Закон геометрической оптики. Основные законы геометрической оптики

В результате изучения данной главы студент должен: знать

  • понятия волновой и геометрической оптики;
  • понятие корпускулярно-волнового дуализма;
  • четыре закона геометрической оптики;
  • понятие интерференции света, когерентности, цуга;
  • принцип Гюйгенса - Френеля;
  • расчет интерференционной картины двух источников;
  • расчет интерференции в тонких пленках;
  • принципы просветления оптики; уметь
  • решать типовые прикладные физические задачи на законы геометрической оптики и интерференцию света;

владеть

  • навыками использования стандартных методов и моделей математики применительно к законам геометрической оптики и интерференции света;
  • навыками использования методов аналитической геометрии и векторной алгебры применительно к законам геометрической оптики и интерференции света;
  • навыками проведения физического эксперимента, а также обработки результатов эксперимента но законам геометрической оптики и интерференции света.

Волновая и геометрическая оптика. Законы геометрической оптики

Волновая оптика - раздел оптики, который описывает распространение света с учетом его волновой электромагнитной природы. В рамках волновой оптики теория Максвелла позволила достаточно просто объяснить такие оптические явления, как интерференция, дифракция, поляризация и т.п.

В конце XVII в. оформились две теории света: волновая (продвигалась Р. Гуком и X. Гюйгенсом) и корпускулярная (ее продвигал И. Ньютон). Волновая теория воспринимает свет как волновой процесс, подобный упругим механическим волнам. Согласно корпускулярной (квантовой) теории свет представляет собой поток частиц (корпускул), описываемых законами механики. Так, отражение света можно рассматривать аналогично отражению упругого шарика от плоскости. Долгое время две теории света считались альтернативными. Однако многочисленные опыты показали, что свет в одних опытах обнаруживает волновые свойства, а в других - корпускулярные. Поэтому в начале XX в. было признано, что свет принципиально имеет двойственную природу - обладает корпускулярно-волновым дуализмом.

Но прежде чем излагать основные положения и результаты волновой оптики, сформулируем элементарные законы геометрической оптики.

Геометрическая оптика - раздел оптики, изучающий законы распространения света в прозрачных средах и правила построения изображений при прохождении света в оптических системах без учета его волновых свойств. В геометрической оптике вводится понятие светового луча, определяющего направление потока лучистой энергии. При этом полагается, что распространение света не зависит от поперечных размеров пучка света. В соответствии с законами волновой оптики это справедливо, если поперечный размер пучка много больше длины волны света. Геометрическую оптику можно рассматривать как предельный случай волновой оптики при стремящейся к нулю длине волны света. Точнее границы применимости геометрической оптики будут определены при изучении дифракции света.

Основные законы геометрической оптики были открыты опытным путем задолго до выявления физической природы света. Сформулируем четыре закона геометрической оптики.

  • 1. Закон прямолинейного распространения света: в оптически однородной среде свет распространяется прямолинейно. Подтверждением этого закона служит резкая тень, отбрасываемая телом при освещении точечным источником света. Другой пример - при прохождении света далекого источника через небольшое отверстие получается узкий прямой световой луч. При этом необходимо, чтобы размер отверстия был много больше длины волны.
  • 2. Закон независимости световых пучков: производимый отдельным пучком света эффект не зависит от других пучков. Так, освещенность поверхности, на которую надает несколько пучков, равна сумме освещенностей, создаваемых отдельными пучками. Исключением являются нелинейные оптические эффекты, которые могут иметь место при больших интенсивностях света.

Рис. 26.1

3. Закон отражения света: падающий и отраженный лучи (а также перпендикуляр к границе раздела двух сред , (плоскости падения) по разные стороны от перпендикуляра. Угол отражения у равен углу падения а (рис. 26.1):

4. Закон преломления света: падающий и преломленный лучи (а также перпендикуляр к границе раздела двух сред , восстановленный в точке падения луча) лежат в одной плоскости (плоскости падения) по разные стороны от перпендикуляра.

Отношение синуса угла падения а к синусу угла преломления р есть величина , постоянная для двух данных сред (рис. 26.1):

Здесь п - показатель преломления второй среды относительно первой.

Показатель преломления среды относительно вакуума называют абсолютным показателем преломления. Относительный показатель преломления двух сред равен отношению их абсолютных показателей преломления:

Законы отражения и преломления имеют объяснение в волновой физике. Преломление является следствием изменения скорости распространения волн при переходе из одной среды в другую. Физический смысл показателя преломления - отношение скорости распространения волны в первой среде v { к скорости распространения во второй среде v 2:

Абсолютный показатель преломления равен отношению скорости света с в вакууме к скорости света v в среде:

Среду с большим абсолютным показателем преломления называют оптически более плотной средой. При переходе света из оптически более плотной среды в оптически менее плотную, например из стекла в воздух (п 2 может иметь место явление полного отражения , т.е. исчезновение преломленного луча. Это явление наблюдается при углах падения, превышающих некоторый критический угол а пр, который называется предельным углом полного внутреннего отражения. Для угла падения а = а пр условием исчезновения преломленного луча является

Если второй средой является воздух (п 2 ~ 1), то с помощью формул (26.2) и (26.3) формулу для вычисления предельного угла полного внутреннего отражения удобно записать в виде

где п = п х > 1 - абсолютный показатель преломления первой среды. Для границы раздела «стекло - воздух» (п = 1,5) критический угол а пр = 42°, для границы «вода - воздух» (п = 1,33) а пр = 49°.

Наиболее интересным применением полного внутреннего отражения является создание волоконных световодов , которые представляют собой тонкие (от нескольких микрометров до нескольких миллиметров) произвольно изогнутые нити из оптически прозрачного материала (стекло, кварц, пластик). Свет, попадающий на торец световода, может распространяться по нему на большие расстояния за счет полного внутреннего отражения от боковых поверхностей. Световод нельзя изгибать сильно, поскольку при сильном изгибе условие полного внутреннего отражения (26.7) нарушается и свет частично выходит из волокна через боковую поверхность.

Отметим, что первый, третий и четвертый законы геометрической оптики можно вывести из принципа Ферма (принципа наименьшего времени): траектория распространения светового луча соответствует наименьшему времени распространения. И это несложно показать.

В заключение рассмотрим одну из забавных задач геометрической оптики - создание шапки-невидимки. С точки зрения оптики шапка-невидимка могла бы представлять собой систему огибания объекта лучами света.

Сделать такую систему, воспользовавшись законом преломления света, в принципе несложно, основная проблема - в борьбе с сильным затуханием света в преломляющей системе. Поэтому лучшим вариантом может оказаться система из видеорегистратора изображения за объектом и телепередатчика этого изображения перед объектом.

Некоторые оптические законы были уже известны до установления природы света. Основу геометрической оптики образуют четыре закона: 1) закон прямолинейного распространения света; 2) закон независимости световых лучей; 3) закон отражения света; 4) закон преломления света.

Закон прямолинейного распространения света: свет в оптически однородной среде распространяется прямолинейно. Этот закон является приближенным, так как при прохождении света через очень малые отверстия наблюдаются отклонения от прямолинейности, тем большие, чем меньше отверстие.

Закон независимости световых пучков: эффект, производимый отдельным пучком, не зависит от того, действуют ли одновременно остальные пучки или они устранены. Пересечения лучей не мешают каждому из них распространяться независимо друг от друга. Разбивая световой пучок на отдельные световые пучки, можно показать, что действие выделенных световых пучков независимо. Этот закон справедлив лишь при не слишком больших интенсивностях света. При интенсивностях, достигаемых с помощью лазеров, независимость световых лучей перестает соблюдаться.

Закон отражения: отраженный от границы раздела двух сред луч лежит в одной плоскости с падающим лучом и перпендикуляром, проведенным к границе раздела в точке падения; угол отражения равен углу падения.

Закон преломления: луч падающий, луч преломленный и перпендикуляр, проведенный к границе раздела в точке падения, лежат в одной плоскости; отношение синуса угла падения к синусу угла преломления есть величина постоянная для данных сред

sini 1 /sini 2 = n 12 = n 2 / n 1 , очевидно sini 1 /sini 2 = V 1 / V 2 , (1)

где n 12 – относительный показатель преломления второй среды относительно первой. Относительный показатель преломления двух сред равен отношению их абсолютных показателей преломления n 12 = n 2 / n 1 .

Абсолютным показателем преломления среды наз. величина n, равная отношению скорости С электромагнитных волн в вакууме к их фазовой скорости V в среде:

Среда с большим оптическим показателем преломления наз. оптически более плотной.

Из симметрии выражения (1) вытекает обратимость световых лучей , сущность которой состоит в том, что если направить световой луч из второй среды в первую под углом i 2 , то преломленный луч в первой среде выйдет под углом i 1 . При переходе света из оптически менее плотной среды в более плотную получается, что sini 1 > sini 2 , т.е. угол преломления меньше угла падения света, и наоборот. В последнем случае при увеличении угла падения угол преломления увеличивается в большей мере, так что при некотором предельном угле падения i пр угол преломления становится равным π/2. С помощью закона преломления можно рассчитать значение предельного угла падения:

sin i пр /sin(π/2) = n 2 /n 1 , откуда i пр = arcsin n 2 /n 1 . (2)

В этом предельном случае преломленный луч скользит по границе раздела сред. При углах падения i > i пр свет не проникает в глубь оптически менее плотной среды, имеет место явление полного внутреннего отражения. Угол i пр называется предельным углом полного внутреннего отражения.

Явление полного внутреннего отражения используется в призмах полного отражения, которые применяются в оптических приборах: биноклях, перископах, рефрактометрах (приборах, позволяющих определять оптические показатели преломления), в световодах, представляющих собой тонкие, гнущиеся нити (волокна) из оптически прозрачного материала. Свет, падающий на торец световода под углами, большими предельного, претерпевает на границе раздела сердцевины и оболочки полное внутреннее отражение и распространяется только по световедущей жиле. С помощью световодов можно как угодно искривлять путь светового пучка. Для передачи изображений используются многожильные световоды. Рассказать о применении световодов.

Для объяснения закона преломления и искривления лучей при прохождении их через оптически неоднородные среды вводится понятие оптической длины пути луча

L = nS или L = ∫ndS,

соответственно для однородной и неоднородной сред.

В 1660 году французский математик и физик П. Ферма установил принцип экстремальности (принцип Ферма) для оптической длины пути луча, распространяющегося в неоднородных прозрачных средах: оптическая длина пути луча в среде между двумя заданными точками минимальна, или другими словами, свет распространяется по такому пути, оптическая длина которого минимальна.

Фотометрические величины и их единицы. Фотометрия – раздел физики, занимающийся вопросами измерения интенсивности света и его источников. 1.Энергетические величины :

Поток излучения Ф е – величина, численно равная отношению энергии W излучения ко времени t, за которое излучение произошло:

Ф е = W / t, ватт (Вт).

Энергетическая светимость (излучательность) R е – величина, равная отношению потока излучения Ф е, испускаемого поверхностью, к площади S сечения, сквозь которое этот поток проходит:

R е = Ф е / S, (Вт/м 2)

т.е. представляет собой поверхностную плотность потока излучения.

Энергетическая сила света (сила излучения) I e определяется с помощью понятия о точечном источнике света – источнике, размерами которого по сравнению с расстоянием до места наблюдения можно пренебречь. Энергетическая сила света I e величина, равная отношению потока излучения Ф е источника к телесному углу ω, в пределах которого это излучение распространяется:

I e = Ф е /ω, (Вт/ср)- ватт на стерадиан.

Сила света часто зависит от направления излучения. Если она не зависит от направления излучения, то такой источник называется изотропным . Для изотропного источника сила света равна

I e = Ф е /4π.

В случае протяженного источника можно говорить о силе света элемента его поверхности dS.

Энергетическая яркость (лучистость) В е – величина, равная отношению энергетической силы света ΔI e элемента излучающей поверхности к площади ΔS проекции этого элемента на плоскость, перпендикулярную направлению наблюдения:

В е = ΔI e / ΔS. (Вт/ср.м 2)

Энергетическая освещенность (облученность) Е е характеризует степень освещенности поверхности и равна величине потока излучения, падающего на единицу освещаемой поверхности. (Вт/м 2 .

2.Световые величины . При оптических измерениях пользуются различными приемниками излучения, спектральные характеристики чувствительности которых к свету различных длин волн различны. Относительная спектральная чувствительность человеческого глаза V(λ) приведена на рис. V(λ)

400 555 700 λ, нм

Поэтому световые измерения, являясь субъективными, отличаются от объективных, энергетических и для них вводятся световые единицы, используемые только для видимого света. Основной световой единицей в СИ является сила света – кандела (кд), которая равна силе света в заданном направлении источника, испускающего монохроматическое излучение частотой 540·10 12 Гц, энергетическая сила света которого в этом направлении составляет 1/683 Вт/ср.

Определение световых единиц аналогично энергетическим. Для измерения световых величин используют специальные приборы – фотометры.

Световой поток . Единицей светового потока является люмен (лм). Он равен световому потоку, излучаемому изотропным источником света с силой в 1 кд в пределах телесного угла в один стерадиан (при равномерности поля излучения внутри телесного угла):

1 лм = 1 кд·1ср.

Опытным путем установлено, что световому потоку в 1 лм, образованному излучением с длиной волны λ = 555 нм соответствует поток энергии в 0,00146 Вт. Световому потоку в 1 лм, образованному излучением с другой λ, соответствует поток энергии

Ф е = 0,00146/V(λ), Вт.

1 лм = 0,00146 Вт.

Освещенность Е - величина, раная отношению светового потока Ф, падающего на поверхность, к площади S этой поверхности:

Е = Ф/S, люкс (лк).

1 лк – освещенность поверхности, на 1 м 2 которой падает световой поток в 1 лм (1лк = 1 лм/м 2).

Яркость R C (светимость) светящейся поверхности в некотором направлении φ есть величина, равная отношению силы света I в этом направлении к площади S проекции светящейся поверхности на плоскость, перпендикулярную данному направлению:

R C = I/(Scosφ). (кд/м 2).

Определение 1

Оптика – один из разделов физики, который изучает свойства и физическую природу света, а также его взаимодействия с веществами.

Данный раздел делят на три, приведенные ниже, части:

  • геометрическая или, как ее еще называют, лучевая оптика, которая базируется на понятии о световых лучах, откуда и исходит ее название;
  • волновая оптика, исследует явления, в которых проявляются волновые свойства света;
  • квантовая оптика, рассматривает такие взаимодействия света с веществами, при которых о себе дают знать корпускулярные свойства света.

В текущей главе нами будут рассмотрены два подраздела оптики. Корпускулярные свойства света будут рассматриваться в пятой главе.

Задолго до возникновения понимания истинной физической природы света человечеству уже были известны основные законы геометрической оптики.

Закон прямолинейного распространения света

Определение 1

Закон прямолинейного распространения света гласит, что в оптически однородной среде свет распространяется прямолинейно.

Подтверждением этому служат резкие тени, которые отбрасываются непрозрачными телами при освещении с помощью источника света сравнительно малых размеров, то есть так называемым «точечным источником».

Иное доказательство заключается в достаточно известном эксперименте по прохождению света далекого источника сквозь малое отверстие, с образующимся в результате узким световым пучком. Данный опыт подводит нас к представлению светового луча в виде геометрической линии, вдоль которой распространяется свет.

Определение 2

Стоит отметить тот факт, что само понятие светового луча вместе с законом прямолинейного распространения света утрачивают весь свой смысл, в случае если свет проходит через отверстия, размеры которых аналогичны с длиной волны.

Исходя из этого, геометрическая оптика, которая опирается на определение световых лучей – это предельный случай волновой оптики при λ → 0 , рамки применения которой рассмотрим в разделе, посвященном дифракции света.

На грани раздела двух прозрачных сред свет может частично отразиться таким образом, что некоторая часть световой энергии будет рассеиваться после отражения по уже новому направлению, а другая пересечет границу и продолжит свое распространение во второй среде.

Закон отражения света

Определение 3

Закон отражения света , основывается на том, что падающий и отраженный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, находятся в одной плоскости (плоскость падения). При этом углы отражения и падения, γ и α – соответственно, являются равными величинами.

Закон преломления света

Определение 4

Закон преломления света , базируется на том, что падающий и преломленный лучи, также как перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости. Отношение sin угла падения α к sin угла преломления β является величиной, неизменной для двух приведенных сред:

sin α sin β = n .

Ученый В. Снеллиус экспериментально установил закон преломления в 1621 году.

Определение 5

Постоянная величина n – является относительным показателем преломления второй среды относительно первой.

Определение 6

Показатель преломления среды относительно вакуума имеет название – абсолютный показатель преломления .

Определение 7

Относительный показатель преломления двух сред – это отношение абсолютных показателей преломления данных сред, т.е.:

Свое значение законы преломления и отражения находят в волновой физике. Исходя из ее определений, преломление является результатом преобразования скорости распространения волн в процессе перехода между двумя средами.

Определение 8

Физический смысл показателя преломления – это отношение скорости распространения волн в первой среде υ 1 к скорости во второй υ 2:

Определение 9

Абсолютный показатель преломления эквивалентен отношению скорости света в вакууме c к скорости света υ в среде:

На рисунке 3 . 1 . 1 проиллюстрированы законы отражения и преломления света.

Рисунок 3 . 1 . 1 . Законы отражения υ преломления: γ = α ; n 1 sin α = n 2 sin β .

Определение 10

Среда, абсолютный показатель преломления которой является меньшим, является оптически менее плотной .

Определение 11

В условиях перехода света из одной среды, уступающей в оптической плотности другой (n 2 < n 1) мы получаем возможность наблюдать явление исчезновения преломленного луча.

Данное явление можно наблюдать при углах падения, которые превышают некий критический угол α п р. Этот угол носит название предельного угла полного внутреннего отражения (см. рис. 3 . 1 . 2).

Для угла падения α = α п р sin β = 1 ; значение sin α п р = n 2 n 1 < 1 .

При условии, что второй средой будет воздух (n 2 ≈ 1) , то равенство будет допустимо переписать в вид: sin α п р = 1 n , где n = n 1 > 1 – абсолютный показатель преломления первой среды.

В условиях границы раздела «стекло–воздух», где n = 1 , 5 , критический угол равен α п р = 42 ° , в то время как для границы «вода–воздух» n = 1 , 33 , а α п р = 48 , 7 ° .

Рисунок 3 . 1 . 2 . Полное внутреннее отражение света на границе вода–воздух; S – точечный источник света.

Феномен полного внутреннего отражения широко используется во многих оптических устройствах. Одним из таких устройств является волоконный световод – тонкие, изогнутые случайным образом, нити из оптически прозрачного материала, внутри которых свет, попавший на торец, может распространяться на огромные расстояния. Данное изобретение стало возможным только благодаря правильному применению феномена полного внутреннего отражения от боковых поверхностей (рис 3 . 1 . 3).

Определение 12

Волоконная оптика – это научно-техническое направление, основывающееся на разработке и использовании оптических световодов.

Рисунок 3 . 1 . 3 . Распространение света в волоконном световоде. При сильном изгибе волокна закон полного внутреннего отражения нарушается, и свет частично выходит из волокна через боковую поверхность.

Рисунок 3 . 1 . 4 . Модель отражения и преломления света.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

В основе разработки практически всех оптических приборов и систем лежат законы распространения света. Некоторые из них учитывают двойственную природу света, некоторые - нет. Наиболее общие законы распространения света, не связанные с его природой, рассматриваются именно в геометрической оптике. С этими законами вам и предстоит познакомиться на этом уроке.

Тема: Оптика

Урок: Законы геометрической оптики

Геометрическая оптика является самой древней частью оптики как науки.

Геометрическая оптика - это раздел оптики, в котором рассматривают вопросы распространения света в различных оптических системах (линзах, призмах и т. д.) без рассмотрения вопроса о природе света.

Одним из основных понятий в оптике и, в частности, в геометрической оптике, является понятие луча.

Световой луч - линия, вдоль которой распространяется световая энергия.

Световой луч - это пучок света, толщина которого много меньше расстояния, на которое он распространяется. Такое определение близко, например, к определению материальной точки, которое дается в кинематике.

Первый закон геометрической оптики (Закон о прямолинейном распространении света): в однородной прозрачной среде свет распространяется прямолинейно.

По теореме Ферма: свет распространяется по такому направлению, время распространения по которому будет минимально.

Второй закон геометрической оптики (Законы отражения):

1. Отраженный луч лежит в одной плоскости с падающим лучом и перпендикуляром к границе раздела двух сред.

2. Угол падения равен углу отражения (см. Рис. 1).

∟α = ∟β

Рис. 1. Закон отражения

Третий закон геометрической оптики (Закон преломления) (см. Рис. 2)

1. Преломленный луч лежит в одной плоскости с падающим лучом и перпендикуляром, восстановленным в точку падения.

2. Отношение синуса угла падения к синусу угла преломления есть величина, постоянная для данных двух сред, которая называется показателем преломления (n).

Интенсивность отраженного и преломленного луча зависит от того, какова среда и что собой представляет граница раздела.

Рис. 2. Закон преломления

Физический смысл показателя преломления:

Показатель преломления является относительным, так как измерения проводятся относительно двух сред.

В том случае, если одна из сред - это вакуум:

С - скорость света в вакууме,

n - абсолютный показатель преломления, характеризующий среду относительно вакуума.

Если свет переходит из оптически менее плотной среды в оптически более плотную среду, то скорость света уменьшается.

Оптически более плотная среда - среда, в которой скорость света меньше.

Оптически менее плотная среда - среда, в которой скорость света больше.

Существует предельный угол преломления - наибольший угол падения луча, при котором еще имеет место преломление при переходе луча в менее плотную среду. При углах падения больше предельного происходит полное внутреннее отражение (см. Рис. 3).

Рис. 3. Закон полного внутреннего отражения

Границы применимости геометрической оптики заключаются в том, что необходимо учитывать размер препятствий для света.

Свет характеризуется длиной волны, равной примерно 10 -9 метра

Если препятствия больше длины волны, то можно использовать размеры геометрической оптики.

  1. Физика. 11 класс: Учебник для общеобразоват. учреждений и шк. с углубл. изучением физики: профильный уровень / А.Т. Глазунов, О.Ф. Кабардин, А.Н. Малинин и др. Под ред. А.А. Пинского, О.Ф. Кабардина. Рос. акад. наук, Рос. акад. образования. - М.: Просвещение, 2009.
  2. Касьянов В.А. Физика. 11 кл.: Учеб. для общеобразоват. учреждений. - М.: Дрофа, 2005.
  3. Мякишев Г.Я. Физика: Учеб. для 11 кл. общеобразоват. учреждений. - М.: Просвещение, 2010.
  1. Санкт-Петербургская Школа ().
  2. AYP.ru ().
  3. Техническая и учебно-методическая документація ().

Рымкевич А.П. Физика. Задачник. 10-11 кл. - М.: Дрофа, 2010. - № 1023, 1024, 1042, 1054.

  1. Зная скорость света в вакууме, найдите скорость света в алмазе.
  2. Почему, сидя у костра, мы видим предметы, расположенные напротив, колеблющимися?
  3. Прокомментируйте опыт: положите монетку на стол и поставьте на нее пустую стеклянную банку (см. Рис. 4). Посмотрите на монетку сбоку сквозь стенку банки (или попросите кого-нибудь смотреть на монетку). Налейте воды полную банку и посмотрите вновь сбоку на дно банки. Куда исчезла монетка?

Геометрическая оптика использует представление о световых лучах, распространяющихся независимо друг от друга, прямолинейных в однородной среде, отражающихся и преломляющихся на границах сред с разными оптическими свойствами. Вдоль лучей происходит перенос энергии световых колебаний.

Показатель преломления среды. Оптические свойства прозрачной среды характеризуются показателем преломления который определяет скорость (точнее, фазовую скорость) световых волн:

где с - скорость света в вакууме. Показатель преломления воздуха близок к единице (пвозд воды его значение равно 1,33, а у стекла в зависимости от сорта может составлять от 1,5 до 1,95. Особенно велик показатель преломления алмаза - приблизительно 2,5.

Значение показателя преломления, вообще говоря, зависит от длины волны Я (или от частоты : Эту зависимость называют дисперсией света. Например, у хрусталя (свинцового стекла) показатель преломления плавно меняется от 1,87 для красного света с длиной волны до 1,95 для синего света с

Показатель преломления связан с диэлектрической проницаемостью среды (для данной длины волны или частоты) соотношением Среда с большим значением показателя преломления называется оптически более плотной.

Законы геометрической оптики. Поведение световых лучей подчиняется основным законам геометрической оптики.

1. В однородной среде световые лучи прямолинейны (закон прямолинейного распространения света).

2. На границе двух сред (или на границе среды с вакуумом) возникает отраженный луч, лежащий в плоскости, образуемой падающим лучом и нормалью к границе, т. е. в плоскости падения, причем угол отражения равен углу падения (рис. 224):

(закон отражения, света).

3. Преломленный луч лежит в плоскости падения (при падении света на границу изотропной среды) и образует с нормалью к границе угол (угол преломления), определяемый соотношением

(закон преломления света или закон Снеллиуса).

При переходе света в оптически более плотную среду луч приближается к нормали Отношение называют относительным показателем преломления двух сред (или показателем преломления второй среды относительно первой).

Рис. 224. Отражение и преломление спета на плоской границе двух сред

При падении света из вакуума на границу среды с показателем преломления закон преломления принимает вид

Для воздуха показатель преломления близок к единице поэтому и при падении света из воздуха на некоторую среду можно пользоваться формулой (4).

При переходе света в оптически менее плотную среду угол падения не может превышать предельного значения так как угол преломления не может превышать (рис. 225):

Если угол падения происходит полное отражение, т. е. вся энергия падающего света возвращается в первую, оптически более плотную, среду. Для границы стекло - воздух

Рис. 225. Предельный угол полного отражения

Принцип Гюйгенса и законы геометрической оптики. Законы геометрической оптики были установлены задолго до выяснения природы света. Эти законы могут быть выведены из волновой теории на основе принципа Гюйгенса. Их применимость ограничена явлениями дифракции.

Остановимся подробнее на переходе от волновых представлений о распространении света к представлениям геометрической оптики. С помощью принципа Гюйгенса по заданной волновой поверхности падающей волны можно построить волновые поверхности преломленной и отраженной волн. При этом следует учесть, что световые лучи перпендикулярны волновым поверхностям.

Рассмотрим плоскую световую волну, падающую из среды 1 (с показателем преломления на плоскую границу раздела со средой 2 (с показателем преломления под углом (рис. 226). Угол падения - это угол между падающим лучом и нормалью к границе раздела.

Рис. 226. Построение Гюйгенса для отражения и преломления света

В то же время - это угол между границей раздела и волновой поверхностью падающей волны. Пусть в некоторый момент эта волновая поверхность занимает положение Спустя время она достигнет точки В границы раздела. За это же время вторичная волна из точки А, распространяющаяся в среде X, расширится до радиуса Подставляя сюда получаем Отсюда ясно, что волновая поверхность отраженной волны, представляющая собой огибающую всех вторичных сферических волн с центрами на отрезке наклонена к границе раздела на угол который равен (равенство углов и следует из равенства прямоугольных треугольников и имеющих общую гипотенузу и равные катеты и Таким образом, отраженный луч перпендикулярный фронту отраженной волны, образует с нормалью угол равный углу падения

Аналогично из этого построения Гюйгенса можно получить и закон преломления. В среде 2 вторичные волны распространяются со скоростью и поэтому выходящая из точки А сферическая волна спустя время имеет радиус Подставляя сюда находим Разделив обе части этого равенства на приходим к соотношению

которое, очевидно, совпадает с законом преломления (3), так как угол наклона волновой поверхности волны в среде 2 есть в то же время и угол между преломленным лучом и нормалью к границе раздела (угол преломления, рис. 226).

Отражение и преломление на искривленной поверхности. Плоская волна характеризуется тем свойством, что ее волновые поверхности представляют собой неограниченные плоскости, а направление ее распространения и амплитуда везде одинаковы. Часто электромагнитные волны, не являющиеся плоскими, можно приближенно рассматривать как плоские на небольшом участке пространства. Для этого необходимо, чтобы амплитуда и направление распространения волны почти не менялись на протяжении расстояний порядка длины волны. Тогда также можно ввести понятие лучей, т. е. линий, касательная к которым в каждой точке совпадает с направлением распространения волны. Если при этом граница раздела двух сред, например поверхность линзы, может считаться приблизительно плоской на расстояниях порядка длины волны, то поведение лучей света на такой границе будет описываться теми же законами отражения и преломления.

Изучение законов распространения световых волн в этом случае составляет предмет геометрической оптики, поскольку в этом приближении оптические законы можно сформулировать на языке геометрии. Многие оптические явления, такие, как, например, прохождение света через оптические системы, формирующие изображение, можно рассматривать исходя из представления о световых лучах, совершенно отвлекаясь от волновой природы света. Поэтому представления геометрической оптики справедливы лишь в той степени, в какой можно пренебречь явлениями дифракции световых волн. Дифракция сказывается тем слабее, чем меньше длина волны. Это значит, что геометрическая оптика соответствует предельному случаю малых длин волн:

Физическую модель пучка световых лучей можно получить, если пропустить свет от источника пренебрежимо малого размера через небольшое отверстие в непрозрачном экране. Выходящий из отверстия свет заполняет некоторую область, и если длина волны пренебрежимо мала по сравнению с размерами отверстия, то на небольшом расстоянии от него можно говорить о пучке световых лучей с резкой границей.

Интенсивность отраженного и преломленного света. Законы отражения и преломления позволяют определить только направление соответствующих световых лучей, но ничего не говорят об их интенсивности. Между тем опыт показывает, что соотношение интенсивностей отраженного и преломленного лучей, на которые расщепляется исходный луч на границе раздела, сильно зависит от угла падения. Например, при нормальном падении света на поверхность стекла отражается около 4% энергии падающего светового пучка, а при падении на поверхность воды - только 2 %. Но при скользящем падении поверхности стекла и воды отражают почти все падающее излучение. Благодаря этому мы можем любоваться зеркальными отражениями берегов в спокойной прозрачной воде горных озер.

Рис. 227. У естественного спета колебания сектора Е происходят по всевозможных направлениях в плоскости, перпендикулярной лучу

Естественный свет. Световая волна, как и любая электромагнитная волна, поперечна: вектор Е лежит в плоскости, перпендикулярной направлению распространения. Испускаемый обычными источниками (например, раскаленными телами) свет неполяризован. Это значит, что в световом луче колебания вектора Е происходят во всевозможных направлениях в плоскости, перпендикулярной направлению луча (рис. 227). Такой неполяризованный свет называется естественным. Его можно представить как некогерентную смесь двух световых волн одинаковой интенсивности, линейно поляризованных в двух взаимно перпендикулярных направлениях. Эти направления можно выбрать произвольно.

Поляризация света при отражении. При изучении отражения неполяризованного света от границы раздела сред удобно выбрать одно из двух независимых направлений вектора Е в плоскости падения, а второе - перпендикулярно ей. Условия отражения этих двух волн оказываются различными: волна, у которой вектор Е перпендикулярен плоскости падения (т. е. параллелен границе раздела) при всех углах падения (кроме 0 и 90°), отражается сильнее. Поэтому отраженный свет оказывается частично поляризованным, а при отражении под некоторым определенным углом (для стекла около 56°) - полностью поляризованным.

Этим обстоятельством пользуются для устранения бликов, например при фотографировании пейзажа с водной поверхностью. Подбирая должным образом ориентацию поляризационного светофильтра, пропускающего световые колебания только определенной поляризации, можно практически полностью устранить блики на фотографии.

Принцип Ферма. Основные законы геометрической оптики - закон прямолинейного распространения света в однородной среде, законы отражения и преломления света на границе раздела двух сред - могут быть получены с помощью принципа Ферма. Согласно этому принципу действительный путь распространения монохроматического луча света есть путь, для прохождения которого свету требуется экстремальное (как правило, минимальное) время по сравнению с любым другим близким к нему мыслимым путем между теми же точками.

Рис. 228. К выводу закона отражения света из принципа Ферма

Возьмем для примера закон отражения света. Сразу видно, что он непосредственно следует из принципа Ферма. Пусть луч света, вышедшего из точки А, отражается от зеркала в некоторой точке С и приходит в заданную точку В (рис. 228). Согласно принципу Ферма, проходимый светом путь должен быть короче любого другого пути по близкой траектории, например Чтобы найти положение точки отражения С, отложим на опущенном из точки А перпендикуляре к зеркалу отрезок равный и соединим точки А и В отрезком прямой.

Пересечение этого отрезка с поверхностью зеркала и дает положение точки С. Действительно, легко видеть, что и потому путь света из точки А в точку В равен отрезку Путь света из А в В через любую другую точку равный будет длиннее, так как прямая - это кратчайшее расстояние между двумя точками А и В. Из рис. 228 сразу видно, что именно такое положение точки С соответствует равенству углов падения и отражения:

Рис. 229. Мнимое изображение точки А в плоском зеркале

Изображение в плоском зеркале. Точка А, расположенная симметрично точке А относительно поверхности плоского зеркала, представляет собой изображение точки А в этом зеркале. В самом деле, узкий пучок лучей, выходящих из

А, отражающихся в зеркале и попадающих в глаз наблюдателя (рис. 229), будет казаться выходящим из точки А. Создаваемое плоским зеркалом изображение называется мнимым, так как в точке А пересекаются не сами отраженные лучи, а их продолжения назад. Очевидно, что изображение протяженного предмета в плоском зеркале будет равным по размерам самому предмету.

Что такое световые лучи? Как это понятие соотносится с понятием волновой поверхности? Какое отношение имеют лучи к направлению распространения световых колебаний?

В каких условиях можно использовать представление о световых лучах?

Что такое показатель преломления среды? Как он связан со скоростью распространения света?

Сформулируйте основные законы геометрической оптики. Что такое плоскость падения? Объясните на основе соображений симметрии, почему луч как при отражении, так и при преломлении не выходит из этой плоскости.

При каких условиях отражение света на границе раздела будет полным? Что такое предельный угол полного отражения?

Поясните, как можно получить законы прямолинейного распространения, отражения и преломления на основе принципа Гюйгенса.

Почему законы отражения и преломления света, сформулированные для плоской границы раздела, можно применять и в случае искривленных поверхностей (линзы, капли воды и др.)?

Приведите примеры наблюдавшихся вами явлений, свидетельствующих о зависимости интенсивности отраженного света от угла падения.

Почему при отражении естественного света получается частично поляризованный свет?

Сформулируйте принцип Ферма и покажите, что из него следует закон отражения света.

Докажите, что изображение предмета в плоском зеркале равно по размерам самому предмету.

Принцип Ферма и формула линзы. Скорость света в среде с показателем преломления равна Поэтому принцип Ферма можно сформулировать как требование минимальности оптической длины луча при распространении света между двумя заданными точками. Под оптической длиной луча понимается произведение показателя преломления на длину пути луча. В неоднородной среде оптическая длина складывается из оптических длин на отдельных участках. Использование этого принципа позволяет рассмотреть некоторые задачи с несколько иной точки зрения, чем при непосредственном применении законов отражения и преломления. Например, при рассмотрении фокусирующей оптической системы вместо применения закона преломления можно просто потребовать равенства оптических длин всех лучей.

Получим с помощью принципа Ферма формулу тонкой линзы, не прибегая к закону преломления. Для определенности будем рассматривать двояковыпуклую линзу со сферическими преломляющими поверхностями, радиусы кривизны которых равны (рис. 230).

Хорошо известно, что с помощью собирающей линзы можно получить действительное изображение точки. Пусть предмет, его изображение. Все лучи, исходящие из и прошедшие через линзу, собираются в одной точке Пусть лежит на главной оптической оси линзы, тогда изображение также лежит на оси. Что значит получить формулу линзы? Это значит установить связь между расстояниями от предмета до линзы и от линзы до изображения и величинами, характеризующими данную линзу: радиусами кривизны ее поверхностей и показателем преломления

Из принципа Ферма следует, что оптические длины всех лучей, выходящих из источника и собирающихся в точке, являющейся его изображением, одинаковы. Рассмотрим два из этих лучей: один, идущий вдоль оптической оси, второй - через край линзы (рис. 230а).

Рис. 230. К вьшоду формулы тонкой линзы

Несмотря на то, что второй луч проходит большее расстояние, его путь в стекле короче, чем у первого, так что время распространения света для них одинаково. Выразим это математически. Обозначения величин всех отрезков указаны на рисунке. Приравняем оптические длины первого и второго лучей:

Выразим по теореме Пифагора:

Теперь воспользуемся приближенной формулой которая справедлива при с точностью до членов порядка Считая малым по сравнению с с точностью до членов порядка имеем

Аналогично для получаем

Подставляем выражения (8) и (9) в основное соотношение (7) и приводим подобные члены:

В этой формуле в случае тонкой линзы можно пренебречь величинами в знаменателях правой части по сравнению с и очевидно, что в левой части выражения следует сохранить, ибо этот член стоит множителем.

С той же точностью, что и в формулах (8) и (9), с помощью теоремы Пифагора можно представить в виде (рис. 230б)

Теперь остается только подставить эти выражения в левую часть формулы (10) и сократить обе части равенства на :

Это и есть искомая формула тонкой линзы. Вводя обозначение

ее можно переписать в виде

Фокусное расстояние линзы. Из формулы (12) нетрудно понять, что есть фокусное расстояние линзы: если источник находится на бесконечности (т.е. на линзу падает параллельный пучок лучей), его изображение находится в фокусе. Полагая получаем

Аберрации. Полученное свойство фокусировки параллельного пучка монохроматических лучей является, как видно из проделанного вывода, приближенным и справедливо лишь для узкого пучка, т. е. для лучей, не слишком сильно отстоящих от оптической оси. Для широких пучков лучей имеет место сферическая аберрация, проявляющаяся в том, что далекие от оптической оси лучи пересекают ее не в фокусе (рис. 231). В результате изображение бесконечно удаленного точечного источника, создаваемое широким пучком лучей, преломленных линзой, оказывается несколько размытым.

Кроме сферической аберрации, линза как оптический прибор, формирующий изображение, обладает рядом других недостатков.

Например, даже узкий параллельный пучок монохроматических лучей, образующий некоторый угол с оптической осью линзы, после преломления не собирается в одну точку. При использовании немонохроматического света у линзы проявляется еще и хроматическая аберрация, связанная с тем, что показатель преломления зависит от длины волны. В результате, как видно из формулы (11), узкий параллельный пучок лучей белого света пересекается после преломления в линзе не в одной точке: лучи каждого цвета имеют свой фокус.

При конструировании оптических приборов удается в большей или меньшей степени устранить эти недостатки путем применения специально рассчитанных сложных многолинзовых систем. Однако одновременно устранить все недостатки невозможно. Поэтому приходится идти на компромисс и, рассчитывая оптические приборы, предназначенные для определенной цели, добиваться устранения одних недостатков и мириться с присутствием других. Например, объективы, предназначенные для наблюдения объектов малой яркости, должны пропускать возможно больше света, что вынуждает мириться с некоторыми аберрациями, неизбежными при использовании широких пучков света.

Рис. 231. Сферическая аберрация линзы

Для объективов телескопов, где изучаемыми объектами являются звезды - точечные источники, расположенные вблизи оптической оси прибора, особенно важно устранить сферическую и хроматическую аберрацию для широких пучков, параллельных оптической оси. Устранить хроматическую аберрацию проще всего путем использования в оптической системе отражения вместо преломления. Так как лучи всех длин волн отражаются одинаково, то телескоп-рефлектор, в отличие от рефрактора, полностью лишен хроматической аберрации. Если при этом еще надлежащим образом выбрать форму поверхности отражающего зеркала, то можно полностью избавиться и от сферической аберрации для пучков, параллельных оптической оси. Для получения точечного осевого изображения зеркало должно быть параболическим.

Возводя обе части в квадрат и приводя подобные члены, найдем

Это уравнение параболы.

Рис. 232. Все параллельные лучи после отражения от параболического зеркала собираются в точке

Параболические зеркала используются во всех крупнейших телескопах. В этих телескопах устранены сферическая и хроматическая аберрации; однако параллельные пучки, идущие даже под небольшими углами к оптической оси, после отражения не пересекаются в одной точке и дают сильно искаженные внеосевые изображения. Поэтому пригодное для работы поле зрения оказывается очень небольшим, порядка нескольких десятков угловых минут,

Поясните, почему применительно к фокусирующей оптической системе принцип Ферма формулируется как условие равенства оптических длин всех лучей от точки предмета до ее изображения.

Выведите с помощью принципа Ферма закон преломления света на границе раздела двух сред.

Сформулируйте приближения, при выполнении которых справедлива формула тонкой линзы.

В чем проявляются сферическая и хроматическая аберрации линзы?

Какие преимущества и какие недостатки имеет параболическое зеркало по сравнению со сферическим?

Покажите, что эллиптическое зеркало отражает все лучи, вышедшие из одного фокуса эллипсоида, в другой фокус.