Лінійні рівняння та системи двох лінійних рівнянь. Рішення системи способом додавання

Дотримання Вашої конфіденційності є важливим для нас. З цієї причини ми розробили Політику конфіденційності, яка описує, як ми використовуємо та зберігаємо Вашу інформацію. Будь ласка, ознайомтеся з нашими правилами дотримання конфіденційності та повідомте нам, якщо у вас виникнуть будь-які питання.

Збір та використання персональної інформації

Під персональної інформацією розуміються дані, які можна використовувати для ідентифікації певного особи чи зв'язку з ним.

Від вас може бути запрошено надання вашої персональної інформації у будь-який момент, коли ви зв'язуєтесь з нами.

Нижче наведено приклади типів персональної інформації, яку ми можемо збирати, і як ми можемо використовувати таку інформацію.

Яку персональну інформацію ми збираємо:

  • Коли ви залишаєте заявку на сайті, ми можемо збирати різноманітну інформацію, включаючи ваше ім'я, номер телефону, адресу електронної поштиі т.д.

Як ми використовуємо вашу персональну інформацію:

  • Збирається нами персональна інформаціядозволяє нам зв'язуватися з вами та повідомляти про унікальних пропозиціях, акціях та інших заходах та найближчих подіях.
  • Час від часу ми можемо використовувати вашу персональну інформацію для надсилання важливих повідомлень та повідомлень.
  • Ми також можемо використовувати персональну інформацію для внутрішніх цілей, таких як проведення аудиту, аналізу даних та різних дослідженьз метою покращення послуг наданих нами та надання Вам рекомендацій щодо наших послуг.
  • Якщо ви берете участь у розіграші призів, конкурсі або подібному стимулювальному заході, ми можемо використовувати інформацію, що надається, для управління такими програмами.

Розкриття інформації третім особам

Ми не розкриваємо отриману від Вас інформацію третім особам.

Винятки:

  • Якщо необхідно - відповідно до закону, судовим порядком, в судовому розгляді, та/або на підставі публічних запитів або запитів від державних органівна території РФ – розкрити вашу персональну інформацію. Ми також можемо розкривати інформацію про вас, якщо ми визначимо, що таке розкриття необхідно чи доречно з метою безпеки, підтримання правопорядку, або інших суспільно важливих випадків.
  • У разі реорганізації, злиття або продажу ми можемо передати персональну інформацію, що збирається нами, відповідній третій особі – правонаступнику.

Захист персональної інформації

Ми вживаємо запобіжних заходів - включаючи адміністративні, технічні та фізичні - для захисту вашої персональної інформації від втрати, крадіжки та недобросовісного використання, а також від несанкціонованого доступу, розкриття, зміни та знищення.

Дотримання вашої конфіденційності на рівні компанії

Для того, щоб переконатися, що ваша персональна інформація знаходиться в безпеці, ми доводимо норми дотримання конфіденційності та безпеки до наших співробітників і суворо стежимо за дотриманням заходів дотримання конфіденційності.

Ми вже знайомі з поняттям лінійне рівняння із двома невідомими. Рівняння можуть в одному завданні бути присутніми як поодинці, так і по кілька рівнянь відразу. У таких випадках рівняння об'єднують у систему рівнянь.

Що таке системам лінійних рівнянь

Система рівнянь- це два або кілька рівнянь, для яких необхідно знайти всі спільні рішення. Зазвичай для запису системи рівнянь їх записують у стовпчик і малюють одну загальну фігурну дужку. Запис системи лінійних рівняньпредставлена ​​нижче.

(4x + 3y = 6
(2x + y = 4

Цей запис означає, що задана система з двох рівнянь, з двома змінними. Якби в системі було три рівняння, то йшлося б про систему із трьох рівнянь. І так для будь-якої кількості рівнянь.

Якщо системі всі присутні рівняння лінійні, то кажуть, що задана система лінійних рівнянь. У прикладі вище представлена ​​система з двох лінійних рівнянь. Як зазначалося вище, система може мати спільні рішення. Про термін «загальне рішення» ми поговоримо нижче.

Що рішення?

Рішенням системи двох рівнянь із двома невідомими називають пару чисел (x,y) таку, що якщо підставити ці числа до рівняння системи, то кожне із рівнянь системи звертається до правильна рівність.

Наприклад, ми маємо систему з двох лінійних рівнянь. Рішенням першого рівняння будуть усі пари чисел, які задовольняють цього рівняння.

Для другого рівняння рішенням будуть кілька чисел, які задовольняють цьому рівнянню. Якщо існує така пара чисел, яка задовольняє як першому, так і другому рівнянню, то ця пара чисел буде рішенням системи двох лінійних рівнянь з двома невідомими.

Графічне рішення

Графічно рішенням лінійного рівняння є всі точки деякої прямої на площині.

Для системи лінійних рівнянь матимемо кілька прямих (за кількістю рівнянь). А рішенням системи рівнянь буде точка, в якій перетинаються ВСІ прямі. Якщо такої точки немає, система не матиме рішень. Точка, в якій перетинаються всі прямі, належить кожній із цих прямих, тому рішення називають загальним.

До речі, побудова графіків рівнянь системи та віднайдення їх загальної точки, це один із способів розв'язання системи рівнянь. Цей спосібназивається графічним.

Інші способи вирішення лінійних рівнянь

Існують і інші способи розв'язання систем лінійних рівнянь із двома змінними. Основні способи розв'язання систем лінійних рівнянь із двома невідомими.

Системи рівнянь отримали широке застосування в економічній галузі при математичне моделювання різних процесів. Наприклад, під час вирішення завдань управління та планування виробництва, логістичних маршрутів (транспортне завдання) чи розміщення устаткування.

Системи рівняння використовуються у галузі математики, а й фізики, хімії та біології, під час вирішення завдань з знаходження чисельності популяції.

Системою лінійних рівнянь називають два і більше рівняння з кількома змінними, котрим необхідно знайти загальне рішення. Таку послідовність чисел, коли всі рівняння стануть вірними рівностями чи довести, що послідовності немає.

Лінійне рівняння

Рівняння виду ax+by=c називають лінійними. Позначення x, y – це невідомі, значення яких треба знайти, b, a – коефіцієнти при змінних, c – вільний член рівняння.
Рішення рівняння шляхом побудови його графіка матиме вигляд прямої, всі точки якої є рішенням багаточлена.

Види систем лінійних рівнянь

Найбільш простими вважаються приклади систем лінійних рівнянь із двома змінними X та Y.

F1(x, y) = 0 і F2(x, y) = 0, де F1,2 – функції, а (x, y) – змінні функцій.

Розв'язати систему рівнянь - це означає знайти такі значення (x, y), при яких система перетворюється на правильну рівність або встановити, що відповідних значень x та y не існує.

Пара значень (x, y), записана як координат точки, називається рішенням системи лінійних рівнянь.

Якщо системи мають одне загальне рішення чи рішення немає їх називають рівносильними.

Однорідними системами лінійних рівнянь є системи права частина яких дорівнює нулю. Якщо права після знака " рівність " частина має значення чи виражена функцією, така система неоднорідна.

Кількість змінних може бути набагато більше двох, тоді слід говорити про приклад системи лінійних рівнянь із трьома змінними або більше.

Зіткнувшись із системами школярі припускають, що кількість рівнянь обов'язково має збігатися з кількістю невідомих, але це не так. Кількість рівнянь у системі залежить від змінних, їх може бути скільки завгодно багато.

Прості та складні методи вирішення систем рівнянь

Не існує спільного аналітичного способувирішення подібних систем, всі методи засновані на чисельних рішеннях. У шкільному курсіматематики докладно описані такі методи як перестановка, алгебраїчне додавання, підстановка, а також графічний і матричний спосібрішення методом Гауса.

Основне завдання під час навчання способам рішення - це навчити правильно аналізувати систему та знаходити оптимальний алгоритм рішення кожному за прикладу. Головне не визубрити систему правил та дій для кожного способу, а зрозуміти принципи застосування того чи іншого методу

Розв'язання прикладів систем лінійних рівнянь 7 класу програми загальноосвітньої школиДосить просте і пояснено дуже докладно. У будь-якому підручнику математики цьому розділу приділяється достатньо уваги. Рішення прикладів систем лінійних рівнянь методом Гаусса і Крамера докладніше вивчають перших курсах вищих навчальних закладів.

Рішення систем методом підстановки

Дії методу підстановки спрямовані вираз значення однієї змінної через другу. Вираз підставляється в рівняння, що залишилося, потім його приводять до вигляду з однією змінною. Дія повторюється в залежності від кількості невідомих у системі

Наведемо рішення прикладу системи лінійних рівнянь 7 класу методом підстановки:

Як видно з прикладу, змінна x була виражена через F(X) = 7 + Y. Отриманий вираз, підставлений у 2-е рівняння системи на місце X, допоміг отримати одну змінну Y у 2-му рівнянні. Рішення даного прикладуне викликає труднощів і дозволяє набути значення Y. Останній крок це перевірка отриманих значень.

Вирішити приклад системи лінійних рівнянь підстановкою не завжди можливо. Рівняння можуть бути складними і вираз змінної через другу невідому виявиться надто громіздким для подальших обчислень. Коли невідомих у системі більше трьох рішень підстановкою також недоцільно.

Розв'язання прикладу системи лінійних неоднорідних рівнянь:

Рішення за допомогою алгебраїчного додавання

При пошуку рішенні систем методом додавання виробляють почленное додавання і множення рівнянь на різні числа. Кінцевою метою математичних дійє рівняння з однією змінною.

Для застосування даного методунеобхідна практика та спостережливість. Вирішити систему лінійних рівнянь шляхом додавання при кількості змінних 3 і більше складно. Алгебраїчне додавання зручно застосовувати коли в рівняннях присутні дроби та десяткові числа.

Алгоритм дій рішення:

  1. Помножити обидві частини рівняння деяке число. В результаті арифметичної діїодин із коефіцієнтів при змінній повинен стати рівним 1.
  2. Почленно скласти отриманий вираз і знайти один із невідомих.
  3. Підставити отримане значення у 2-е рівняння системи для пошуку змінної, що залишилася.

Спосіб вирішення запровадженням нової змінної

Нову змінну можна вводити, якщо в системі потрібно знайти рішення не більше ніж для двох рівнянь, кількість невідомих теж має бути не більшою за два.

Спосіб використовується, щоб спростити одне із рівнянь, введенням нової змінної. Нове рівняння вирішується щодо введеної невідомої, а отримане значення використовується визначення початкової змінної.

З прикладу видно, що запровадивши нову змінну t вдалося звести 1-е рівняння системи до стандартного квадратному тричлену. Вирішити многочлен можна знайшовши дискримінант.

Необхідно знайти значення дискримінанта з відомою формулою: D = b2 - 4*a*c, де D - шуканий дискримінант, b, a, c - множники многочлена. У заданому прикладі a=1, b=16, c=39, отже, D=100. Якщо дискримінант більший за нуль, то рішень два: t = -b±√D / 2*a, якщо дискримінант менший за нуль, то рішення одне: x= -b / 2*a.

Рішення для отриманих у результаті системи знаходять шляхом складання.

Наочний метод вирішення систем

Підходить для систем з трьома рівняннями. Метод полягає у побудові на координатної осіграфіків кожного рівняння, що входить до системи. Координати точок перетину кривих і будуть загальним рішеннямсистеми.

Графічний метод має низку аспектів. Розглянемо кілька прикладів розв'язання систем лінійних рівнянь наочним способом.

Як видно з прикладу, для кожної прямої було побудовано дві точки, значення змінної x були обрані довільно: 0 і 3. Виходячи із значень x, знайдені значення для y: 3 і 0. Точки з координатами (0, 3) та (3, 0) були відзначені на графіку та з'єднані лінією.

Події необхідно повторити для другого рівняння. Точка перетину прямих є розв'язком системи.

У наступному прикладі потрібно знайти графічне рішеннясистеми лінійних рівнянь: 0,5x-y+2=0 та 0,5x-y-1=0.

Як видно з прикладу, система не має рішення, тому що графіки паралельні і не перетинаються по всьому своєму протязі.

Системи з прикладів 2 і 3 схожі, але при побудові стає очевидним, що їх рішення різні. Слід пам'ятати, що не завжди можна сказати, чи має система рішення чи ні, завжди необхідно побудувати графік.

Матриця та її різновиди

Матриці використовують для короткого запису системи лінійних рівнянь. Матрицею називають таблицю спеціального виду, Заповнену числами. n*m має n - рядків та m - стовпців.

Матриця є квадратною, коли кількість стовпців і рядків дорівнює між собою. Матрицею - вектором називається матриця з одного стовпця з нескінченно. можливою кількістюрядків. Матриця з одиницями по одній із діагоналей та іншими нульовими елементами називається одиничною.

Зворотна матриця - це така матриця при множенні на яку вихідна перетворюється на одиничну, така матриця існує тільки для вихідної квадратної.

Правила перетворення системи рівнянь на матрицю

Стосовно систем рівнянь як чисел матриці записують коефіцієнти і вільні члени рівнянь, одне рівняння - один рядок матриці.

Рядок матриці називається ненульовим, якщо хоча б один елемент рядка не дорівнює нулю. Тому якщо в якомусь із рівнянь кількість змінних відрізняється, то необхідно на місці відсутньої невідомої вписати нуль.

Стовпці матриці повинні суворо відповідати змінним. Це означає, що коефіцієнти змінної x можуть бути записані тільки в один стовпець, наприклад перший, коефіцієнт невідомої y - тільки в другий.

При множенні матриці, всі елементи матриці послідовно множаться на число.

Варіанти знаходження зворотної матриці

Формула знаходження зворотної матриці досить проста: K -1 = 1 / | K |, де K -1 - зворотна матриця, А | K | - Визначник матриці. |K| не повинен дорівнювати нулю, тоді система має рішення.

Визначник легко обчислюється для матриці два на два, необхідно лише помножити один на одного елементи по діагоналі. Для варіанта "три на три" існує формула | K | b 2 c 1 . Можна скористатися формулою, а можна запам'ятати що необхідно взяти по одному елементу з кожного рядка та кожного стовпця так, щоб у творі не повторювалися номери стовпців та рядків елементів.

Розв'язання прикладів систем лінійних рівнянь матричним методом

Матричний спосіб пошуку рішення дозволяє скоротити громіздкі записи при вирішенні систем великою кількістюзмінних та рівнянь.

У прикладі a nm – коефіцієнти рівнянь, матриця – вектор x n – змінні, а b n – вільні члени.

Рішення систем методом Гауса

У вищої математикиМетод Гаусса вивчають разом із методом Крамера, а процес пошуку рішення систем і називається метод рішення Гаусса - Крамера. Дані способи використовують при знаходженні змінних системз великою кількістю лінійних рівнянь.

Метод Гауса дуже схожий на рішення за допомогою підстановок і алгебраїчної складанняале більш систематичний. У шкільному курсі рішення способом Гаусса застосовується для систем із 3 та 4 рівнянь. Мета методу полягає у приведенні системи до виду перевернутої трапеції. Шляхом алгебраїчних перетвореньі підстановок є значення однієї змінної в одному з рівнянні системи. Друге рівняння є виразом з двома невідомими, а 3 і 4 - відповідно з трьома і чотирма змінними.

Після приведення системи до описаного виду, подальше рішення зводиться до послідовної підстановки відомих змінних рівняння системи.

У шкільних підручникахдля 7 класу приклад рішення методом Гауса описаний таким чином:

Як видно з прикладу, на кроці (3) було отримано два рівняння 3x3 -2x4 = 11 і 3x3 +2x4 =7. Рішення будь-якого рівняння дозволить дізнатися одну зі змінних x n .

Теорема 5, про яку згадується в тексті, свідчить, що якщо одне з рівнянь системи замінити рівносильним, то отримана система буде також рівносильна вихідній.

Метод Гауса важкий для сприйняття учнів середньої школи, але є одним з найбільш цікавих способівдля розвитку кмітливості дітей, які навчаються за програмою поглибленого вивченняу математичних та фізичних класах.

Для простоти запису обчислень прийнято робити так:

Коефіцієнти рівнянь та вільні члени записуються у вигляді матриці, де кожен рядок матриці співвідноситься з одним із рівнянь системи. відокремлює ліву частинурівняння від правої. Римськими цифрами позначаються номери рівнянь у системі.

Спочатку записують матрицю, з якою належить працювати, потім усі дії, що проводяться з одного з рядків. Отриману матрицю записують після знака "стрілка" та продовжують виконувати необхідні алгебраїчні діїдо результату.

У результаті повинна вийти матриця в якій по одній з діагоналей стоять 1, а всі інші коефіцієнти дорівнюють нулю, тобто матрицю призводять до поодинокого вигляду. Не можна забувати робити обчислення з цифрами обох частин рівняння.

Цей спосіб запису менш громіздкий і дозволяє не відволікатися на перелік численних невідомих.

Вільне застосування будь-якого способу вирішення потребує уважності та певного досвіду. Не всі методи мають прикладний характер. Якісь способи пошуку рішень більш переважні в тій іншій галузі діяльності людей, інші існують з метою навчання.


Розберемо два види розв'язання систем рівняння:

1. Рішення системи шляхом підстановки.
2. Рішення системи методом почленного складання (віднімання) рівнянь системи.

Для того, щоб вирішити систему рівнянь методом підстановкипотрібно слідувати простому алгоритму:
1. Висловлюємо. З будь-якого рівняння виражаємо одну змінну.
2. Підставляємо. Підставляємо в інше рівняння замість вираженої змінної отримане значення.
3. Вирішуємо отримане рівняння з однією змінною. Знаходимо рішення системи.

Щоб вирішити систему методом почленного складання (віднімання)потрібно:
1.Вибрати змінну у якої робитимемо однакові коефіцієнти.
2.Складаємо або віднімаємо рівняння, в результаті отримуємо рівняння з однією змінною.
3. Вирішуємо отримане лінійне рівняння. Знаходимо рішення системи.

Рішенням системи є точки перетину графіків функції.

Розглянемо докладно з прикладів рішення систем.

Приклад №1:

Вирішимо методом підстановки

Вирішення системи рівнянь методом підстановки

2x+5y=1 (1 рівняння)
x-10y=3 (2 рівняння)

1. Висловлюємо
Видно що у другому рівнянні є змінна x з коефіцієнтом 1, звідси виходить що найлегше висловити змінну x з другого рівняння.
x=3+10y

2.Після того, як висловили підставляємо в перше рівняння 3+10y замість змінної x.
2(3+10y)+5y=1

3. Вирішуємо отримане рівняння з однією змінною.
2(3+10y)+5y=1 (розкриваємо дужки)
6+20y+5y=1
25y=1-6
25y=-5 |: (25)
y=-5:25
y=-0,2

Рішенням системи рівняння є точки перетинів графіків, отже нам потрібно знайти x і у, тому що точка перетину складається з x і y.Знайдемо x, в першому пункті де ми виражали туди підставляємо y.
x=3+10y
x=3+10*(-0,2)=1

Точки прийнято записувати першому місці пишемо змінну x, але в другому змінну y.
Відповідь: (1; -0,2)

Приклад №2:

Вирішимо методом почленного складання (віднімання).

Розв'язання системи рівнянь методом додавання

3x-2y=1 (1 рівняння)
2x-3y=-10 (2 рівняння)

1.Вибираємо змінну, припустимо, вибираємо x. У першому рівнянні у змінної x коефіцієнт 3, у другому 2. Потрібно зробити коефіцієнти однаковими, при цьому маємо право домножити рівняння чи розділити будь-яке число. Перше рівняння примножуємо на 2, а друге на 3 і отримаємо загальний коефіцієнт 6.

3x-2y = 1 | * 2
6x-4y = 2

2x-3y=-10 | *3
6x-9y=-30

2.З першого рівняння віднімемо друге, щоб позбавитися від змінної x.Вирішуємо лінійне рівняння.
__6x-4y=2

5y = 32 | :5
y=6,4

3. Знаходимо x. Підставляємо у будь-яке з рівнянь знайдений y, допустимо у перше рівняння.
3x-2y=1
3x-2 * 6,4 = 1
3x-12,8 = 1
3x = 1 +12,8
3x = 13,8 |: 3
x = 4,6

Точкою перетину буде x = 4,6; y=6,4
Відповідь: (4,6; 6,4)

Хочеш готуватися до іспитів безкоштовно? Репетитор онлайн безкоштовно. Без жартів.