Водяной пар способен. Водяной пар

При слове "пар", я вспоминаю времена, когда ещё учился в начальных классах. Тогда, приходя из школы домой, родители начинали готовить обед, и ставили кастрюлю с водой на газовую плиту. И уже через десять минут, в кастрюльке начинали появляться первые пузырьки. Этот процесс всегда меня завораживал, мне казалось, что я могу смотреть на это вечно. А потом, через некоторое время после появления пузырьков, начинал идти сам пар. Однажды, я спросил маму: "А откуда идут эти белые тучки?" (Так раньше я их называл). На что она мне отвечала: "Это всё происходит из-за нагрева воды". Хотя ответ и не давал полного представления о процессе возникновения пара, на уроках школьной физики я узнал о паре всё, что хотел. Итак...

Что же есть водяной пар

С научной точки зрения, водяной пар - просто одно из трёх физических состояний самой воды . Он, как известно, возникает при нагревании воды. Как и она сама, пар не имеет ни цвета, ни вкуса, ни запаха. Но не все знают, что клубы пара обладают своим давлением, которое зависит от его объёма. А выражается оно в паскалях (в честь небезызвестного учёного).

Водяной пар окружает нас не только, когда мы варим что-нибудь на кухне. Он постоянно содержится в уличном воздухе и атмосфере. И его процент содержания называется "абсолютной влажностью".


Факты о водяном паре и его особенности

Итак, несколько интересных моментов:

  • чем выше температура , которая действует на воду, тем быстрее идёт процесс испарения;
  • помимо этого, скорость испарения увеличивается с размерами площади поверхности, на которой эта вода находится. Другими словами, если мы начнём нагревать небольшой водный слой на широкой металлической чашке, то испарение пройдет весьма быстро;
  • для жизни растений нужна не только жидкая вода, но и газообразная . Объяснить этот факт можно тем, что с листьев любого растения постоянно идут испарения, охлаждающие его. Попробуйте в знойный день потрогать лист дерева – и вы заметите, что он прохладный;
  • то же самое касается человека, с нами работает та же система, что и с растениями выше. Испарения охлаждают нашу кожу в жаркий день . Удивительно, но даже при небольших нагрузках, наш организм покидает около двух литров жидкости в час. Что уж тут говорить про усиленные нагрузки и знойные летние деньки?

Вот таким образом можно описать сущность пара и его роль в нашем мире. Надеюсь, вы открыли для себя много интересного!

Тема 2. Основы теплотехники.

Теплотехника - это наука, изучающая методы получения, преобразования, передачи и использования теплоты. Тепловая энергия получается при сжигании органических веществ, называемых топливом.

Основы теплотехники составляют:

1. Термодинамика - наука, изучающая превращение энергии тепла в другие виды энергии (например: тепловая энергия в механическую, хими­ческую и т. д.)

2. Теплопередача - изучает теплообмен между двумя теплоносите­лями через поверхность нагрева.

Рабочим телом является теплоноситель (водяной пар или горячая вода), который способен передавать теплоту.

В котельной теплоносителем (рабочим телом) является горячая вода и водяной пар с температурой 150°С или водяной пар с температурой до 250°С. Для отопления жилых и обще­ственных зданий используется горячая вода, это связано, с санитарно-гигиеническими условиями, возможностью легкого изменения ее темпера­туры в зависимости от температуры наружного воздуха. Вода обладает значительной плотностью по сравнению с паром, что позволяет передавать на большие расстояния значительное количество тепла при небольшом объеме теплоносителя. В систему отопления зданий вода подается с тем­пературой не выше 95°С во избежание пригорания пыли на приборах ото­пления иожогов от систем отопления. Пар используется для отопления промышленных зданий и в производственно-технологических системах.

Параметры рабочего тела

Теплоноситель, получая или отдавая тепловую энергию, изменяет свое состояние.

Например: Вода в паровом котле нагревается, превращается в пар, ко­торый имеет определенную температуру и давление. Пар поступает в па­роводяной подогреватель, сам охлаждается, превращается в конденсат. Температура нагреваемой воды увеличивается, температура пара и конден­сата понижается.

Основными параметрами рабочего тела являются температура, давление, удельный объем, плотность.

t, P- определяется приборами: манометрами, термометрами.

Удельный объем и плотность является расчетной величиной.

1. Удельный объем - объем занимаемый единицеймассы вещества при

0°С и атмосферном давлении 760 мм.рт.ст. (при нормальных условиях)

где: V- объем (м 3); m- масса вещества (кг); стандартное условие: Р=760мм р.ст. t=20 о С

2. Плотность - отношение массы вещества к его объему. каждое вещество имеет свою плотность:

В практике применяется относительная плотность – отношение плотности данного газа к плотности стандартного вещества (воздуха) при нормальных условиях (t° = 0°С: 760 мм. рт.ст.)

Сравнивая плотность воздуха с плотностью метана, мы можем определить из каких мест брать пробу на наличие метана.

получаем,

газ легче воздуха, значит, он заполняет верхнюю часть любого объема, проба берется из верхней части топки котла, колодца, камер, помещения. Газоанализаторы устанавливаются в верхней части помещений.

(мазут легче, занимает верхнюю часть)

Плотность угарного газа почти, такая как у воздуха, поэтому проба на угарный газ берется в 1.5 метров от пола.

3. Давление - эта сила, действующая на единицу площади поверхности.

Давление силы, равной 1Н, равномерно распределенное на поверх­ности 1м 2 принято за единицу давления и равно 1Па (Н/м 2) в системе СИ (сейчас в школах, в книгах все идет в Па, приборы тоже стали в Па).

Величина Па мала по значению, пример: если взять 1 кг воды разлить на 1 метр получаем 1 мм.в.ст. ,поэтому вводятся множители и приставки- МПа, КПа…

В технике применяются более крупные единицы измерения

1кПа=10 3 Па; 1МПа=10 б Па; 1ГПа=10 9 Па.

Вне системные единицы измерения давления кгс/м 2 ; кгс/см 2 ;мм.в.ст;мм.р.ст.

1 кгс/м 2 = 1 мм.в ст =9,8 Па

1 кгс/см 2 = 9,8 . 10 4 Па ~ 10 5 Па = 10 4 кгс/м 2

Давление не редко измеряют в физических и технических атмосферах.

Физическая атмосфера - среднее давление атмосферного воздуха на уровне моря при н.у.

1атм = 1,01325 . 10 5 Па = 760 мм рт.ст. = 10,33 м вод. ст = 1,0330 мм в. ст. = 1,033 кгс/ см 2 .

Техническая атмосфера- давление вызываемое силой в 1кгс равномерно распределенное по нормальной к ней поверхности площадью в 1см 2 .

1ат = 735 мм рт. ст. = 10 м. в. ст. = 10.000 мм в. ст. = =0,1 МПа= 1 кгс/см 2

1 мм в. ст. - сила, равная гидростатическому давлению водяного сто­лба высотой в 1 мм на плоское основание 1мм в. ст = 9,8 Па.

1 мм. рт. ст - сила, равная гидростатическому давлению столба ртути высотой 1 мм на плоское основание. 1 мм рт. ст. = 13,6 мм. в. ст.

В технических характеристиках насосов вместо давления употреб­ляется термин напор. Единицей измерения напора является м. вод. ст. Например: Напор создаваемый насосом равен 50 м вод. ст. это значит, он может поднять воду на высоту 50 м.

Виды давления : избыточное, вакуум (разрежение, тяга), абсолютное, атмосферное .

Если стрелка отклоняется в строну большую нуля то это избыточное давление, в меньшую – разряжение.

Абсолютное давление:

Р абс =Р изб +Р атм

Р абс =Р вак +Р атм

Р абс =Р атм -Р разр

где: Р атм =1 кгс/см 2

Атмосферное давление - среднее давление атмосферного воздуха на уровне моря при t° = 0°С и нормальном атмосферном Р =760 мм. рт. ст.

Избыточное давление - давление выше атмосферного (в замкнутом объеме). В котельных под избыточным давлением находятся вода, пар в котлах и трубопроводах. Р изб. измеряется приборами манометрами.

Вакуум (Разрежение) - давление в замкнутых объемах меньше атмосферного (вакуум). Топки и дымоходы котлов находятся под разрежением. Разрежение измеряется приборами тягомерами.

Абсолютное давление - избыточное давление или разрежение с уче­том атмосферного давления.

По назначению давление бывает:

1). Русловное - наибольшее давление при t=20 o С

2). Ррабочее – максимально избыточное давление в котле, при котором обеспечивается длительная работа котла при нормальных условиях эксплуатации (указывается в производственной инструкции).

3). Рразрешенное - максимально допустимое давление, установленное по результатам технического освидетельствования или контрольного расчета на прочность.

4). Ррасчетное – максимально избыточное давление, на котором производится расчет прочность элементов котла.

5). Рпробное - избыточное давление, при котором производят гидравлические испытания элементов котла на прочность и плотность (один из видов технического освидетельствования).

4. Температура - это степень нагретости тела, измеряется в градусах. Определяет направление самопроизвольной передачи тепла от более нагретого к менее нагретому те­лу.

Передача тепла будет иметь место до того момента пока температуры не станут равными, т. е. наступит температурное равновесие.

Используются две шкалы: международная - Кельвина и практическая Цельсия t °С.

За ноль в этой шкале принята температура плавления льда, за сто градусов – температура кипения воды при атм. давлении (760 мм рт. ст.).

За начало отсчета в термодинамической шкале температур Кельвина применят абсолютный нуль (низшая теоретически возможная температура, при которой отсутствует движение молекул). Обозначается Т.

1 Кельвин по величине равен 1° шкалы Цельсия

Температура таяния льда равна 273К. Температура кипения воды равна 373К

Т=t + 273; t = T-273

Температура кипения зависит от давления.

Например, При Р аб c = 1,7 кгс/см 2 . Вода кипит при t = 115°С.

5. Теплота - энергия, которая может передаваться от более нагретого те­ла к менее нагретому.

В системе СИ единицей измерения теплоты и энергии является Джоуль (Дж). Внесистемная единица измерения теплоты - калория (кал.).

1 кал. - количество теплоты необходимое для нагрева 1 г Н 2 О на 1°С при

Р = 760 мм. рт.ст.

1 кал. =4,19Дж

6.Теплоемкость способность тела поглощать теплоту. Для того чтобы два различных вещества с одинаковой массой нагреть до одинаковой температуры, нужно затратить различное количество теплоты.

Удель­ная теплоемкость воды – количество тепла которое необходимо сообщить единицей вещества чтобы повысить его t на 1°С, равна 1 ккал/кг град.

Способы передачи теплоты.

Различают, три способа переноса теплоты:

1.теплопроводность;

2.излучение (радиация);

3.конвекция.

Теплопроводность-

Перенос теплоты вследствие теплового движе­ния молекул, атомов и свободных электронов.

Каждое вещество имеет свою теплопроводность, она зависит от хими­ческого состава, структуры, влажности материала.

Количественной характеристикой теплопроводности является коэф­фициент теплопроводности этоколичество теплоты, передаваемые через единицу поверхности нагрева в единицу времени при разности t в о С и толщине стенки в 1 метр.

Коэффициент теплопроводности ( ):

Медь = 330 ккал . м/м 2. ч . град

Чугун = 5 4 ккал . м/м 2. ч . град

Сталь =39 ккал . м/м 2. ч . град

Видно что: хорошей теплопроводностью обладают металлы, лучше всего медь.

Асбест =0,15 ккал . м/м 2. ч . град

Сажа =0,05-0, ккал . м/м 2. ч . град

Накипь =0,07-2 ккал . м/м 2. ч . град

Воздух =0,02 ккал . м/м 2. ч . град

Слабо проводят теплоту пористые тела (асбест, сажа, накипь).

Сажа затрудняет передачу тепла от топочных газов к стенке котла (проводит тепло хуже стали в 100 раз), что приводит к перерасходу топлива, снижению выработки пара или горячей воды. При наличии сажи повышается температура уходящих газов. Все это ведет и уменьшению КПД котла. При работе котлов ежечасно по приборам (логометр) контролируется t ух.газов, значения которых указаны в режимной карте котла. Если t ух.газов повысилась то производится обдувка поверхности нагрева.

Накипь образуется внутри труб (в 30-50 раз хуже проводит тепло, чем сталь), тем самым уменьшает теплопередачу от стенки котла к воде, в резуль­тате стенки перегреваются, деформируются, разрываются (разрыв труб котла). На­кипь в 30-50 раз хуже проводит тепло, чем сталь

Конвекция -

Перенос теплоты перемешиванием или перемещением частиц между собой (характерна только для жидкостей и газов). Различают конвекцию естественную и принудительную.

Естественная конвекция - свободное движение жидкости или газов за счет разности плотностей неравномерно нагретых слоев.

Принудительная конвекция - вынужденное движение жидкости или газов за счет давления или разрежения, создаваемых насосами, дымосо­сами и вентиляторами.

Способы увеличения конвективного теплообмена:

§ Увеличение скорости потока;

§ Турбулизация (завихрение);

§ Увеличение поверхности нагрева (за счет установки ребер);

§ Увеличение разности температур между греющей и нагреваемой средами;

§ Противоточное движение сред (противоток) .

Излучение (радиация)-

Теплообмен между телами находящимися на расстоянии друг от друга за счет лучистой энергии, носителями которой являются электромагнитные колебания: происходит превращение тепловой энергии в лучистую и наоборот, из лучистой в тепловую.

Излучение наиболее эффективный способ передачи теплоты, особенно если изучающее тело имеет высокую температуру, а лучи на­правлены перпендикулярно к нагреваемой поверхности.

Для улучшения теплообмена излучением в топках котлов выкладываются из огнеупорных материалов специальные щели, которые одновременно являются излучателями теплоты и стабилизаторами горения.

Поверхность нагрева котла – поверхность, с которой с одной стороны омывается газами с другой стороны водой.

Рассмотренные выше 3 вида теплообмена в чистом виде встреча­ются редко. Практически один вид теплообмена сопровождается другим. В котле присутствуют все три вида теплообмена, который называется сложным теплообменом.

В топке котла:

А) от факела горелки к внешней поверхности труб котла- излучением.

Б) от образующихся дымовых газов к стенке –конвекцией

В) от внешней поверхности стенки трубы к внутренней- теплопроводностью.

Г) от внутренней поверхности стенки трубы к воде, циркуляцией вдоль поверхности – конвекцией.

Перенос теплоты от одной среды к другой через разделительную стенку называется теплопередачей.

Вода, водяной пар и его свойства

Вода простейшая устойчивая в обычных условиях химическое соединение водорода с кислородом, наибольшая плотность воды 1000кг/м 3 при t=4 о С.

Вода, как и всякая жидкость, подчиняется гидравлическим законам. Она почти не сжимается, поэтому обладает способностью передавать давление, оказываемое на нее во все стороны с одинаковой силы. Если несколько сосудов разной формы соединить между собой, то уровень воды будет одинаковый везде (закон сообщающихся сосудов).


Похожая информация.


До настоящего времени объектом наших исследований были идеальные газы, т.е. такие газы, где отсутствуют силы межмолекулярных взаимодействий и пренебрегается размерами молекул. На самом деле размеры молекул и силы межмолекулярных взаимодействий имеют большое значение, особенно при низких температурах и больших давлениях.

Одним из представителей реальных газов, применяемых в практике пожарного дела и широко применяемых в промышленном производстве, является водяной пар.

Водяной пар чрезвычайно широко применяется в различных отраслях промышленности, главным образом в качестве теплоносителя в теплообменных аппаратах и как рабочее тело в паросиловых установках. Это объясняется повсеместным распространением воды, ее дешевизной и безвредностью для здоровья человека.

Имея высокое давление и относительно низкую температуру, пар, используемый на практике близок к состоянию жидкости, поэтому пренебрегать силами сцепления между его молекулами и их объемом, как в идеальных газах, нельзя. Следовательно, не представляется возможным использовать для определения параметров состояния водяного пара уравнения состояния идеальных газов, т. е. для пара pv≠RT, ибо водяной пар есть реальный газ.

Попытки ряда ученых (Ван-дер-Ваальса, Бертло, Клаузиуса и др.) уточнить уравнения состояния реальных газов путем введения поправок в уравнение состояния для идеальных газов не увенчались успехом, так как эти поправки относились только к объему и силам сцепления между молекулами реального газа и не учитывали ряда других физических явлений, происходящих в этих газах.

Особую роль играет уравнение, предложенное Ван-дер-Ваальсом в 1873 г., (P + a/ v 2)( v - b) = RT . Являясь приближенным при количественных расчетах, уравнение Ван-дер-Ваальса качественно хорошо отображает физические особенности газов, так как позволяет описать общую картину изменения состояния вещества с переходом его в отдельные фазовые состояния. В этом уравнении а и в для данного газа являются постоянными величинами, учитывающими: первая - силы взаимодействия, а вторая - размер молекул. Отношение а/v 2 характеризует добавочное давление, под которым находится реальный газ вследствие сил сцепления между молекулами. Величина в учитывает уменьшение объема, в котором движутся молекулы реального газа, вследствие того, что они сами обладают объемом.

Наиболее известны в настоящее время уравнение, разработанное в 1937-1946 гг. американским физиком Дж. Майером и независимо от него советским математиком Н. Н. Боголюбовым, а также уравнение предложенное советскими учеными М. П. Вукаловичем и И. И. Новиковым в 1939 г.

Ввиду громоздкости эти уравнения рассматриваться не будут.


Для водяного пара все параметры состояния для удобства пользования сведены в таблицы и представлены в приложении 7.

Итак, водяным паром называется получающийся из воды реальный газ с относительно высокой критической температурой и близкий к состоянию насыщения.

Рассмотрим процесс превращения жидкости в пар, называемый иначе процессом парообразования . Жидкость может превращаться в пар при испарении и кипении.

Испарением называется парообразование, происходящее только с поверхности жидкости и при любой температуре . Интенсивность испарения зависит от природы жидкости и ее температуры. Испарение жидкости может быть полным, если над жидкостью находится неограниченное пространство. В Природе процесс испарения жидкости осуществляется в гигантских масштабах в любое время года.

Суть процесса испарения заключается в том, что отдельные молекулы жидкости, находящиеся у ее поверхности и обладающие большей по сравнению с другими молекулами кинетической энергией, преодолевая силовое действие соседних молекул, создающее поверхностное натяжение, вылетают из жидкости в окружающее пространство. С увеличением температуры интенсивность испарения возрастает, так как увеличиваются скорость и энергия молекул и уменьшаются силы их взаимодействия. При испарении температура жидкости снижается, так как из нее вылетают молекулы, обладающие сравнительно большими скоростями, вследствие чего уменьшается средняя скорость оставшихся в ней молекул.

При сообщении жидкости теплоты повышаются ее температура и интенсивность испарения. При некоторой вполне определенной температуре, зависящей от природы жидкости и давления, под которым она находится, начинается парообразование во всей ее массе . При этом устенок сосуда и внутри жидкости образуются пузырьки пара. Это явление называется кипением жидкости. Давление получающегося при этом пара такое же, как и среды, в которой происходит кипение.

Процесс, обратный парообразованию называется конденсацие й . Этот процесс превращения пара в жидкость так же происходит при постоянной температуре, если давление остается постоянным. При конденсации хаотично движущиеся молекулы пара, соприкасаясь с поверхностью жидкости попадают под влияние межмолекулярных сил воды, остаются там, вновь преобразуясь в жидкость. Т.к. молекулы пара имеют большую по сравнению с молекулами жидкости скорость, то при конденсации температура жидкости увеличивается. Жидкость, образующаяся при конденсации пара, называется конденсатом .

Рассмотрим процесс парообразования более подробно.

Переход жидкости в пар имеет три стадии:

1. Нагревание жидкости до температуры кипения.

2. Парообразование.

3. Перегрев пара.

Остановимся на каждой стадии более подробно.

Возьмём цилиндр с поршнем, поместим туда 1 кг воды при температуре 0°С, условно принимая, что удельный объём воды при этой температуре минимален 0.001 м 3 /кг. На поршень положен груз, который вместе с поршнем оказывает на жидкость постоянное давление Р. Этому состоянию соответствует точка 0. Начнём подводить к этому цилиндру тепло.

Рис. 28. График изменения удельного объёма парожидкостной смеси при давлении насыщения P s .

1. Процесс подогрева жидкости . В этом процессе, осуществляемом при постоянном давлении за счёт теплоты, сообщаемой жидкости, происходит её нагрев от 0 °С до температуры кипения t s . Т.к. вода имеет сравнительно небольшой коэффициент термического расширения, то удельный объём жидкости изменится незначительно и увеличится от v 0 до v¢. Этому состоянию соответствует точка 1, а процессу – отрезок 0-1.

2. Процесс парообразования . При дальнейшем подводе тепла вода будет кипеть и переходить в газообразное состояние, т.е. водяной пар. Этому процессу соответствует отрезок 1-2 и увеличение удельного объёма от v¢ до v¢¢. Процесс парообразования происходит не только при постоянном давлении, но и при постоянной температуре, равной температуре кипения. При этом вода в цилиндре будет находиться уже в двух фазах: пара и жидкости. Вода присутствует в виде жидкости, сосредоточенной внизу цилиндра и в виде мельчайших капелек, равномерно распределённой по всему объёму.

Процесс парообразования сопровождается и обратным процессом, называемым конденсацией. Если скорость конденсации станет равной скорости испарения, то в системе наступает динамическое равновесие. Пар в этом состоянии имеет максимальную плотность и называется насыщенным. Следовательно, под насыщенным понимают пар, находящийся в равновесном состоянии с жидкостью, из которой он образуется . Основное свойство этого пара состоит в том, что он имеет температуру, являющуюся функцией его давления, одинакового с давлением той среды, в которой происходит кипение. Поэтому температура кипения иначе называется температурой насыщения и обозначается t н.Давление, соответствующее t н, называется давлением насыщения (обозначается р н или просто p. Пар образуется до тех пор, пока не испарится последняя капля жидкости. Этому моменту будет соответствовать состояние сухого насыщенного (или просто сухого ) пара. Пар, получаемый при неполном испарении жидкости, называется влажным насыщенным паром или просто влажным . Он является смесью сухого пара с капельками жидкости, распространенными равномерно во всей его массе и находящимися в нем во взвешенном состоянии. Массовая доля сухого пара во влажном паре называется степенью сухости или массовым паросодержанием и обозначается через х. Массовая доля жидкости во влажном паре называется степенью влажности и обозначается через у. Очевидно, что у = 1 - х. Степень сухости и степень влажности выражают или в долях единицы, или в %: например, если х = 0.95 и у = 1 - х = 0.05, то это означает, что в смеси находится 95% сухого пара и 5% кипящей жидкости.

3. Перегрев пара. При дальнейшем подводе тепла температура пара будет повышаться (соответственно увеличивается удельный объём от v¢¢ до v¢¢¢). Этому состоянию соответствует отрезок 2-3. Если температура пара выше температуры насыщенного пара того же давления, то такой пар называется перегретым . Разность между температурой перегретого пара и температурой насыщенного пара того же давления называется степенью перегрев а .

Поскольку удельный объем перегретого пара больше удельного объема насыщенного пара (так как р= const, t пер > t н), то плотность перегретого пара меньше плотности насыщенного пара. Поэтому перегретый пар является ненасыщенным. По своим физическим свойствам перегретый пар приближается к газам и тем больше, чем выше степень его перегрева.

Из опыта найдены положения точек 0 - 2 при других, более высоких давлениях насыщения. Соединив соответствующие точки при различных давлениях, получим диаграмму состояния водяного пара.


Рис. 29. pv – диаграмма состояния водяного пара.

Из анализа диаграммы видно, что по мере увеличения давления удельный объём жидкости уменьшается. На диаграмме этому уменьшению объёма с ростом давления соответствует линия СД. Температура насыщения, и, следовательно, удельный объём увеличиваются, что и продемонстрировано линией АК. Также быстрее происходит испарение воды, что ясно видно из линии ВК. При увеличении давления уменьшается разность между v¢ и v¢¢, постепенно сближаются линии АК и ВК. При некотором вполне определённом для каждого вещества давлении эти линии сходятся в одной точке К, называемой критической. Точка К, одновременно принадлежащая линии жидкости при температуре кипения АК и линии сухого насыщенного пара ВК, соответствует некоторому предельному критическому состоянию вещества, при котором отсутствует различие между паром и жидкостью. Параметры состояния называются критическими и обозначаются Т к, P к, v к. Для воды критические параметры имеют значения: Т к =647.266К, Р к = 22.1145МПа, v к =0.003147 м 3 /кг.

Состояние, в котором могут находиться в равновесии все три фазы воды, называется тройной точкой воды. Для воды: Т 0 = 273.16К, Р 0 = 0.611 кПа, v 0 = 0.001 м 3 /кг. В термодинамике удельные энтальпия, энтропия и внутренняя энергия в тройной точке принимается равной нулю, т.е. i 0 = 0, s 0 = 0, u 0 = 0.

Определим основные параметры водяного пара

1. Подогрев жидкости

Количество теплоты, необходимое для нагревания 1 кг жидкости от 0 °С до температуры кипения называется удельнойтеплотой жидкости . Теплота жидкости является функцией давления, принимающей максимальное значение при критическом давлении.

Величина её определяется:

q = с р (t s -t 0) ,

где с р – средняя массовая изобарная теплоёмкость воды в интервале температур от t 0 = 0 °С до t s , берётся по справочным данным

т.е. q = с р t s

Удельная теплота измеряется в Дж/кг

Величина q выражается как

где i¢ - энтальпия воды при температуре кипения;

i - энтальпия воды при 0 °С.

Согласно первому закону термодинамики

i = u 0 + P s v 0 ,

где u 0 – внутренняя энергия при 0 °С.

i¢ = q + u 0 + P s v 0

Примем условно, как и в случае идеальных газов, что u 0 = 0. Тогда

i¢ = q + P s v 0

Эта формула позволяет вычислить величину i¢ по найденным из опыта величинам Р s , v 0 и q.

При невысоких давлениях Р s , когда для воды величина Р s v 0 мала по сравнению с теплотой жидкости, можно приближённо принять

Теплота жидкости с увеличением давления насыщения увеличивается и в критической точке достигает максимальной величины. Учитывая, что i=u+ Pv (1), можно написать следующее выражение для внутренней энергии воды при температуре кипения:

u¢ = i¢ + P s v¢

Изменение энтропии в процессе подогрева жидкости


Допуская, что энтропия воды при 0


Эта формула позволяет вычислить энтальпию жидкости при температуре кипения.

2. Парообразование

Количество теплоты, необходимое для перевода 1 кг жидкости, нагретой до температуры кипения, в сухой насыщенный пар в изобарном процессе называется удельной теплотой парообразования (r) .

Теплота парообразования определяется:

i¢¢ = r + i¢ по найденной из опыта теплоте парообразования и энтальпии воды при температуре кипения i¢. Учитывая (1), можно записать:

r = (u¢¢-u¢)+P s (v¢¢-v¢),

где u¢ и u¢¢ - внутренняя энергия воды при температуре кипения и сухого насыщенного пара. Это уравнение показывает, что теплота парообразования состоит из двух частей. Одна часть (u¢¢-u¢) затрачивается на увеличение внутренней энергии образующегося из воды пара. Она называется внутренней теплотой парообразования и обозначается буквой r. Другая часть P s (v¢¢-v¢) затрачивается на внешнюю работу, совершаемую паром в изобарном процессе кипения воды, и называется внешней теплотой парообразования (y).

Теплота парообразования уменьшается с увеличением давления насыщения и в критической точке равна нулю. Теплота жидкости и теплота парообразования образуют полную теплоту сухого насыщенного пара l¢¢.

Внутренняя энергия сухого насыщенного пара u¢¢ равна

u¢¢=i¢¢-P s v¢¢

Изменение энтропии пара в процессе парообразования определяется выражением


Это выражение позволяет определить энтропию сухого насыщенного пара s¢¢.

Влажный насыщенный пар между граничными величинами удельных объёмов v¢ и v¢¢ состоит из сухого насыщенного пара и воды. Количество сухого насыщенного пара в 1 кг влажного насыщенного пара называется степенью сухости , или паросодержанием . Эта величина называется буквой x . Величина (1-x) называется степенью влажности пара .

Если учесть степень сухости, то удельный объём влажного насыщенного пара v x

v x = v¢¢x + v¢(1-x)

Теплота парообразования r x , энтальпия i x , полная теплота l x , внутренняя энергия u x и энтропия s x для влажного насыщенного пара имеет следующие величины:

r x = rx; i x = i¢ + rx; l x = q + rx; u x = i¢ + rx – p s v s ; s x = s¢ + rx/T s

3. Процесс перегрева пара

Сухой насыщенный пар перегревается при постоянном давлении от температуры кипения t s до заданной температуры t ; при этом удельный объём пара увеличивается от до v . Количество теплоты, которое затрачивается на перегрев 1 кг сухого насыщенного пара от температуры кипения до данной температуры, называется теплотой пароперегрева. Теплоту пароперегрева можно определить:


где - с p средняя массовая теплоёмкость пара в интервале температур t s – t (определяется по справочным данным).

Для величины q п можно записать

q п = i – i¢ ,

где I – энтальпия перегретого пара.

Вода и водяной пар как рабочее тело и теплоноситель получили широкое использование в теплотехнике. Это объясняется тем, что вода и водяной пар имеют относительно хорошие термодинамические свойства и не влияют вредно на металл и живой организм. Пар образовывается из воды испарением и кипением.

Испарением называется парообразование, которое происходит только на поверхности жидкости. Этот процесс происходит при любой температуре. При испарении из жидкости вылетают молекулы, которые имеют относительно большие скорости, вследствие чего уменьшается средняя скорость движения молекул, которые остались, и уменьшается температура жидкости.

Кипением называется бурное парообразование по всей массе жидкости, происходящее при передаче жидкости через стенки сосуда определённого количества тепла.

Температура кипения воды зависит от давления, под которым находится вода, чем большее давление, тем выше температура, при которой начинается кипение воды.

Например, атмосферному давлению 760 мм. рт. ст. соответствует t = 100 0 С,чем больше давление, тем выше температура кипения, чем меньше давление, тем меньше температура кипения воды.

Если кипение жидкости происходит в закрытом сосуде, то над жидкостью образовывается пар, который имеет капельки влаги. Такой пар называется влажным насыщенным. При этом температура влажного пара и кипящей воды одинаковая и равна температуре кипения.

Если постоянно беспрерывно подавать тепло, то вся вода, включая мельчайшие капли, превратится в пар. Такой пар называется сухим насыщенным.

Количество тепла, необходимого для преобразования в пар 1 кг жидкости, нагретой до температуры кипения t к, называется скрытой теплотой парообразования (ккал/кг).

Скрытая теплота парообразования зависит от давления, при котором происходит процесс парообразования. Так, при атмосферном давлении 760 мм рт. ст. скрытая теплота парообразования r = 540ккал/кг. Более высокому значению давления насыщенного пара соответствует меньшая скрытая теплота парообразования, а более низкому – большая скрытая теплота парообразования.

Пар бывает насыщенный и перегретый. Величина, определяющая количество сухого насыщенного пара в 1 кг влажного пара в процентах называется степенью сухости пара и обозначается буквой Х (икс). Для сухого насыщенного пара Х = 1.

Влажность насыщенного пара в паровых котлах должна быть в пределах 1-3%, то есть степень её сухости Х = 100 - (1-3) = 99 - 97%.

Отделение частичек воды от пара называется сепарацией, а устройство, предназначенное для этого - сепаратором.

Переход воды из жидкого состояния в газообразное называется парообразованием, а с газообразного в жидкое - конденсацией. Пар, температура которого для определённого давления превышает температуру насыщенного пара, называется перегретым. Разность температур между перегретым и сухим насыщенным паром при этом же давлении называется перегревом пара.

3. Водяной пар и его свойства

3.1. Водяной пар. Основные понятия и определения.

Одним из распространенным рабочим телом в паровых турбинах, паровых машинах, в атомных установках, теплоносителем в различных теплообменниках является водяной пар. Пар - газообразное тело в состоянии, близкое к кипящей жидкости.Парообразование – процесс превращения вещества из жидкого состояния в парообразное.Испарение – парообразование, происходящее всегда при любой температуре с поверхности жидкости. При некоторой определенной температуре, зависящей от природы жидкости и давления, под которым она находится, начинается парообразование во всей массе жидкости. Этот процесс называетсякипением . Обратный процесс парообразования называетсяконденсацией . Она также протекает при постоянной температуре. Процесс перехода твердого вещества непосредственно в пар называетсясублимацией . Обратный процесс перехода пара в твердое состояние называетсядесублимацией . При испарении жидкости в ограниченном пространстве (в паровых котлах) одновременно происходит обратное явление – конденсация пара. Если скорость конденсации станет равной скорости испарения, то наступает динамическое равновесие. Пар в этом случае имеет максимальную плотность и называетсянасыщенным паром . Если температура пара выше температуры насыщенного пара того же давления, то такой пар называетсяперегретым . Разность между температурой перегретого пара и температурой насыщенного пара того же давления называетсястепенью перегрева . Так как удельный объем перегретого пара больше удельного объема насыщенного пара, то плотность перегретого пара меньше плотности насыщенного пара. Поэтому перегретый пар являетсяненасыщенным паром . В момент испарения последней капли жидкости в ограниченном пространстве без изменения температуры и давления образуетсясухой насыщенный пар . Состояние такого пара определяется одним параметром - давлением. Механическая смесь сухого и мельчайших капелек жидкости называетсявлажным паром . Массовая доля сухого пара во влажном паре называетсястепенью сухости х .

х = m сп / m вп,

m сп - масса сухого пара во влажном; m вп - масса влажного пара. Массовая доля жидкости во влажном паре нызваетсястепенью влажности у .

у = 1 –.

Для кипящей жидкости при температуре насыщения = 0, для сухого пара –= 1.

3.2 Влажный воздух. Абсолютная и относительная влажность.

Атмосферный воздух широко используется в технике: в качестве рабочего тела (в воздушных холодильных установках, кондиционерах, теплообменниках и сушильных устройствах) и составной части для горения топлива (в двигателях внутреннего сгорания, газотурбинных установках, в парогенераторах).

Сухим воздухом называется воздух, не содержащий водяных паров. В атмосферном воздухе всегда содержится некоторое количество водяного пара.

Влажным воздухом называется смесь сухого воздуха с водяным паром.

В теплотехнике некоторые газообразные тела принято называть паром. Так, например, вода в газообразном состоянии называется водяным паром, аммиак – аммиачным паром.

Рассмотрим более подробно термодинамические свойства воды и водяного пара. (1-6).

Образование пара из одноименной жидкости происходит посредством испарения и кипения . Между данными процессами существует принципиальное различие. Испарение жидкости происходит лишь с открытой поверхности. Отдельные молекулы, имеющие большую скорость, преодолевают притяжение соседних молекул и вылетают в окружающее пространство. Интенсивность испарения возрастает с увеличением температуры жидкости. Сущность кипения состоит в том, что генерация пара происходит в основном в объеме самой жидкости за счет испарения ее внутрь пузырьков пара. Различают следующие состояния водяного пара:

    влажный пар;

    сухой насыщенный пар;

    перегретый пар.

Атмосферный воздух (влажный воздух) может быть:

    пересыщенный влажный воздух;

    насыщенный влажный воздух;

    ненасыщенный влажный воздух.

Пересыщенный влажный воздух – смесь сухого воздуха и влажного водяного пара. Явление в природе – туман.Насыщенный влажный воздух – смесь сухого воздуха и сухого насыщенного водяного пара.Ненасыщенный влажный воздух – смесь сухого воздуха и перегретого водяного пара.

Следует отметить принципиально разные значения термина “влажный” применительно к пару и к воздуху. Пар называется влажным, если содержит мелкодисперсную жидкость. Влажный воздух во всех представляющих интерес для техники случаях содержит перегретый или сухой насыщенный водяной пар. В общем случае влажный воздух может содержать и влажный водяной пар (например, облака), но этот случай технического интереса не представляет и далее не рассматривается.

В атмосферном (влажном) воздухе каждый компонент находится под своим парциальным давлением, имеет температуру, равную температуре влажного воздуха и равномерно распределен по всему объему.

Термодинамические свойства влажного воздуха как газовой смеси сухого воздуха и водяного пара определяются по закономерностям, характерным для идеальных газов.

Расчет процессов с влажным воздухом обычно проводится при условии, что количество сухого воздуха в смеси не изменяется. Переменной величиной является количество содержащегося в смеси водяного пара. Поэтому удельные величины, характеризующие влажный воздух, относятся к 1 кг сухого воздуха.

Давление влажного воздуха определяется по закону Дальтона:

Р=Рв+Рп, (3.1)

Где Рв – парциальное давление сухого воздуха, кПа; Рп – парциальное давление водяного пара, кПа.

Запишем уравнение Клапейрона - Менделеева

влажный воздух PV=MRT; (3.2)

сухой воздух P B V=M B R B T; (3.3)

водяной пар Р П V=M П R П Т, (3.4)

где V – объем влажного воздуха, м 3 ; М, М В, М П – масса соответственно влажного, сухого воздуха и водяного пара, кг; R, R В, R П – газовая постоянная соответственно влажного, сухого воздуха и водяного пара, кДж/(кгК); Т – абсолютная температура влажного воздуха, К.

Абсолютная влажность воздуха – количество водяного пара, содержащееся в 1 м 3 влажного воздуха. Она обозначается через П и измеряется в кг/м 3 или г/м 3 . Иначе говоря, она представляет собой плотность водяного пара в воздухе: П =Р П /(R П Т). Очевидно, что

 П =М П /V, где V – объем влажного воздуха массой М.

Относительной влажностью воздуха называется отношение абсолютной влажности воздуха в данном состоянии к абсолютной влажности насыщенного воздуха (Н) при той же температуре.

Можно отметить два характерных состояния воздуха по величине :<100 %, при этом Р П <Р Н и водяной пар перегретый, а влажный воздух ненасыщенный;=100 %, при этом Р П =Р Н и водяной пар сухой насыщенный, а влажный воздух насыщенный. Температура, до которой необходимо охлаждать ненасыщенный влажный воздух, чтобы содержащийся в нем перегретый пар стал сухим насыщенным, называется температурой точки росы t Н.

3.3 i d – диаграмма влажного воздуха

Впервые id - диаграмма для влажного воздуха была предложена проф. Л.К. Рамзиным. В настоящее время она применяется в расчетах систем кондиционирования, сушки, вентиляции и отопления. Вid – диаграмме по оси абсцисс откладывается влагосодержание d, г/кг сухого воздуха, а по оси ординат - удельная энтальпия влажного воздухаi, кДж/кг сухого воздуха. Для более удобного расположения отдельных линий, наносимых наid - диаграмму, она строится в косоугольных координатах, в которых ось абсцисс проводится под углом 135° к оси ординат.

При таком расположении осей координат линии i=const, которые должны быть параллельны оси абсцисс, идут наклонно. Для удобства расчетов значения d сносят на горизонтальную ось координат.

Линии d=const идут в виде прямых параллельных оси ординат, т.е. вертикально. Кроме того, на id.-диаграмме наносят изотермы t С =const, t M =const (штриховые линии на диаграмме) в линии постоянных значений относительной влажности (начиная от.=5% до=100%). Линии постоянных значений относительной влажности=const строят только до изотермы 100° , т. е. до тех пор, пока парциальное давление пара в воздухе Р П меньше атмосферного давления Р. В тот момент, когда Р П станет равным Р, эти линии теряют физический смысл, что видно из уравнения (10), в котором при Р П =Р влагосодержание d=const.

Кривая постоянной относительной влажности =100% делит всю диаграмму на две части. Та ее часть, которая расположена выше этой линии –область ненасыщенного влажного воздуха, в котором пар находятся в перегретом состоянии. Часть диаграммы ниже линии=100% - область насыщенного влажного воздуха.

Так как при =100% показания сухого и мокрого термометров одинаковы, t C =t M , то изотермы t C =t M =const пересекаются на линии=100%..

Чтобы найти на диаграмме точку, соответствующую состоянию данного влажного воздуха, достаточно знать два его параметра из числа изображенных на диаграмме. При проведении эксперимента целесообразно использовать те параметры, которые проще и точнее измеряются в опыте. В нашем случае такими параметрами являются температура сухого и мокрого термометров.

Зная эти температуры, можно найти на диаграмме точку пересечения соответствующих изотерм. Найденная таким образом точка определит состояние влажного воздуха и по id - диаграмме можно определить все остальные параметры воздуха: влагосодержание - d; относительную влажность -, энтальпию воздуха -i; парциальное давление пара – Р П, температуру точки росы – t М.