенно зависят от условий среды и сами оказывают на ее элементы значительное влияние. 7. Замкнутые (закрытые) системы – такие, в которых внутренние процессы слабо связаны с внешней средой. Функционирование закрытых систем определяется внутренней информацией. 8. Детерминированные системы – системы, в которой связи между элементами и событиями носят однозначный, предопределенный характер. 9. Вероятностная (стохастическая) система – такая система, в которой связи между элементами и событиями носят неоднозначный характер. Связи между элементами носят вероятностный характер и существуют в виде вероятностных закономерностей. 10. Детерминированные системы являются частным случаем вероятностных (Рв=1). 11. Динамичная система – система, характер которой непрерывно меняется. При этом переход в новое состояние не может совершаться мгновенно, а требует некоторого времени.

Этапы построения систем: постановка цели, декомпозиция цели на подцели, определение функций, обеспечивающих достижение цели, синтез структуры, обеспечивающий выполнение функций. Цели возникают, когда существует так называемая проблемная ситуация (проблемная ситуация – это ситуация, которую нельзя разрешить имеющимися средствами). Цель – состояние, к которому направлена тенденция движения объекта. Среда – совокупность всех систем, кроме той, которая реализует заданную цель. Ни одна система не является абсолютно замкнутой. Взаимодействие системы со средой реализуется через внешние связи. Элемент системы – часть системы, имеющая определенное функциональное значение. Связи могут быть входными и выходными. Они подразделяются на: информационные, ресурсные (управляющие).

Структура системы : представляет собой устойчивую упорядоченность элементов системы и их связей в пространстве и во времени. Структура может быть материальной и формальной. Формальная структура – совокупность функциональных элементов и их отношений, необходимых и достаточных для достижения системой заданных целей. Материальная структура – реальное наполнение формальной структуры.Типы структур систем: последовательный или цепочечный; иерархический; циклически замкнутая (типа кольцо); структура типа «колесо»; «звезда»; структура типа «решетка».

Сложная система характеризуется : единой целью функционирования; иерархической системой управления; большим количеством связей внутри системы; комплексным составом системы; устойчивостью к воздействию внешних и внутренних воздействующих факторов; наличием элементов саморегуляции; наличием подсистем.

Свойства сложных систем : 1. Многоуровневость (часть системы сама является системой. Вся система, в свою очередь, является частью более крупной системы); 2. Наличие внешней среды (всякая система ведет себя в зависимости от того, в какой внешней среде она находится. Нельзя механически распространять выводы, полученные о системе в одних внешних условиях, на ту же систему, находящуюся в других внешних условиях); 3. Динамичность (в системах нет ничего неизменного. Все константы и статические состояния - это только абстракции, справедливые в ограниченных пределах); 4. У человека, длительное время работавшего с какой-либо сложной системой, может сложиться уверенность, что те или иные "очевидные" изменения, если их внести в систему, приведут к тем или иным "очевидным" улучшениям. Когда же изменения реализуются, система отвечает совсем не так, как предполагалось. Это случается при попытках реформы управления большим предприятием, при реформировании государства и т.д. Причиной подобных ошибок является недостаток информации о системе как результат неосознанного механистического подхода. Методологический вывод по таким ситуациям состоит в том, что сложные системы не меняются за один круг, нужно совершить много кругов, на каждом из которых в систему вносятся небольшие изменения, и выполняются исследования их результатов с обязательными попытками выявления и анализа новых типов связей, проявляющихся в системе; 5. Устойчивость и старение (устойчивость системы - это ее способность компенсировать внешние или внутренние воздействия, направленные на разрушение или быстрое изменение системы. Старение - это ухудшение эффективности и постепенное разрушение системы за длительный период времени. 6. Целостность (система имеет целостность, которая есть самостоятельная новая сущность. Эта сущность само организуется, влияет на части системы и на связи между ними, заменяет их для сохранения себя как целостности, ориентируется во внешней среде и т.д.); 7. Полиструктурность - это наличие у одной и той же системы большого количества структур. Рассматривая систему с разных точек зрения, мы будем выявлять в ней разные структуры. Полиструктурность систем можно рассматривать как их многоаспектность. Функциональный аспект отражает поведение системы и ее частей только с точки зрения того, что они делают, какую исполняют функцию. При этом не принимаются во внимание вопросы о том, как они это делают и что они из себя представляют физически. Важно только лишь, чтобы из функций отдельных частей складывалась функция системы в целом. Конструкторский аспект охватывает только вопросы физической компоновки системы. Здесь важна форма составных частей, их материал, их размещение и стыковка в пространстве, внешний вид системы. Технологический аспект отражает то, как исполняются функции частями системы.

Системы обладают рядом свойств, которые необходимо учитывать в процессе управления. Особенно их роль возрастает, когда рассматриваются организационные или социальные системы, то есть куда входит человек как наиболее сложный элемент системы.

Рассмотрим некоторые из этих свойств.

Целостность. Свойство целостности означает, что организационная система существует как образование, в котором каждый элемент выполняет определенные функции. Целостность конкретизируется и осуществляется через связи.

Обособленность – одно из свойств, которое характеризует относительную изолированность, автономность тех или иных организационных систем. Определяет границы изучения системы.

Адаптивность – свойство, означающее способность приспосабливаться к изменению внутренних и внешних условий таким образом, чтобы эффективность и стабильность (устойчивость) системы не ухудшались.

Синергетичность – свойство появления новых, дополнительных качеств и свойств в системе при возрастании упорядоченности (самоорганизации) между элементами системы (подсистемы). Синергия (синергетичность) – однонаправленность действий в системе, которая приводит к усилению (умножению) конечного результата. Состоит из двух слов: «син» – «объединяющий» и «эргос» – «усилие» (эргономика). Аналогично слову «синхронизация» – «син» (объединяющий) и «хронос» – время, – «объединяющий во времени».

Эмерджентность свойство, означающее, что целевые функции отдельных подсистем не совпадают с целевой функцией самой системы. Например, цель хозяина – прибыль, цель работника – зарплата.

Неаддитивность отношений. По определению, свойства системы не есть простая сумма свойств, входящих в нее элементов. Такие отношения в математике называют неаддитивными:

N > или N = + d n ,

где d n – величина, отражающая степень неаддитивности.

Физическая природа неаддитивности связана с декомпозицией организационной системы. При декомпозиции происходит неизбежный разрыв не только горизонтальных, но и перекрестных связей, характеризующих целостность системы.

Одним из свойств и важнейших характеристик системы является понятие «энтропии», представляющей собой количественную характеристику «беспорядка», «хаоса», «разложения» в системе.

Энтропия характеризует соотношение организованности и дезорганизованности в системе.

Если система развивается, прогрессирует – то энтропия уменьшается. Если в системе преобладают процесса разрушения, деструкции, неупрярядоченности, неопределенности – то энтропия увеличивается.


Одна из трактовок фразы: «Рука дающего – на оскудеет», как раз и предполагает формирование и проявление этих усилий вначале для создания чего-либо, а затем и дальнейшего восстановления и развития системы, используя ресурсы из внешней среды. В этом смысл развития.

Иначе – « …Там царь Кащей над златом чахнет…»

Учет особенностей этих свойств, применительно к социальным системам (аспекты: психологический, нравственный, ценностный) делает их определяющими в процессе управления в целом и при принятии управленческих решений, в частности.

ШП. Свойства организационных систем управления

Организационное управление обладает важнейшими свойствами, которые необходимо учитывать при выработке управленческих решений и организации управления.

К свойствам, влияющим на организацию управления, относят: целостность; обособленность; централизованность; адаптивность;совместимость;эмерджетность;синергетичность;неаддитивность отношений; обратная связь; неопределнность данных; многокритериальность; мультипликативность; стохастичность; порог сложности, редкая повторяемость проблемных ситуаций; фактор времени.

Раскроем сущность названных свойств.

· Целостность. Свойство целостности означает, что организационная система существует как образование, в котором каждый элемент выполняет определенные функции.

Целостность системы может быть определена как свойство, характеризующее устойчивость функционирования организационной системы при ее минимальной структурной сложности и минимально необходимых ресурсах.

Целостность означает отсутствие необходимости добавления или устранения ее отдельных структурных элементов для повышения устойчивости и эффективности функционирования.

Проблема состоит в том, что системы могут функционировать при существенном (и часто неоправданном) усложнении или упрощении управленческой структуры, однако она при этом теряет темп развития и устойчивость .

· Обособленность – одно из свойств, которое характеризует относительную изолированность, автономность тех или иных организационных систем. Это свойство проявляется при разделении полномочий, определении границ хозяйственной самостоятельности предприятий, регионов, отраслей.

· Централизованность сосредоточение управления в одном центре, в одних руках, в одном месте ; создание иерархической структуры управления, в которой преобладают вертикальные связи, при этом верхние уровни обладают определяющими полномочиями в принятии решений, а сами решения строго обязательны для нижних уровней. Сосредоточение чего-либо в одном месте, в одних руках, в одном центре; условие, при котором право принимать решения остается за высшими уровнями управления.

В организационных системах функции централизованных систем несет руководитель, лидер, менеджер; на фирме – администрация; в стране – государственный аппарат. Социально-экономические проблемы, требующие централизованных усилий: ценообразование, внешнеэкономическая деятельность, социальная защита, экологическая проблематика, образование, наука, пропорции отраслевого и регионального развития.

· Адаптивность – свойство, означающее способность приспосабливаться к изменению внутренних и внешних условий, таким образом, чтобы эффективность и стабильность (устойчивость) системы не ухудшалось. Адаптивность тесно связана со свойствами саморегулирования. В случае, когда организационная система хорошо структурирована, отлажена, обладает высоким уровнем организации и хорошим ресурсным обеспечением, имеет квалифицированные кадры, адаптивные свойства такой системы резко возрастают.

· Совместимость – означает, что все элементы системы должны обладать свойствами «сродства», взаимоприспособляемости, взаимоадаптивности.

Проблемы совместимости должны решаться в следующих направлениях:

Создание эффективных централизованных механизмов, преодолевающих силы отталкивания (которые возникают в организационных системах);

Поиск и формирование эффективных механизмов адаптации, позволяющих не только преодолевать силы отталкивания, но и превращать их в силы сближения, путем формирования новых элементов хозяйственного механизма в условиях его функционирования.

· Эмерджентность (непредсказуемое и не выводимое из наличного) свойство, означающее, что целевые функции отдельных подсистем, не совпадают с целевой функцией самой системы.

Так, например, целевая функция всего народного хозяйства, может на совпадать с целевой функцией отдельной отрасли; целевая функция отдельного работника, может не совпадать с интересами предприятия, государства и т.д. Использование свойств эмерждентности позволяет правильно относиться к противоречивости целевых функций участников производства в любой системе. Разрешение этих противоречий и образует сам процесс развития и является основным содержанием управления.

· Синергетичность – свойство появления новых, дополнительных качеств и свойств в системе при возрастании упорядоченности (самоорганизации) между элементами системы (подсистемы).

Синергия (синергетичность) - однонаправленность действий в системе, которая приводит к усилению (умножению) конечного результата.

Наука синергетика изучает связи между элементами подсистемы благодаря активному обмену потами энергии, вещества и информации в самом объекте и с окружающей средой. При согласованном поведении подсистем возрастает степень упорядоченности, самоогранизации больших систем.

В управлении организационной системой синергетичность означает сознательную однонаправленную деятельность всех членов коллектива как большой системы(цели и задачи отдельных служб не могут и не должны противоречить целям и задачам организационной системы).

Поиску источников и способов усиления положительной синергии и предотвращению отрицательной (негативной) синергии большинство зарубежных фирм уделяют значительное внимание, затрачивая на них 10-20% средств, идущих на организацию управления.

(прим.А.К. По другим источникам до 30%. Разделяют «Т»- функции» – 70% - собственно деятельность организации и «Ф»-функции» – 30%, затрачиваемые на организацию деятельности («Т»). Необходимо отметить, что снижение затрат на «Ф», ведет к снижению эффективность «Т». Найти оптимальное сочетание для каждой конкретной организации (системы управления: размеры, иерархия, вид производства, культура управления и т.д.)) – задача менеджера.)

Положительная синергия усиливается по мере роста организационной целостности больших систем, негативная синергия усиливается с дезорганизацией больших систем.

Наибольшее влияние на развитие положительной синергии в социально-экономических системах оказывают (5): высокий уровень общей и профессиональной культуры , хорошие знания психологии, этики, физиологии, высокий уровень морально-этических качеств всех членов организации и грамотное использование рычагов и стимулов управления.

При исследовании синергетичности многие вопросы пока остаются неясными. Так, добавление некоторых элементов в организационных системах, наряду с повышением роста эффективности систем, способно подчас резко понижать устойчивость ) большой системы, приводить к нестабильности и даже разрушению. По-видимому, в системах могут быть весьма полезны некоторые подсистемы – «антагонисты», которые хотя и несколько уменьшают эффект целевой функции большой системы, однако в значительно большей степени повышают ее устойчивость и способность темпов развития.

В социально-экономических системах это могут быть, например, органы правопорядка, здравоохранения, окружающей среды и другие.

«Новые системы плодят новые проблемы». Следствие: «Не следует без необходимости плодить новые системы».

«Система не может быть лучше, чем составляющие ее руководители» С.Янг.

«Система не может обучаться и адаптироваться, если этого не может ее руководство». Р.Акофф.

· Неаддитивность отношений. По определению, свойства системы не есть простая сумма свойств, входящих в нее элементов.

Такие отношений в математике называют неаддитивными.

N > E ni или N = E ni + dn

dn – величина, отражающая степень неаддитивности.

Другой механизм в этой системе - оценка фотографий. Он особенно важен для девушек. Они отбирают свои лучшие фотографии, критически их отсеивают и постоянно обновляют. Почему? Потому что им ставят оценки - совершенно незнакомые люди.

Многие полагают, что для них неважно мнение других людей, и тем более незнакомых. На самом деле это самообман. Человек - социальное существо, и для него всегда важно мнение любых других людей:

Одноклассница выкладывает фотографии на сайт, потому что одноклассники на пятой воде ставят ей оценки

Итак, на «Одноклассниках» одновременно работают три разных формулы, дополняющие друг друга. Формула ностальгии - для первоначального интереса и привлечения аудитории. Оценки фотографий - для самоутверждения женской половины. Мужской интерес - для оценок фотографий женской половины.

Главная формула Ютуба - досуг. Но на входе его воронки работает подсистема вирусного распространения видеороликов:

Пользователи делятся видеороликами с друзьями, потому что хвастаются удачной добычей

А на выходе - подсистема удержания внимания - рекомендации:

Внимание пользователя притягивается к рекомендованным видеороликам,
поэтому он остаётся посмотреть ещё и ещё

На страницах фильмов и концертов сайта « Яндекс-афиша » была зелёная кнопка «Присоединиться»:


Когда пользователи на неё нажимали, число рядом с ней увеличивалось и показывало, сколько людей хотят посмотреть этот фильм или концерт. Полезное действие в том, чтобы Яндекс мог узнать, насколько популярно то или иное событие.

В чём проблема? На эту красивую блестящую кнопочку нажимало очень мало людей. Когда она только появилась, это число на самых популярных хитах измерялось единицами: два, три, десять человек. «Фильм „Годзилла“ - идут три человека». Потом картина несколько улучшилась. Но стоит иметь в виду, что показано количество всех людей, которые собирались на этот фильм во всех кинотеатрах в течение всего времени, что фильм в прокате. Для Москвы это ничтожное число.

Кнопке недостаточно красивого карамельного вида, чтобы на неё нажимали. Должна появиться сила, которая будет заставлять людей на неё нажимать.

Другой пример - сайт «Ласт.фм». На этом музыкальном сервисе тусуются любители музыки. На этом сайте есть страница концерта, в данном случае - Мэрилина Мэнсона 13 ноября 2009 года в Москве в клубе Б-2:


На странице тоже есть блок, в котором написано, что на концерт идут 208 человек. Это число сопоставимо с числом, что мы видели на Яндексе, но это концерт, который идёт один раз в конкретном месте. Значит, система работает гораздо более эффективно.

Секрет в том, что у каждого пользователя Ласт.фм на сайте есть профиль:


Мы видим страничку пользователя, на которой отображается список концертов, на которые он ходил. Люди общаются на сайте, и этот профиль является для них неким мерилом их статуса. Можно козырнуть в споре: «Я был на тридцати концертах, что вы мне лапшу на уши вешаете». Страсть к собирательству и тщеславие заставляют людей культивировать свой профиль.

Таким образом, две разные подсистемы - страницы концерта и профиля пользователя связаны в надсистеме. Авторы сайта организовали «сквозной проход тщеславия».

    В сфере услуг

    «Представьте, что вы работаете менеджером по продажам. Клиент звонит вам (потому что знает вас), чтобы рассказать о неприятной ошибке на вашем сайте. Естественно, вы перенаправляете проблему в отдел ИТ . Но как вы узнаете, решена ли проблема? Позаботился ли айтишник о клиенте? Вы узнаете, переспросив. Клиенты хотят, чтобы вы, их изначальный союзник, следили за решением таких вопросов, а не „ кто-то там из ИТ “, даже если вы по определению знаете, что айтишники лучше справятся».

    Леонардо Ингильери, Мика Соломон. Исключителный сервис, исключительная прибыль . 2010

Интернет-магазин «Амазон» одним из первых решил продавать огромное количество товаров через интернет. Если у вас пятьдесят тысяч товаров, нужно понять, как дать человеку к ним доступ.

    Вместо того, чтобы вываливать на пользователей тяжеловесное меню с классификатором товаров, «Амазон» построил сайт вокруг рекомендаций. Идея в том, чтобы на первый план вышел товар, который, вероятно, более интересен клиенту. (Тяжеловесное меню тоже имеется, но оно вываливается лишь при наведении мыши).

    Идеальное решение должно залезть в мозг к человеку. Как же это сделать? «Амазон» нашёл гениальное решение - использовать самого человека.

    Когда пользователь приходит в первый раз, он видит главную страницу и самые популярные товары. Если он заинтересовался продуктом на витрине, попадает на подробную страницу товара.

    Ему тут же предлагают похожие товары. Раз ему интересна эта книга, значит, будут интересны и другие, близкие по каким-то параметрам - например, по статистике покупок других пользователей.

    Переход на страницу товара тут же записывается. «Амазон» ещё не знает, как этого человека зовут и какая у него электронная почта, но на него уже есть досье. Всё что он делает, клики, история запросов и дальнейшие покупки запоминаются в базу данных. С помощью технологии «куки» в браузер кладётся числовой идентификатор, по которому человек, пользующийся конкретным компьютером, связывается со своим досье.

    Благодаря тому, что «Амазон» накапливает информацию о реальных действиях и интересах человека, рекомендации становятся всё более и более точными.

В «Амазоне» организован сквозной проход энергии и информации - пользователь елозит мышкой, греет стол, кликает по сайту, сам генерирует информацию о собственной истории посещений, запросов и покупок, и в итоге сам направляет на себя нужные товары.

В компаниях Элона Маска источником энергии выступает солнце, и полученная энергия буквально сквозь них проходит. Энергетическая сеть Соларсити питается от солнечного света. Компания разрабатывает, устанавливает и даёт в лизинг домашние и коммерческие системы преобразования солнечной энергии и накопления электроэнергии, то есть поставляет электроэнергию в частные дома и на станции бесплатной зарядки автомобилей другой его компании - Тесла.

Интерфейс - зло

С точки зрения теории систем любой интерфейс - узкое место с низким КПД , в котором теряется энергия, скорость, пропускная способность, время, аудитория и деньги. Самый неэффективный вид интерфейса - пользовательский. В отличие от аппаратных и программных, пользовательский интерфейс открывает безграничный простор для человеческих решений и ошибок.

Другой пример - обязательная регистрация в интернет-магазине. Покупатель вынужден придумать логин и пароль, а потом подтвердить почтовый адрес, как бы оправдываясь перед системой. Эти бессмысленные для пользователя действия оттягивают момент покупки, отсеивая неопытных покупателей и уменьшая оборот магазина.

Работоспособный магазин продаёт товар без искусственных преград:


Регистрация объединена с покупкой, как бы замаскирована там.

После регистрации в Апсторе все приложения покупаются в один-два клика:


Вся информация о пользователе и его банковской карточке хранится в системе, поэтому ему не нужно лезть за кошельком. Деньги списываются автоматически:


На первый взгляд кажется, что это невозможно - продать что-то человеку без его желания. Но мобильные операторы не дают в руки абонентов кнопку «купить СМС » или «купить минуты разговора». Если абонент не принимает всякий раз решение о покупке, ему проще тратить деньги с собственного счёта. Покупка есть, интерфейса нет.

Единственная задача подсистемы интерфейса - обеспечить проход информации между другими подсистемами. Идеально, если информация пройдёт напрямую.

Запуск и развитие

В бюро работают над продуктами итерационно по принципу «ФФФ» . Аббревиатура ФФФ означает fix time, fix budget, flex scope. Мы работаем с фиксированными сроками и бюджетом, а функциональность оставляем гибкой.

Если приближается дедлайн, приходится отказываться от отдельных функций или даже целых подсистем. Особенно важны эти решения при первом запуске продукта. Критический контур определяет, от каких функций можно временно отказаться, а без каких продукт не заработает вовсе.

Но продукт необязательно запускать целиком. Представление о критическом контуре помогает спланировать постепенный запуск автономных подсистем, входящих в критический контур будущего продукта.

    В авиации

    Пионер авиации Отто Лилиенталь продвигал концепцию «подпрыгнуть прежде, чем полететь», которая заключалась в том, что изобретатели должны начать с планеров и суметь их поднять в воздух, вместо того, чтобы просто разрабатывать машину с двигателем на бумаге и надеяться, что она будет работать.

Это дизайн более высокого уровня - система проектируется не на одном «чертеже», а на многоэкранной схеме - во времени. Каждый «экран» представляет собой работоспособное состояние системы на выбранном этапе развития.

Ниже представлена упрощённая многоэкранная схема развития экосистемы Эпла в течение последних пятнадцати лет. Для упрощения картины я исключил планшеты, часы и будущие телевизоры - логика их появления и взаимодействия с другими подсистемами мало чем отличается от генеральной линии.

Лекция 2: Системные свойства. Классификация систем

Свойства систем.

Итак, состоянием системы называется совокупность существенных свойств, которыми система обладает в каждый момент времени.

Под свойством понимают сторону объекта, обуславливающую его отличие от других объектов или сходство с ними и проявляющуюся при взаимодействии с другими объектами.

Характеристика — то, что отражает некоторое свойство системы.

Какие свойства систем известны.

Из определения «системы» следует, что главным свойством системы является целостность, единство, достигаемое посредством определенных взаимосвязей и взаимодействий элементов системы и проявляющиеся в возникновении новых свойств, которыми элементы системы не обладают. Это свойство эмерджентности (от анг. emerge — возникать, появляться).

  1. Эмерджентность — степень несводимости свойств системы к свойствам элементов, из которых она состоит.
  2. Эмерджентность — свойство систем, обусловливающее появление новых свойств и качеств, не присущих элементам, входящих в состав системы.

Эмерджентность — принцип противоположный редукционизму, который утверждает, что целое можно изучать, расчленив его на части и затем, определяя их свойства, определить свойства целого.

Свойству эмерджентности близко свойство целостности системы. Однако их нельзя отождествлять.

Целостность системы означает, что каждый элемент системы вносит вклад в реализацию целевой функции системы.

Целостность и эмерджентность — интегративные свойства системы.

Наличие интегративных свойств является одной из важнейших черт системы. Целостность проявляется в том, что система обладает собственной закономерностью функциональности, собственной целью.

Организованность — сложное свойство систем, заключающиеся в наличие структуры и функционирования (поведения). Непременной принадлежностью систем является их компоненты, именно те структурные образования, из которых состоит целое и без чего оно не возможно.

Функциональность — это проявление определенных свойств (функций) при взаимодействии с внешней средой. Здесь же определяется цель (назначение системы) как желаемый конечный результат.

Структурность — это упорядоченность системы, определенный набор и расположение элементов со связями между ними. Между функцией и структурой системы существует взаимосвязь, как между философскими категориями содержанием и формой. Изменение содержания (функций) влечет за собой изменение формы (структуры), но и наоборот.

Важным свойством системы является наличие поведения — действия, изменений, функционирования и т.д.

Считается, что это поведение системы связано со средой (окружающей), т.е. с другими системами с которыми она входит в контакт или вступает в определенные взаимоотношения.

Процесс целенаправленного изменения во времени состояния системы называется поведением . В отличие от управления, когда изменение состояния системы достигается за счет внешних воздействий, поведение реализуется исключительно самой системой, исходя из собственных целей.

Поведение каждой системы объясняется структурой систем низшего порядка, из которых состоит данная система, и наличием признаков равновесия (гомеостаза). В соответствии с признаком равновесия система имеет определенное состояние (состояния), которое являются для нее предпочтительным. Поэтому поведение систем описывается в терминах восстановления этих состояний, когда они нарушаются в результате изменения окружающей среды.

Еще одним свойством является свойство роста (развития). Развитие можно рассматривать как составляющую часть поведения (при этом важнейшим).

Одним из первичных, а, следовательно, основополагающих атрибутов системного подхода является недопустимость рассмотрения объекта вне его развития , под которым понимается необратимое, направленное, закономерное изменение материи и сознания. В результате возникает новое качество или состояние объекта. Отождествление (может быть и не совсем строгое) терминов «развитие» и «движение» позволяет выразиться в таком смысле, что вне развития немыслимо существование материи, в данном случае — системы. Наивно представлять себе развитие, происходящее стихийно. В неоглядном множестве процессов, кажущихся на первый взгляд чем-то вроде броуновского (случайного, хаотичного) движения, при пристальном внимании и изучении вначале как бы проявляются контуры тенденций, а затем и довольно устойчивые закономерности. Эти закономерности по природе своей действуют объективно, т.е. не зависят от того, желаем ли мы их проявления или нет. Незнание законов и закономерностей развития — это блуждание в потемках.

Кто не знает, в какую гавань он плывет, для того нет попутного ветра

Поведение системы определяется характером реакции на внешние воздействия.

Фундаментальным свойством систем является устойчивость , т.е. способность системы противостоять внешним возмущающим воздействиям. От нее зависит продолжительность жизни системы.

Простые системы имеют пассивные формы устойчивости: прочность, сбалансированность, регулируемость, гомеостаз. А для сложных определяющими являются активные формы: надежность, живучесть и адаптируемость.

Если перечисленные формы устойчивости простых систем (кроме прочности) касается их поведения, то определяющая форма устойчивости сложных систем носят в основном структурный характер.

Надежность — свойство сохранения структуры систем, несмотря на гибель отдельных ее элементов с помощью их замены или дублирования, а живучесть — как активное подавление вредных качеств. Таким образом, надежность является более пассивной формой, чем живучесть.

Адаптируемость — свойство изменять поведение или структуру с целью сохранения, улучшения или приобретение новых качеств в условиях изменения внешней среды. Обязательным условием возможности адаптации является наличие обратных связей.

Всякая реальная система существует в среде. Связь между ними бывает настолько тесной, что определять границу между ними становится сложно. Поэтому выделение системы из среды связано с той или иной степенью идеализации.

Можно выделить два аспекта взаимодействия:

  • во многих случаях принимает характер обмена между системой и средой (веществом, энергией, информацией);
  • среда обычно является источником неопределенности для систем.

Воздействие среды может быть пассивным либо активным (антогонистическим, целенаправленно противодействующее системе).

Поэтому в общем случае среду следует рассматривать не только безразличную, но и антогонистическую по отношению к исследуемой системе.

Рис. — Классификация систем

Основание (критерий) классификации Классы систем
По взаимодействию с внешней средой Открытые
Закрытые
Комбинированные
По структуре Простые
Сложные
Большие
По характеру функций Специализированные
Многофункциональные (универсальные)
По характеру развития Стабильные
Развивающиеся
По степени организованности Хорошо организованные
Плохо организованные (диффузные)
По сложности поведения Автоматические
Решающие
Самоорганизующиеся
Предвидящие
Превращающиеся
По характеру связи между элементами Детерминированные
Стохастические
По характеру структуры управления Централизованные
Децентрализованные
По назначению Производящие
Управляющие
Обслуживающие

Классификацией называется разбиение на классы по наиболее существенным признакам. Под классом понимается совокупность объектов, обладающие некоторыми признаками общности. Признак (или совокупность признаков) является основанием (критерием) классификации.

Система может быть охарактеризована одним или несколькими признаками и соответственно ей может быть найдено место в различных классификациях, каждая из которых может быть полезной при выборе методологии исследования. Обычно цель классификации ограничить выбор подходов к отображению систем, выработать язык описания, подходящий для соответствующего класса.

Реальные системы делятся на естественные (природные системы) и искусственные (антропогенные).

Естественные системы: системы неживой (физические, химические) и живой (биологические) природы.

Искусственные системы: создаются человечеством для своих нужд или образуются в результате целенаправленных усилий.

Искусственные делятся на технические (технико-экономические) и социальные (общественные).

Техническая система спроектирована и изготовлена человеком в определенных целях.

К социальным системам относятся различные системы человеческого общества.

Выделение систем, состоящих из одних только технических устройств почти всегда условно, поскольку они не способны вырабатывать свое состояние. Эти системы выступают как части более крупных, включающие людей — организационно-технических систем.

Организационная система, для эффективного функционирование которой существенным фактором является способ организации взаимодействия людей с технической подсистемой, называется человеко-машинной системой.

Примеры человеко-машинных систем: автомобиль — водитель; самолет — летчик; ЭВМ — пользователь и т.д.

Таким образом, под техническими системами понимают единую конструктивную совокупность взаимосвязанных и взаимодействующих объектов, предназначенная для целенаправленных действий с задачей достижения в процессе функционирования заданного результата.

Отличительными признаками технических систем по сравнению с произвольной совокупностью объектов или по сравнению с отдельными элементами является конструктивность (практическая осуществляемость отношений между элементами), ориентированность и взаимосвязанность составных элементов и целенаправленность.

Для того чтобы система была устойчивой к воздействию внешних влияний, она должна иметь устойчивую структуру. Выбор структуры практически определяет технический облик как всей системы, так ее подсистем, и элементов. Вопрос о целесообразности применения той или иной структуры должен решаться исходя из конкретного назначения системы. От структуры зависит также способность системы к перераспределению функций в случае полного или частичного отхода отдельных элементов, а, следовательно, надежность и живучесть системы при заданных характеристиках ее элементов.

Абстрактные системы являются результатом отражения действительности (реальных систем) в мозге человека.

Их настроение — необходимая ступень обеспечения эффективного взаимодействия человека с окружающим миром. Абстрактные (идеальные) системы объективны по источнику происхождения, поскольку их первоисточником является объективно существующая действительность.

Абстрактные системы разделяют на системы непосредственного отображения (отражающие определенные аспекты реальных систем) и системы генерализирующего (обобщающего) отображения. К первым относятся математические и эвристические модели, а ко вторым — концептуальные системы (теории методологического построения) и языки.

На основе понятия внешней среды системы разделяются на: открытые, закрытые (замкнутые, изолированные) и комбинированные. Деление систем на открытые и закрытые связано с их характерными признаками: возможность сохранения свойств при наличии внешних воздействий. Если система нечувствительна к внешним воздействиям ее можно считать закрытой. В противном случае — открытой.

Открытой называется система, которая взаимодействует с окружающей средой. Все реальные системы являются открытыми. Открытая система является частью более общей системы или нескольких систем. Если вычленить из этого образования собственно рассматриваемую систему, то оставшаяся часть — ее среда.

Открытая система связана со средой определенными коммуникациями, то есть сетью внешних связей системы. Выделение внешних связей и описание механизмов взаимодействия «система-среда» является центральной задачей теории открытых систем. Рассмотрение открытых систем позволяет расширить понятие структуры системы. Для открытых систем оно включает не только внутренние связи между элементами, но и внешние связи со средой. При описании структуры внешние коммуникационные каналы стараются разделить на входные (по которым среда воздействует на систему) и выходные (наоборот). Совокупность элементов этих каналов, принадлежащих собственной системе называются входными и выходными полюсами системы. У открытых систем, по крайней мере, один элемент имеет связь с внешней средой, по меньшей мере, один входной полюс и один выходной, которыми она связана с внешней средой.

Для каждой системы связи со всеми подчиненными ей подсистемами и между последним, являются внутренними, а все остальные — внешними. Связи между системами и внешней средой также, как и между элементами системы, носят, как правило, направленный характер.

Важно подчеркнуть, что в любой реальной системе в силу законов диалектики о всеобщей связи явлений число всех взаимосвязей огромно, так что учесть и исследования абсолютно все связи невозможно, поэтому их число искусственно ограничивают. Вместе с тем, учитывать все возможные связи нецелесообразно, так как среди них есть много несущественных, практически не влияющих на функционирование системы и количество полученных решений (с точки зрения решаемых задач). Если изменение характеристик связи, ее исключение (полный разрыв) приводят к значительному ухудшению работы системы, снижению эффективности, то такая связь — существенна. Одна из важнейших задач исследователя — выделить существенные для рассмотрения системы в условиях решаемой задачи связи и отделить их от несущественных. В связи с тем, что входные и выходные полюса системы не всегда удается четко выделить, приходится прибегать к определенной идеализации действий. Наибольшая идеализация имеет место при рассмотрении закрытой системы.

Закрытой называется система, которая не взаимодействует со средой или взаимодействует со средой строго определенным образом. В первом случае предполагается, что система не имеет входных полюсов, а во втором, что входные полюса есть, но воздействие среды носит неизменный характер и полностью (заранее) известно. Очевидно, что при последнем предположении указанные воздействия могут быть отнесены собственно к системе, и ее можно рассматривать, как закрытую. Для закрытой системы, любой ее элемент имеет связи только с элементами самой системы.

Разумеется, закрытые системы представляют собой некоторую абстракцию реальной ситуации, так как, строго говоря, изолированных систем не существует. Однако, очевидно, что упрощение описания системы, заключаются в отказе от внешних связей, может привести к полезным результатам, упростить исследование системы. Все реальные системы тесно или слабо связаны с внешней средой — открытые. Если временный разрыв или изменение характерных внешних связей не вызывает отклонения в функционировании системы сверх установленных заранее пределов, то система связана с внешней средой слабо. В противном случае — тесно.

Комбинированные системы содержат открытые и закрытые подсистемы. Наличие комбинированных систем свидетельствует о сложной комбинации открытой и закрытой подсистем.

В зависимости от структуры и пространственно-временных свойств системы делятся на простые, сложные и большие.

Простые — системы, не имеющие разветвленных структур, состоящие из небольшого количества взаимосвязей и небольшого количества элементов. Такие элементы служат для выполнения простейших функций, в них нельзя выделить иерархические уровни. Отличительной особенностью простых систем является детерминированность (четкая определенность) номенклатуры, числа элементов и связей как внутри системы, так и со средой.

Сложные — характеризуются большим числом элементов и внутренних связей, их неоднородностью и разнокачественностью, структурным разнообразием, выполняют сложную функцию или ряд функций. Компоненты сложных систем могут рассматриваться как подсистемы, каждая из которых может быть детализирована еще более простыми подсистемами и т.д. до тех пор, пока не будет получен элемент.

Определение N1: система называется сложной (с гносеологических позиций), если ее познание требует совместного привлечения многих моделей теорий, а в некоторых случаях многих научных дисциплин, а также учета неопределенности вероятностного и невероятностного характера. Наиболее характерным проявлением этого определения является многомодельность.

Модель — некоторая система, исследование которой служит средством для получения информации о другой системе. Это описание систем (математическое, вербальное и т.д.) отображающее определенную группу ее свойств.

Определение N2: систему называют сложной если в реальной действительности рельефно (существенно) проявляются признаки ее сложности. А именно:

  1. структурная сложность — определяется по числу элементов системы, числу и разнообразию типов связей между ними, количеству иерархических уровней и общему числу подсистем системы. Основными типами считаются следующие виды связей: структурные (в том числе, иерархические), функциональные, каузальные (причинно-следственные), информационные, пространственно-временные;
  2. сложность функционирования (поведения) — определяется характеристиками множества состояний, правилами перехода из состояния в состояние, воздействие системы на среду и среды на систему, степенью неопределенности перечисленных характеристик и правил;
  3. сложность выбора поведения — в многоальтернативных ситуациях, когда выбор поведения определяется целью системы, гибкостью реакций на заранее неизвестные воздействия среды;
  4. сложность развития — определяемая характеристиками эволюционных или скачкообразных процессов.

Естественно, что все признаки рассматриваются во взаимосвязи. Иерархическое построение — характерный признак сложных систем, при этом уровни иерархии могут быть как однородные, так и неоднородные. Для сложных систем присущи такие факторы, как невозможность предсказать их поведение, то есть слабо предсказуемость, их скрытность, разнообразные состояния.

Сложные системы можно подразделить на следующие факторные подсистемы:

  1. решающую, которая принимает глобальные решения во взаимодействии с внешней средой и распределяет локальные задания между всеми другим подсистемами;
  2. информационную, которая обеспечивает сбор, переработку и передачу информации, необходимой для принятия глобальных решений и выполнения локальны задач;
  3. управляющую для реализации глобальных решений;
  4. гомеостазную, поддерживающую динамическое равновесие внутри систем и регулирующую потоки энергии и вещества в подсистемах;
  5. адаптивную, накапливающую опыт в процессе обучения для улучшения структуры и функций системы.

Большой системой называют систему, ненаблюдаемую одновременно с позиции одного наблюдателя во времени или в пространстве, для которой существенен пространственный фактор, число подсистем которой очень велико, а состав разнороден.

Система может быть и большой и сложной. Сложные системы объединяет более обширную группу систем, то есть большие — подкласс сложных систем.

Основополагающими при анализе и синтезе больших и сложных систем являются процедуры декомпозиции и агрегирования.

Декомпозиция — разделение систем на части, с последующим самостоятельным рассмотрением отдельных частей.

Очевидно, что декомпозиция представляют собой понятие, связанное с моделью, так как сама система не может быть расчленена без нарушений свойств. На уровне моделирования, разрозненные связи заменятся соответственно эквивалентами, либо модели систем строится так, что разложение ее на отдельные части при этом оказывается естественным.

Применительно к большим и сложным системам декомпозиция является мощным инструментом исследования.

Агрегирование является понятием, противоположным декомпозиции. В процессе исследования возникает необходимость объединения элементов системы с целью рассмотреть ее с более общих позиций.

Декомпозиция и агрегирование представляют собой две противоположные стороны подхода к рассмотрению больших и сложных систем, применяемые в диалектическом единстве.

Системы, для которых состояние системы однозначно определяется начальными значениями и может быть предсказано для любого последующего момента времени, называются детерминированными.

Стохастические системы — системы, изменения в которых носят случайный характер. При случайных воздействиях данных о состоянии системы недостаточно для предсказания в последующий момент времени.

По степени организованности: хорошо организованные, плохо организованные (диффузные).

Представить анализируемый объект или процесс в виде хорошо организованной системы означает определить элементы системы, их взаимосвязь, правила объединения в более крупные компоненты. Проблемная ситуация может быть описана в виде математического выражения. Решение задачи при представлении ее в виде хорошо организованной системы осуществляется аналитическими методами формализованного представления системы.

Примеры хорошо организованных систем: солнечная система, описывающая наиболее существенные закономерности движения планет вокруг Солнца; отображение атома в виде планетарной системы, состоящей из ядра и электронов; описание работы сложного электронного устройства с помощью системы уравнений, учитывающей особенности условий его работы (наличие шумов, нестабильности источников питания и т. п.).

Описание объекта в виде хорошо организованной системы применяется в тех случаях, когда можно предложить детерминированное описание и экспериментально доказать правомерность его применения, адекватность модели реальному процессу. Попытки применить класс хорошо организованных систем для представления сложных многокомпонентных объектов или многокритериальных задач плохо удаются: они требуют недопустимо больших затрат времени, практически нереализуемы и неадекватны применяемым моделям.

Плохо организованные системы. При представлении объекта в виде плохо организованной или диффузной системы не ставится задача определить все учитываемые компоненты, их свойства и связи между ними и целями системы. Система характеризуется некоторым набором макропараметров и закономерностями, которые находятся на основе исследования не всего объекта или класса явлений, а на основе определенной с помощью некоторых правил выборки компонентов, характеризующих исследуемый объект или процесс. На основе такого выборочного исследования получают характеристики или закономерности (статистические, экономические) и распространяют их на всю систему в целом. При этом делаются соответствующие оговорки. Например, при получении статистических закономерностей их распространяют на поведение всей системы с некоторой доверительной вероятностью.

Подход к отображению объектов в виде диффузных систем широко применяется при: описании систем массового обслуживания, определении численности штатов на предприятиях и учреждениях, исследовании документальных потоков информации в системах управления и т. д.

С точки зрения характера функций различаются специальные, многофункциональные, и универсальные системы.

Для специальных систем характерна единственность назначения и узкая профессиональная специализация обслуживающего персонала (сравнительно несложная).

Многофункциональные системы позволяют реализовать на одной и той же структуре несколько функций. Пример: производственная система, обеспечивающая выпуск различной продукции в пределах определенной номенклатуры.

Для универсальных систем: реализуется множество действий на одной и той же структуре, однако состав функций по виду и количеству менее однороден (менее определен). Например, комбайн.

По характеру развития 2 класса систем: стабильные и развивающиеся.

У стабильной системы структура и функции практически не изменяются в течение всего периода ее существования и, как правило, качество функционирования стабильных систем по мере изнашивания их элементов только ухудшается. Восстановительные мероприятия обычно могут лишь снизить темп ухудшения.

Отличной особенностью развивающихся систем является то, что с течением времени их структура и функции приобретают существенные изменения. Функции системы более постоянны, хотя часто и они видоизменяются. Практически неизменными остается лишь их назначение. Развивающиеся системы имеют более высокую сложность.

В порядке усложнения поведения: автоматические, решающие, самоорганизующиеся, предвидящие, превращающиеся.

Автоматические: однозначно реагируют на ограниченный набор внешних воздействий, внутренняя их организация приспособлена к переходу в равновесное состояние при выводе из него (гомеостаз).

Решающие: имеют постоянные критерии различения их постоянной реакции на широкие классы внешних воздействий. Постоянство внутренней структуры поддерживается заменой вышедших из строя элементов.

Самоорганизующиеся: имеют гибкие критерии различения и гибкие реакции на внешние воздействия, приспосабливающиеся к различным типам воздействия. Устойчивость внутренней структуры высших форм таких систем обеспечивается постоянным самовоспроизводством.

Самоорганизующиеся системы обладают признаками диффузных систем: стохастичностью поведения, нестационарностью отдельных параметров и процессов. К этому добавляются такие признаки, как непредсказуемость поведения; способность адаптироваться к изменяющимся условиям среды, изменять структуру при взаимодействии системы со средой, сохраняя при этом свойства целостности; способность формировать возможные варианты поведения и выбирать из них наилучший и др. Иногда этот класс разбивают на подклассы, выделяя адаптивные или самоприспосабливающиеся системы, самовосстанавливающиеся, самовоспроизводящиеся и другие подклассы, соответствующие различным свойствам развивающихся систем.

Примеры: биологические организации, коллективное поведение людей, организация управления на уровне предприятия, отрасли, государства в целом, т.е. в тех системах, где обязательно имеется человеческий фактор.

Если устойчивость по своей сложности начинает превосходить сложные воздействия внешнего мира — это предвидящие системы: она может предвидеть дальнейший ход взаимодействия.

Превращающиеся — это воображаемые сложные системы на высшем уровне сложности, не связанные постоянством существующих носителей. Они могут менять вещественные носители, сохраняя свою индивидуальность. Науке примеры таких систем пока не известны.

Систему можно разделить на виды по признакам структуры их построения и значимости той роли, которую играют в них отдельные составные части в сравнение с ролями других частей.

В некоторых системах одной из частей может принадлежать доминирующая роль (ее значимость >> (символ отношения «значительного превосходства») значимость других частей). Такой компонент — будет выступать как центральный, определяющий функционирование всей системы. Такие системы называют централизованными.

В других системах все составляющие их компоненты примерно одинаково значимы. Структурно они расположены не вокруг некоторого централизованного компонента, а взаимосвязаны последовательно или параллельно и имеют примерно одинаковые значения для функционирования системы. Это децентрализованные системы.

Системы можно классифицировать по назначению. Среди технических и организационных систем выделяют: производящие, управляющие, обслуживающие.

В производящих системах реализуются процессы получения некоторых продуктов или услуг. Они в свою очередь делятся на вещественно-энергетические, в которых осуществляется преобразование природной среды или сырья в конечный продукт вещественной или энергетической природы, либо транспортирование такого рода продуктов; и информационные — для сбора, передачи и преобразования информации и предоставление информационных услуг.

Назначение управляющих систем — организация и управление вещественно-энергетическими и информационными процессами.

Обслуживающие системы занимаются поддержкой заданных пределов работоспособности производящих и управляющих систем.