Logaritmik eşitsizlikler ve çözümleri. Logaritmik eşitsizlikleri çözme

KULLANIMDA LOGARATRİK EŞİTSİZLİKLER

Seçin Mihail Aleksandroviç

Küçük Akademi Kazakistan Cumhuriyeti öğrencileri için bilimler "Iskatel"

MBOU "Sovetskaya Ortaokulu No. 1", 11. sınıf, kasaba. Sovyet Sovyet bölgesi

Gunko Lyudmila Dmitrievna, MBOU öğretmeni"Sovyet Ortaokulu No. 1"

Sovyet bölgesi

Çalışmanın amacı:çözüm mekanizmasının incelenmesi logaritmik eşitsizlikler C3 standart dışı yöntemler kullanarak, tanımlama ilginç gerçekler logaritma

Araştırma konusu:

3) Belirli C3 logaritmik eşitsizliklerini standart dışı yöntemler kullanarak çözmeyi öğrenin.

Sonuçlar:

İçerik

Giriş………………………………………………………………………………….4

Bölüm 1. Sorunun tarihçesi……………………………………………………...5

Bölüm 2. Logaritmik eşitsizliklerin toplanması ………………………… 7

2.1. Eşdeğer geçişler ve genelleştirilmiş aralık yöntemi…………… 7

2.2. Rasyonalizasyon yöntemi……………………………………………………………… 15

2.3. Standart dışı ikame……………….................................................. ...... ..... 22

2.4. Tuzaklarla yapılan görevler………………………………………………………27

Sonuç……………………………………………………………………………… 30

Edebiyat……………………………………………………………………. 31

giriiş

11. sınıftayım ve bir üniversiteye girmeyi planlıyorum uzmanlık konusu matematiktir. Bu yüzden C bölümündeki problemlerle çok çalışıyorum. C3 görevinde, genellikle logaritmalarla ilgili standart olmayan bir eşitsizliği veya eşitsizlikler sistemini çözmem gerekiyor. Sınava hazırlanırken C3'te sunulan sınav logaritmik eşitsizliklerini çözmeye yönelik yöntem ve tekniklerin eksikliği sorunuyla karşılaştım. Çalışılan yöntemler okul müfredatı bu konuda C3 görevlerinin çözümü için bir temel sağlamamaktadır. Matematik öğretmeni C3 ödevleri üzerinde onun rehberliğinde bağımsız olarak çalışmamı önerdi. Ayrıca şu soru da ilgimi çekti: Hayatımızda logaritmalarla karşılaşır mıyız?

Bu düşünceyle konu seçildi:

“Birleşik Devlet Sınavında Logaritmik Eşitsizlikler”

Çalışmanın amacı: C3 problemlerini standart dışı yöntemler kullanarak çözme mekanizmasının incelenmesi, logaritmayla ilgili ilginç gerçeklerin belirlenmesi.

Araştırma konusu:

1)Bul gerekli bilgiler O standart dışı yöntemler Logaritmik eşitsizliklerin çözümleri.

2) Bul Ek Bilgiler Logaritmalar hakkında.

3) Karar vermeyi öğrenin belirli görevler Standart dışı yöntemler kullanan C3.

Sonuçlar:

Pratik önemi C3 problemlerini çözmek için aparatın genişletilmesinden oluşur. Bu malzeme bazı derslerde, kulüplerde ve matematik seçmeli derslerinde kullanılabilir.

Proje ürünü“C3 Çözümlü Logaritmik Eşitsizlikler” koleksiyonu olacak.

Bölüm 1. Arka Plan

16. yüzyıl boyunca, başta astronomi olmak üzere yaklaşık hesaplamaların sayısı hızla arttı. Aletlerin iyileştirilmesi, gezegen hareketlerinin incelenmesi ve diğer çalışmalar, bazen uzun yıllar süren devasa hesaplamalar gerektiriyordu. Astronomi tehdit edildi gerçek tehlike Gerçekleşmeyen hesaplamalar içinde boğulmak. Sigortacılık gibi diğer alanlarda da zorluklar ortaya çıktı, tablolara ihtiyaç duyuldu bileşik faizİçin farklı anlamlar yüzde. Ana zorlukçarpma ve bölmeyi temsil ediyordu çok basamaklı sayılarözellikle trigonometrik büyüklükler.

Logaritmanın keşfi, 16. yüzyılın sonlarında iyi bilinen ilerlemelerin özelliklerine dayanıyordu. Üyeler arasındaki bağlantı hakkında geometrik ilerleme q, q2, q3, ... ve aritmetik ilerleme göstergeleri 1, 2, 3,... Arşimet “Mezmur”da konuştu. Diğer bir önkoşul ise derece kavramının negatif ve negatife doğru genişletilmesiydi. kesirli göstergeler. Birçok yazar, geometrik ilerlemede çarpma, bölme, üs alma ve kök çıkarma işlemlerinin aritmetik olarak - aynı sırayla - toplama, çıkarma, çarpma ve bölmeye karşılık geldiğini belirtmiştir.

Burada üs olarak logaritmanın fikri ortaya çıktı.

Logaritma doktrininin gelişim tarihinde birkaç aşama geçti.

Aşama 1

Logaritmalar en geç 1594 yılında İskoç Baron Napier (1550-1617) tarafından bağımsız olarak ve on yıl sonra da İsviçreli tamirci Bürgi (1552-1632) tarafından icat edildi. Her ikisi de yeni ve kullanışlı bir araç sunmak istiyordu aritmetik hesaplamalar, ancak bu göreve farklı şekilde yaklaştılar. Napier logaritmik fonksiyonu kinematik olarak ifade etti ve böylece yeni alan fonksiyon teorisi. Bürgi, ayrık ilerlemeleri dikkate alma temelinde kaldı. Ancak her ikisinin de logaritmasının tanımı modern olana benzememektedir. "Logaritma" (logaritma) terimi Napier'e aittir. Bir kombinasyondan ortaya çıktı Yunanca kelimeler: logos - “ilişki” ve ariqmo – “sayı”, bu da “ilişkilerin sayısı” anlamına geliyordu. Napier başlangıçta farklı bir terim kullandı: numeri naturalts - "doğal sayılar" yerine numeri Artificiales - "yapay sayılar".

1615'te, Londra'daki Gresh College'da matematik profesörü olan Henry Briggs (1561-1631) ile yaptığı bir konuşmada Napier, sıfırın birin logaritması, 100'ün de on'un logaritması veya aynı anlama gelen bir sayı olarak alınmasını önerdi. şey, sadece 1. İşte böyle göründüler ondalık logaritmalar ve ilk logaritmik tablolar basıldı. Daha sonra Briggs'in tablolarına Hollandalı kitapçı ve matematik meraklısı Adrian Flaccus (1600-1667) eklendi. Napier ve Briggs, logaritmaya herkesten daha önce gelmiş olmalarına rağmen tablolarını diğerlerinden daha sonra, 1620'de yayınladılar. Log ve Log işaretleri 1624 yılında I. Kepler tarafından tanıtıldı. “Doğal logaritma” terimi 1659 yılında Mengoli tarafından ortaya atılmış, ardından 1668 yılında N. Mercator tarafından ortaya atılmış ve Londralı öğretmen John Speidel 1'den 1000'e kadar sayıların doğal logaritma tablolarını “Yeni Logaritmalar” adı altında yayınlamıştır.

İlk logaritmik tablolar 1703'te Rusça olarak yayınlandı. Ancak tüm logaritmik tablolarda hesaplama hataları vardı. İlk hatasız tablolar 1857 yılında Berlin'de Alman matematikçi K. Bremiker (1804-1877) tarafından işlenerek yayımlandı.

Aşama 2

Logaritma teorisinin daha da geliştirilmesi, daha geniş uygulama alanıyla ilişkilidir. analitik geometri ve sonsuz küçükler hesabı. O zamana kadar, karesellik arasında bir bağlantının kurulması eşkenar hiperbol Ve doğal logaritma. Bu dönemin logaritma teorisi bazı matematikçilerin isimleriyle ilişkilendirilmiştir.

Alman matematikçi, gökbilimci ve mühendis Nikolaus Mercator bir makalesinde

"Logarithmotechnics" (1668), ln(x+1)'in açılımını veren bir seri verir.

x'in kuvvetleri:

Bu ifade onun düşünce tarzına tam olarak karşılık geliyor, ancak elbette d, ... işaretlerini değil, daha hantal sembolizmi kullandı. Logaritmik serilerin keşfiyle logaritmaları hesaplama tekniği değişti: sonsuz seriler kullanılarak belirlenmeye başlandı. Derslerinde" İlköğretim matematikİle en yüksek nokta Vizyon", 1907-1908'de okunduğunda F. Klein, logaritma teorisini oluşturmak için formülün başlangıç ​​​​noktası olarak kullanılmasını önerdi.

Aşama 3

Tanım logaritmik fonksiyon ters fonksiyon olarak

üstel, üs olarak logaritma bu temel

hemen formüle edilmedi. Leonhard Euler'in Denemesi (1707-1783)

"Sonsuz Küçüklerin Analizine Giriş" (1748) daha ileri düzeyde hizmet etti

Logaritmik fonksiyonlar teorisinin gelişimi. Böylece,

Logaritmanın ilk ortaya çıkışından bu yana 134 yıl geçti

(1614'ten itibaren sayılıyor), matematikçiler tanıma gelmeden önce

Artık okul dersinin temeli olan logaritma kavramı.

Bölüm 2. Logaritmik eşitsizliklerin toplanması

2.1. Eşdeğer geçişler ve genelleştirilmiş aralık yöntemi.

Eşdeğer geçişler

, eğer a > 1 ise

0 ise < а < 1

Genelleştirilmiş yöntem aralıklar

Bu yöntem hemen hemen her türden eşitsizliği çözmek için en evrenseldir. Çözüm şeması şuna benziyor aşağıdaki gibi:

1. Eşitsizliği sol taraftaki fonksiyonun olduğu forma getirin
ve sağda 0.

2. Fonksiyonun tanım kümesini bulun
.

3. Fonksiyonun sıfırlarını bulun
yani denklemi çöz
(ve bir denklemi çözmek genellikle bir eşitsizliği çözmekten daha kolaydır).

4. Fonksiyonun tanım tanım kümesini ve sıfırlarını sayı doğrusu üzerinde çiziniz.

5. Fonksiyonun işaretlerini belirleyin
elde edilen aralıklarda.

6. Fonksiyonun gerekli değerleri aldığı aralıkları seçin ve cevabı yazın.

Örnek 1.

Çözüm:

Aralık yöntemini uygulayalım

Neresi

Bu değerler için logaritmik işaretlerin altındaki tüm ifadeler pozitiftir.

Cevap:

Örnek 2.

Çözüm:

1. yol . ADL eşitsizlikle belirlenir X> 3. Bunun logaritmasını almak X 10 tabanında, şunu elde ederiz

Son eşitsizlik genişleme kuralları uygulanarak çözülebilir; Faktörlerin sıfırla karşılaştırılması. Ancak, bu durumda Bir fonksiyonun sabit işaretinin aralıklarını belirlemek kolay

bu nedenle aralık yöntemi uygulanabilir.

İşlev F(X) = 2X(X- 3.5)lg| X- 3a süreklidir X> 3 ve bazı noktalarda kayboluyor X 1 = 0, X 2 = 3,5, X 3 = 2, X 4 = 4. Böylece fonksiyonun sabit işaret aralıklarını belirleriz. F(X):

Cevap:

2. yöntem . Aralık yönteminin fikirlerini doğrudan orijinal eşitsizliğe uygulayalım.

Bunu yapmak için ifadeleri hatırlayın A B- A c ve ( A - 1)(B- 1) bir işareti var. O halde eşitsizliğimiz X> 3 eşitsizliğe eşdeğerdir

veya

Son eşitsizlik aralık yöntemi kullanılarak çözülür

Cevap:

Örnek 3.

Çözüm:

Aralık yöntemini uygulayalım

Cevap:

Örnek 4.

Çözüm:

2'den beri X 2 - 3X Tüm gerçekler için +3 > 0 X, O

İkinci eşitsizliği çözmek için aralık yöntemini kullanırız

İlk eşitsizlikte değiştirmeyi yaparız

sonra 2y 2 eşitsizliğine geliriz - sen - 1 < 0 и, применив метод интервалов, получаем, что решениями будут те sen-0,5 eşitsizliğini karşılayan< sen < 1.

Nereden beri

eşitsizliği elde ederiz

ne zaman gerçekleştirilir X, bunun için 2 X 2 - 3X - 5 < 0. Вновь применим метод интервалов

Şimdi sistemin ikinci eşitsizliğinin çözümünü dikkate alarak nihayet şunu elde ederiz:

Cevap:

Örnek 5.

Çözüm:

Eşitsizlik bir sistemler koleksiyonuna eşdeğerdir

veya

Aralık yöntemini kullanalım veya

Cevap:

Örnek 6.

Çözüm:

Eşitsizlik eşittir sistem

İzin vermek

Daha sonra sen > 0,

ve ilk eşitsizlik

sistem şu şekli alıyor

veya, ortaya çıkıyor

ikinci dereceden üç terimli faktörlere göre,

Aralık yöntemini son eşitsizliğe uygulayarak,

çözümlerinin koşulu sağladığını görüyoruz sen> 0 hepsi olacak sen > 4.

Dolayısıyla orijinal eşitsizlik sisteme eşdeğerdir:

Yani eşitsizliğin çözümlerinin hepsi

2.2. Rasyonalizasyon yöntemi.

Önceki yöntem Eşitsizliğin rasyonelleştirilmesi çözülmedi, bilinmiyordu. Bu "yeni modern" etkili yöntemüstel ve logaritmik eşitsizliklerin çözümleri" (S.I. Kolesnikova'nın kitabından alıntı)
Öğretmen onu tanıyor olsa bile bir korku vardı; onu tanıyor muydu? Birleşik Devlet Sınavı uzmanı neden okulda vermiyorlar? Öğretmenin öğrenciye "Nereden aldın - 2" dediği durumlar oldu.
Şimdi bu yöntem her yerde tanıtılıyor. Ve uzmanlar için var yönergeler, bu yöntemle ilişkili ve "En eksiksiz basımlar"da tipik seçenekler..." Çözüm C3 bu yöntemi kullanıyor.
HARİKA BİR YÖNTEM!

« Sihirli masa»


Diğer kaynaklarda

Eğer a >1 ve b >1 ise log a b >0 ve (a -1)(b -1)>0;

Eğer a >1 ve 0

eğer 0 ise<A<1 и b >1, sonra a b'yi logla<0 и (a -1)(b -1)<0;

eğer 0 ise<A<1 и 00 ve (a -1)(b -1)>0.

Gerçekleştirilen mantık basittir ancak logaritmik eşitsizliklerin çözümünü önemli ölçüde basitleştirir.

Örnek 4.

log x (x 2 -3)<0

Çözüm:

Örnek 5.

log 2 x (2x 2 -4x +6)≤log 2 x (x 2 +x)

Çözüm:

Cevap. (0; 0,5)U.

Örnek 6.

Bu eşitsizliği çözmek için payda yerine (x-1-1)(x-1), pay yerine de (x-1)(x-3-9 + x) çarpımını yazıyoruz.


Cevap : (3;6)

Örnek 7.

Örnek 8.

2.3. Standart olmayan ikame.

Örnek 1.

Örnek 2.

Örnek 3.

Örnek 4.

Örnek 5.

Örnek 6.

Örnek 7.

log 4 (3 x -1)log 0,25

y=3 x -1 yerine koyalım; o zaman bu eşitsizlik şu şekli alacaktır

Günlük 4 günlük 0,25
.

Çünkü günlük 0,25 = -log 4 = -(log 4 y -log 4 16)=2-log 4 y ise son eşitsizliği 2log 4 y -log 4 2 y ≤ olarak yeniden yazarız.

t =log 4 y'yi yerine koyalım ve t 2 -2t +≥0 eşitsizliğini elde edelim; bunun çözümü - .

Böylece, y'nin değerlerini bulmak için elimizde iki basit eşitsizlik var
Bu kümenin çözümü 0 aralığıdır.<у≤2 и 8≤у<+.

Bu nedenle, orijinal eşitsizlik iki üstel eşitsizlik kümesine eşdeğerdir,
yani agregalar

Bu kümenin ilk eşitsizliğinin çözümü 0 aralığıdır.<х≤1, решением второго – промежуток 2≤х<+. Böylece orijinal eşitsizlik, 0 aralığından itibaren x'in tüm değerleri için sağlanır.<х≤1 и 2≤х<+.

Örnek 8.

Çözüm:

Eşitsizlik eşittir sistem

ODZ'yi tanımlayan ikinci eşitsizliğin çözümü, bunların kümesi olacaktır. X,

hangisi için X > 0.

İlk eşitsizliği çözmek için ikameyi yaparız

Sonra eşitsizliği elde ederiz

veya

Son eşitsizliğin çözüm kümesi şu yöntemle bulunur:

aralıklar: -1< T < 2. Откуда, возвращаясь к переменной X, alıyoruz

veya

Bunların çoğu X son eşitsizliği sağlayan

ODZ'ye aittir ( X> 0), dolayısıyla sistemin bir çözümüdür,

ve dolayısıyla orijinal eşitsizlik.

Cevap:

2.4. Tuzaklarla görevler.

Örnek 1.

.

Çözüm. Eşitsizliğin ODZ'si 0 koşulunu sağlayan x'tir . Bu nedenle tüm x'ler 0 aralığındadır

Örnek 2.

günlük 2 (2 x +1-x 2)>günlük 2 (2 x-1 +1-x)+1.. ? Gerçek şu ki, ikinci sayı açıkça daha büyük

Çözüm

Çok sayıda farklı eğitim kaynağından C3 problemlerini çözmek için özel yöntemler bulmak kolay değildi. Yapılan çalışma sırasında karmaşık logaritmik eşitsizliklerin çözümü için standart olmayan yöntemler üzerinde çalışabildim. Bunlar: eşdeğer geçişler ve genelleştirilmiş aralıklar yöntemi, rasyonelleştirme yöntemi , standart dışı ikame , ODZ'de tuzaklı görevler. Bu yöntemler okul müfredatında yer almamaktadır.

Farklı yöntemler kullanarak Birleşik Devlet Sınavı'nın C bölümünde yani C3'te önerilen 27 eşitsizliği çözdüm. Yöntemlerle çözümlenen bu eşitsizlikler, faaliyetimin proje ürünü olan “C3 Çözümlü Logaritmik Eşitsizlikler” koleksiyonunun temelini oluşturdu. Projenin başında ortaya koyduğum hipotez doğrulandı: Bu yöntemleri biliyorsanız C3 problemleri etkili bir şekilde çözülebilir.

Ayrıca logaritmalarla ilgili ilginç gerçekleri keşfettim. Bunu yapmak benim için ilginçti. Proje ürünlerim hem öğrencilere hem de öğretmenlere faydalı olacaktır.

Sonuçlar:

Böylece proje hedefine ulaşılmış ve sorun çözülmüştür. Ve işin her aşamasında proje faaliyetleri konusunda en eksiksiz ve çeşitli deneyimi aldım. Proje üzerinde çalışırken ana gelişimsel etkim zihinsel yeterlilik, mantıksal zihinsel işlemlerle ilgili faaliyetler, yaratıcı yeterliliğin gelişimi, kişisel inisiyatif, sorumluluk, azim ve aktivite üzerinde oldu.

Bir araştırma projesi oluştururken başarı garantisi Kazandığım şeyler: önemli bir okul deneyimi, çeşitli kaynaklardan bilgi edinme, güvenilirliğini kontrol etme ve onu önem derecesine göre sıralama yeteneği.

Matematikteki doğrudan konu bilgilerinin yanı sıra bilgisayar bilimleri alanındaki pratik becerilerimi genişlettim, psikoloji alanında yeni bilgi ve deneyimler kazandım, sınıf arkadaşlarımla bağlantılar kurdum, yetişkinlerle işbirliği yapmayı öğrendim. Proje faaliyetleri sırasında organizasyonel, entelektüel ve iletişimsel genel eğitim becerileri geliştirildi.

Edebiyat

1. Koryanov A. G., Prokofiev A. A. Tek değişkenli eşitsizlik sistemleri (standart görevler C3).

2. Malkova A. G. Matematikte Birleşik Devlet Sınavına Hazırlık.

3. Samarova S. S. Logaritmik eşitsizliklerin çözümü.

4. Matematik. A.L. tarafından düzenlenen eğitim çalışmaları koleksiyonu. Semenov ve I.V. Yaşçenko. -M.: MTsNMO, 2009. - 72 s.-

Birleşik Devlet Sınavına kadar hala zaman olduğunu ve hazırlanmak için zamanınızın olacağını mı düşünüyorsunuz? Belki de bu böyledir. Ancak her halükarda öğrenci hazırlıklara ne kadar erken başlarsa sınavları o kadar başarılı geçer. Bugün bir makaleyi logaritmik eşitsizliklere ayırmaya karar verdik. Bu, ekstra kredi alma fırsatı anlamına gelen görevlerden biridir.

Logaritmanın ne olduğunu zaten biliyor musun? Gerçekten öyle umuyoruz. Ancak bu soruya bir cevabınız olmasa bile bu bir sorun değil. Logaritmanın ne olduğunu anlamak çok basittir.

Neden 4? 81 elde etmek için 3 sayısını bu kuvvete yükseltmeniz gerekiyor. Prensibi anladıktan sonra daha karmaşık hesaplamalara geçebilirsiniz.

Birkaç yıl önce eşitsizliklerden geçtiniz. Ve o zamandan beri matematikte sürekli onlarla karşılaştınız. Eşitsizlikleri çözmede sorun yaşıyorsanız uygun bölüme bakın.
Artık kavramlara tek tek aşina olduğumuza göre, onları genel olarak ele almaya geçelim.

En basit logaritmik eşitsizlik.

En basit logaritmik eşitsizlikler bu örnekle sınırlı değildir; yalnızca farklı işaretlere sahip üç tane daha vardır. Bu neden gerekli? Eşitsizliklerin logaritmalarla nasıl çözüleceğini daha iyi anlamak. Şimdi daha uygulanabilir bir örnek verelim, yine de oldukça basit; karmaşık logaritmik eşitsizlikleri sonraya bırakacağız.

Bu nasıl çözülür? Her şey ODZ ile başlar. Herhangi bir eşitsizliği her zaman kolayca çözmek istiyorsanız, bunun hakkında daha fazla bilgi sahibi olmaya değer.

ODZ nedir? Logaritmik eşitsizlikler için ODZ

Kısaltma, kabul edilebilir değer aralığını ifade eder. Bu formülasyon genellikle Birleşik Devlet Sınavı görevlerinde ortaya çıkar. ODZ yalnızca logaritmik eşitsizlikler durumunda sizin için yararlı olmayacaktır.

Yukarıdaki örneğe tekrar bakın. İlkeyi anlamanız ve logaritmik eşitsizlikleri çözmenin soru sormaması için ODZ'yi buna dayanarak ele alacağız. Logaritmanın tanımından 2x+4'ün sıfırdan büyük olması gerektiği sonucu çıkar. Bizim durumumuzda bu şu anlama geliyor.

Bu sayı, tanımı gereği pozitif olmalıdır. Yukarıda sunulan eşitsizliği çözün. Bu sözlü olarak bile yapılabilir; burada X'in 2'den küçük olamayacağı açıktır. Eşitsizliğin çözümü, kabul edilebilir değerler aralığının tanımı olacaktır.
Şimdi en basit logaritmik eşitsizliği çözmeye geçelim.

Eşitsizliğin her iki tarafındaki logaritmaların kendisini atıyoruz. Bu bize ne bırakıyor? Basit eşitsizlik.

Çözülmesi zor değil. X -0,5'ten büyük olmalıdır. Şimdi elde edilen iki değeri bir sistemde birleştiriyoruz. Böylece,

Bu, söz konusu logaritmik eşitsizlik için kabul edilebilir değerler aralığı olacaktır.

Neden ODZ'ye ihtiyacımız var? Bu, yanlış ve imkansız cevapları ayıklamak için bir fırsattır. Cevap kabul edilebilir değerler aralığında değilse, o zaman cevap mantıklı değildir. Bunu uzun süre hatırlamaya değer, çünkü Birleşik Devlet Sınavında genellikle ODZ'yi aramaya ihtiyaç duyulur ve bu yalnızca logaritmik eşitsizliklerle ilgili değildir.

Logaritmik eşitsizliği çözmek için algoritma

Çözüm birkaç aşamadan oluşur. Öncelikle kabul edilebilir değer aralığını bulmanız gerekir. ODZ'nin iki anlamı olacak, bunu yukarıda tartışmıştık. Daha sonra eşitsizliğin kendisini çözmeniz gerekir. Çözüm yöntemleri aşağıdaki gibidir:

  • çarpan değiştirme yöntemi;
  • ayrışma;
  • Rasyonalizasyon yöntemi.

Duruma bağlı olarak yukarıdaki yöntemlerden birini kullanmaya değer. Doğrudan çözüme geçelim. Hemen hemen her durumda Birleşik Devlet Sınavı görevlerini çözmeye uygun olan en popüler yöntemi açıklayalım. Daha sonra ayrıştırma yöntemine bakacağız. Özellikle zor bir eşitsizlikle karşılaşırsanız yardımcı olabilir. Logaritmik eşitsizliği çözmek için bir algoritma.

Çözüm örnekleri :

Tam olarak bu eşitsizliği almamız boşuna değil! Üsse dikkat edin. Unutmayın: birden büyükse, kabul edilebilir değerler aralığını bulurken işaret aynı kalır; aksi takdirde eşitsizlik işaretini değiştirmeniz gerekir.

Sonuç olarak eşitsizliği elde ederiz:

Şimdi sol tarafı sıfıra eşit denklem formuna indiriyoruz. “Küçüktür” işareti yerine “eşittir” koyarız ve denklemi çözeriz. Böylece ODZ'yi bulacağız. Bu kadar basit bir denklemi çözerken sorun yaşamayacağınızı umuyoruz. Cevaplar -4 ve -2'dir. Hepsi bu değil. Bu noktaları grafikte “+” ve “-” yerleştirerek göstermeniz gerekir. Bunun için ne yapılması gerekiyor? Aralıklardaki sayıları ifadede değiştirin. Değerlerin pozitif olduğu yerlere “+” koyarız.

Cevap: x -4'ten büyük ve -2'den küçük olamaz.

Sadece sol taraf için kabul edilebilir değerler aralığını bulduk; şimdi sağ taraf için kabul edilebilir değerler aralığını bulmamız gerekiyor. Bu çok daha kolay. Cevap: -2. Ortaya çıkan her iki alanı da kesiştiriyoruz.

Ve ancak şimdi eşitsizliğin kendisini ele almaya başlıyoruz.

Çözülmesini kolaylaştırmak için mümkün olduğunca basitleştirelim.

Çözümde yine aralık yöntemini kullanıyoruz. Hesaplamaları geçelim; önceki örnekte zaten her şey açık. Cevap.

Ancak logaritmik eşitsizliğin tabanları aynıysa bu yöntem uygundur.

Logaritmik denklemleri ve eşitsizlikleri farklı tabanlarla çözmek, başlangıçta aynı tabana indirgemeyi gerektirir. Daha sonra yukarıda açıklanan yöntemi kullanın. Ancak daha karmaşık bir durum var. Logaritmik eşitsizliklerin en karmaşık türlerinden birini ele alalım.

Değişken tabanlı logaritmik eşitsizlikler

Bu özelliklere sahip eşitsizlikler nasıl çözülür? Evet ve bu tür insanlar Birleşik Devlet Sınavında bulunabilir. Eşitsizlikleri şu şekilde çözmeniz eğitim sürecinize de olumlu etki yapacaktır. Konuya ayrıntılı olarak bakalım. Teoriyi bir kenara bırakıp doğrudan uygulamaya geçelim. Logaritmik eşitsizlikleri çözmek için örneğe bir kez aşina olmanız yeterlidir.

Sunulan formun logaritmik eşitsizliğini çözmek için sağ tarafı aynı tabana sahip bir logaritmaya indirgemek gerekir. Prensip eşdeğer geçişlere benzer. Sonuç olarak eşitsizlik şu şekilde görünecektir.

Aslında geriye logaritması olmayan bir eşitsizlik sistemi yaratmak kalıyor. Rasyonalizasyon yöntemini kullanarak eşdeğer bir eşitsizlik sistemine geçiyoruz. Uygun değerleri değiştirdiğinizde ve değişikliklerini takip ettiğinizde kuralın kendisini anlayacaksınız. Sistem aşağıdaki eşitsizliklere sahip olacaktır.

Eşitsizlikleri çözerken rasyonalizasyon yöntemini kullanırken aşağıdakileri hatırlamanız gerekir: tabandan bir çıkarılmalıdır, logaritmanın tanımı gereği x, eşitsizliğin her iki tarafından da çıkarılır (sağdan soldan), iki ifade çarpılır ve sıfıra göre orijinal işaretin altına ayarlanır.

Daha fazla çözüm aralık yöntemi kullanılarak gerçekleştirilir, burada her şey basittir. Çözüm yöntemlerindeki farklılıkları anlamanız önemlidir, o zaman her şey kolayca yoluna girmeye başlayacaktır.

Logaritmik eşitsizliklerde birçok nüans vardır. En basitlerini çözmek oldukça kolaydır. Her birini sorunsuz bir şekilde nasıl çözebilirsiniz? Bu makaledeki tüm cevapları zaten aldınız. Artık önünüzde uzun bir antrenman var. Sürekli olarak sınavdaki çeşitli problemleri çözmeye çalışın ve en yüksek puanı alabileceksiniz. Zor görevinizde size iyi şanslar!

Bir eşitsizlik, logaritmik bir fonksiyon içeriyorsa logaritmik olarak adlandırılır.

Logaritmik eşitsizlikleri çözme yöntemleri iki şey dışında farklı değildir.

İlk olarak, logaritmik eşitsizlikten sublogaritmik fonksiyonların eşitsizliğine geçerken, ortaya çıkan eşitsizliğin işaretini takip edin. Aşağıdaki kurala uyar.

Logaritmik fonksiyonun tabanı $1$'dan büyükse, logaritmik eşitsizlikten alt logaritmik fonksiyonların eşitsizliğine geçerken eşitsizliğin işareti korunur, ancak $1$'dan küçükse ters yönde değişir. .

İkincisi, herhangi bir eşitsizliğin çözümü bir aralıktır ve bu nedenle alt logaritmik fonksiyonların eşitsizliğinin çözülmesinin sonunda iki eşitsizlikten oluşan bir sistem oluşturmak gerekir: Bu sistemin ilk eşitsizliği, alt logaritmik fonksiyonların eşitsizliği olacaktır, ikincisi ise logaritmik eşitsizliğin içerdiği logaritmik fonksiyonların tanım kümesinin aralığı olacaktır.

Pratik.

Eşitsizlikleri çözelim:

1. $\log_(2)((x+3)) \geq 3.$

$D(y): \x+3>0.$

$x \in (-3;+\infty)$

Logaritmanın tabanı $2>1$ olduğundan işareti değişmez. Logaritmanın tanımını kullanarak şunu elde ederiz:

$x+3 \geq 2^(3),$

$x\inç)