Динамика колебательного движения на примере пружинного маятника. Презентация по физике на тему «Свободные и вынужденные колебания

Математический маятник – это модель обычного маятника. Под математическим маятником – понимается материальная точка, которая подвешена на длинной невесомой и нерастяжимой нити.

Выведем шарик из положения равновесия и отпустим. На шарик будут действовать две силы: сила тяжести и сила натяжения нити. При движении маятника, на него еще будет действовать сила трения воздуха. Но мы будем считать её очень маленькой.

Разложим силу тяжести на две составляющих: силу, направленную вдоль нити, и силу направленную перпендикулярно касательной к траектории движения шарика.

Эти две силы составят в сумме силу тяжести. Силы упругости нити и составляющая силы тяжести Fn сообщают шарику центростремительное ускорение. Работа этих сил будет равняться нулю, и следовательно они будут лишь менять направление вектора скорости. В любой момент времени, он будет направлен по касательной к дуге окружности.

Под действием составляющей силы тяжести Fτ шарик будет двигаться по дуге окружности с нарастающей по модулю скоростью. Значение этой сила всегда изменяется по модулю, при прохождении положения равновесия она равняется нулю.

Динамика колебательного движения

Уравнение движения тела, колеблющегося под действием силы упругости.

Общее уравнение движения:

Колебания в системе происходят под действием силы упругости, которая согласно закону Гука прямо пропорциональна смещению груза

Тогда уравнение движения шарика примет следующий вид:

Разделим это уравнение на m, получим следующую формулу:

И так как масса и коэффициент упругости величины постоянные, то и отношение (-k/m) тоже будет постоянное. Мы получили уравнение, которые описывают колебания тела под действием силы упругости.

Проекция ускорения тела будет прямо пропорциональна его координате, взятой с противоположным знаком.

Уравнение движения математического маятника

Уравнение движения математического маятника описывается следующей формулой:

Это уравнение имеет такой же вид, что и уравнение движения груза на пружине. Следовательно, колебания маятника и движения шарика на пружине происходят одинаковым образом.

Смещение шарика на пружине и смещение тела маятника от положения равновесия изменяются со временем по одинаковым законам.

ЛЕКЦИЯ №8

Механика

Колебания

Колебательное движение. Кинематические и динамические характеристики колебательного движения. Математический, физический и пружинный маятник.

Мы живем в мире, где колебательные процессы являются неотъемлемой частью нашего мира и встречаются повсеместно.

Колебательным процессом или колебанием называется процесс, отличающийся той или иной степенью повторяемости.

Если колеблющаяся величина повторяет свои значения через равные промежутки времени, то такие колебания называются периодическими, а эти промежутки времени называются периодом колебания.

В зависимости от физической природы явления различают колебания: механические, электромеханические, электромагнитные и т.д.

Колебания широко распространены природе и технике. Колебательные процессы лежат в основе некоторых отраслей механики. В рамках этого курса лекций мы будем говорить только о механических колебаниях.

В зависимости от характера воздействия на колебательную систему различают колебания: 1. Свободные или собственные, 2. Вынужденные колебания, 3. Автоколебания, 4. Параметрические колебания.

Свободными колебаниями называются колебания происходящие без внешнего воздействия и вызванные первоначальным «толчком».

Вынужденные колебания происходят под действием периодической внешней силы

Автоколебания так же совершаются под действием внешней силы, но момент воздействия силы на систему определяется самой колебательной системой.

При параметрических колебаниях за счет внешних воздействий происходит периодическое изменение параметров системы, которое и вызывает этот тип колебаний .

Простейшими по форме являются гармонические колебания

Гармоническими колебаниями называются колебания, происходящие по закону sin или cos . Примером гармонических колебаний является колебание математического маятника

Максимальное отклонение колеблющейся величины в процессе колебаний называетсяамплитудой колебаний (А). Время, за которое совершается одно полное колебание, называется периодом колебаний (Т). Обратная величина периоду колебаний называется частотой колебаний (). Часто колебаний умноженная на 2 называется циклической частотой (). Таким образом гармонические колебания описываются выражением

Здесь (t + 0 ) фаза колебания, а 0 – начальная фаза

Простейшими механическими колебательными системами являются так называемые: математический, пружинный и физический маятники. Рассмотрим эти маятники более подробно

8.1. Математический маятник

Математическим маятником называется колебательная система состоящая из массивного точечного тела подвешенного в поле сил тяжести на нерастяжимой невесомой нити.

В нижней точке маятник обладает минимумом потенциальной энергии. Отклоним маятник на угол  . Центр тяжести массивного точечного тела поднимется на высоту h и при этом потенциальная энергия маятника возрастет на величину mg h . Кроме того в отклоненном положении на груз действует сила тяжести и сила натяжения нити. Линии действия этих сил не совпадают, и на груз действует результирующая сила стремящаяся вернуть его в положение равновесия. Если груз не удерживать, то под действием этой силы он начнет перемещаться в исходное равновесное положение, его кинетическая энергия вследствие возрастания скорости будет увеличиваться, при этом потенциальная энергия будет уменьшаться. При достижении точки равновесия на тело уже не будет действовать результирующая сила (сила тяжести в этой точке компенсируется силой натяжения нити). Потенциальная энергия тела в этой точке будет минимальна, а кинетическая энергия напротив, будет иметь свое максимальное значение. Тело, двигаясь по инерции, пройдет положение равновесия и начнет от него удаляться, что приведет к возникновению результирующей силы (от силы натяжения и силы тяжести), которая будет направлена против движения тела, тормозя его. При этом начинается уменьшение кинетической энергии груза и возрастания его потенциальной энергии. Этот процесс будет продолжаться до полного исчерпания запасов кинетической энергии и перехода ее в потенциальную. При этом отклонение груза от положения равновесия достигнет максимальной величины и процесс повторится. Если в системе нет трения, колебания груза будут происходить бесконечно долгое время.

Таким образом, колебательные механические системы характеризуются тем, что при отклонении их из положения равновесия в системе возникает возвращающая сила стремящаяся вернуть систему в положение равновесия. При этом возникают колебания сопровождающиеся периодическим переходом потенциальной энергии системы в ее кинетическую энергию и обратно.

Рассчитаем колебательный процесс. Момент сил М действующий на маятник очевидно равен - mglsin Знак минус отражает тот факт, что момент сил стремится вернуть груз в положение равновесия. С другой стороны по основному закону вращательного движения М= Id 2 / dt 2 . Таким образом, получим равенство

Б
удем рассматривать только малые углы отклонения маятника из положения равновесия. Тогдаsin . И наше равенство примет вид:

Д
ля математического маятника справедливоI = ml 2 . Подставляя это равенство в полученное выражение, получаем уравнение описывающее процесс колебания математического маятника:

Это дифференциальное уравнение описывает колебательный процесс. Решением этого уравнения являются гармонические функции sin (t + 0 ) или cos (t + 0 ) Действительно подставим любую из этих функций в уравнение и получим: 2 = g / l . Таким образом, если это условие выполнено, то функции sin (t + 0 ) или cos (t + 0 ) превращают дифференциальное уравнение колебаний в тождество.

О
тсюда циклическая частота и период колебаний гармонического маятника выражается как:

Амплитуда колебаний находится из начальных условий задачи.

Как видим, частота и период колебаний математического маятника не зависит от массы груза и зависят только от ускорения свободного падения и длины нити подвеса, что позволяет использовать маятник как простой, но очень точный прибор для определения ускорения свободного падения.

Другим видом маятника является любое физическое тело, подвешенное за какую либо точку тела и имеющее возможность совершать колебательное движение.

8.2. Физический маятник

Возьмем произвольное тело, пронзим его в какой либо точке несовпадающей с его центром масс осью вокруг которой тело может свободно поворачиваться. Подвесим тело на этой оси, и отклоним его из положения равновесия на некоторый угол .

Т
огда на тело с моментом инерцииI относительно оси О будет действовать возвращающий в положение равновесия момент М = - mglsin и колебания физического маятника как и математического будут описываться дифференциальным уравнением:

Так как для разных физических маятников момент инерции будет выражаться по разному, то его не будем расписывать как в случае с математическим маятником. Это уравнение так же имеет вид уравнения колебаний, решением которого являются функции описывающие гармонических колебаний. При этом циклическая частота () , период колебаний (Т) определяются как:

Мы видим, что в случае физического маятника период колебаний зависит от геометрии тела маятника, а не от его массы, как и в случае математического маятника. Действительно в выражение для момента инерции входит масса маятника в первой степени. Момент инерции в выражении для периода колебаний стоит в числителе, в то время как масса маятника входит в знаменатель и тоже в первой степени. Таким образом, масса в числителе сокращается с массой в знаменателе.

Физический маятник обладает еще одной характеристикой это приведенная длина.

Приведенной длиной физического маятника называется длина математического маятника период, которого совпадает с периодом физического маятника.

Это определение позволяет легко определить выражение для приведенной длины.

Сравнивая эти выражения получим

Если на линии проведенной от точки подвеса через центр масс физического маятника отложить (начиная от точки подвеса) приведенную длину физического маятника, то в конце этого отрезка будет точка, которая обладает замечательным свойством. Если физический маятник подвесить за эту точку, то его период колебаний будет тот же, что и в случае подвешивания маятника в прежней точке подвеса. Эти точки называются центрами качания физического маятника.

Рассмотрим еще одну простейшую колебательную систему совершающую гармонические колебания

8.3. Пружинный маятник

Представим, что к концу пружины с коэффициентом жесткостиk прикреплен груз массой m .

Если мы переместим груз вдоль оси х растянув пружину то на груз будет действовать возвращающая в положение равновесия сила F возвр = - kx . Если груз отпустить, то эта сила вызовет ускорение d 2 x / dt 2 . Согласно второму закону Ньютона мы получим:

md 2 x / dt 2 = - kx из этого уравнения получаем уравнение колебания груза на пружине в окончательном виде: d 2 x / dt 2 + (k / m ) x = 0

Э
то уравнение колебаний имеет такой же вид как и уравнения колебаний в уже рассматриваемых случаях, а это значит, что решением этого уравнения будут такие же гармонические функции. Частота и период колебаний будут соответственно равны

Причем сила тяжести ни коем образом не влияет на колебания пружинного маятника. Так как в этом случае она является постоянно действующим фактором, действующим все время в одну сторону и не имеющая ничего общего с возвращающей силой.

Таким образом как мы видим колебательный процесс в механической колебательной системе характеризуется прежде всего наличие в системе возвращающей силы действующей на систему, а сами колебания характеризуются: амплитудой колебания их периодом, частотой и фазой колебаний.



легкие

сердце


Тема урока: «Свободные и вынужденные колебания. Динамика колебательного движения».


  • Механические колебания – это движения, которые точно или приблизительно повторяются через определенные интервалы времени.

Основные виды колебаний

вынужденные

свободные

называют колебания тел под действием внешних периодически изменяющихся сил.

называют колебания в системе под действием внутренних сил, после того, как система была выведена из положения равновесия и предоставлена затем самой себе.


Маятник – подвешенное на нити или закреплённое на оси тело, которое может совершать колебания под действием силы тяжести

Виды маятников

Пружинный - тело, подвешенное на пружине и совершающее колебания под действием силы упругости пружины.

Математический (нитяной) - это материальная точка, подвешенная на невесомой и нерастяжимой нити.



Условия возникновения колебаний

  • При выведении тела из положения равновесия в системе возникать сила, направленная к положению равновесия и, следовательно, стремящаяся возвратить тело в положение равновесия.
  • Трение в системе должно быть достаточно мало.


  • Амплитуда – модуль наибольшего смещения тела от положения равновесия.

х max или А

Измеряется в метрах


  • Период Т время одного полного колебания.

Измеряется в секундах

Период колебаний

Для математического

маятника

Для пружинного

маятника

(Формула Гюйгенса)


Частота - число полных колебаний за единицу времени.

Измеряется в Герцах

Измеряется в радианах в секунду


Мир колебаний

  • Колебания – один из самых распространенных процессов в природе и технике.
  • крылья насекомых и птиц в полете,
  • высотные здания и высоковольтные провода под действием ветра,
  • маятник заведенных часов и автомобиль на рессорах во время движения
  • уровень реки в течение года и температура человеческого тела при болезни.

Немного истории…

Галилео Галилей (1564-1642)

Великий итальянский ученый – один из создателей точного естествознания.

Однажды в церкви он наблюдал, как качалась огромная люстра, и засекал время по своему пульсу. Позже он открыл, что время, за которое происходит один взмах, зависит от длины маятника - время наполовину уменьшается, если укоротить маятник на три четверти.


Немного истории…

Наиболее известным практическим использованием маятника является применение его в часах для измерения времени. Впервые это сделал голландский физик Х. Гюйгенс. Задачей о создании и совершенствовании часов, прежде всего маятниковых, учёный занимался почти сорок лет: с 1656 по 1693 г. Гюйгенс вывел формулу для определения периода колебаний математического маятника. До этого, время измеряли по истечению воды, горению факела или свечи.


Маятник Фуко

В 1850 г. Ж. Фуко подвесил маятник под куполом высокого здания так, что остриё маятника при качании оставляло след на песке, насыпанном на полу. Оказалось, что при каждом качении острие оставляет на песке новый след.

Таким образом, опыт Фуко показал, что Земля вращается вокруг своей оси.


В начале опыт был выполнен в узком кругу, но так заинтересовал Наполеона III , французского императора, что он предложил Фуко повторить его публично в грандиозном масштабе под куполом Пантеона в Париже. Эту публичную демонстрацию и принято называть опытом Фуко.


В геологии маятник применяют для опытного определения числового значения g в разных точках земной поверхности. Для этого по достаточно большому числу колебаний маятника в том месте, где измеряют g , находят период его колебаний Т, а g считают по формуле:

Заметное отклонение величины g от нормы для какой-либо местности называют гравитационной аномалией. Определение аномалий помогает находить залежи полезных ископаемых.


Лабораторная работа "Определение ускорения свободного падения при помощи маятника"

Цель работы: на опыте научиться измерять ускорение свободного падения с помощью математического маятника.

Оборудование: штатив, шарик на нити, часы, линейка.


Из трех предложенных стихов выбери одно, характеризующее твоё состояние на конец урока .

1.Искрятся глаза, Смеется душа, И ум мой поет: «К знаниям вперед»!

2. Не весел я сегодня, В тишине взгрустнулось мне, Все о колебаниях Промчалось вдалеке.

3. Вспоминая все познания свои, И физики мир постигая, Я благодарен матушке судьбе, Что колебания в мире есть

и нам их всех не счесть!


>> Динамика колебательного движения

§21 ДИНАМИКА КОЛЕБАТЕЛЬНОГО ДВИЖЕНИЯ

Для того чтобы описать количественно колебания тела под действием силы упругости пружины или колебания шарика, подвешенного на нити, воспользуемся законами механики Ньютона .

Уравнение движения тела, колеблющегося под действием силы упругости. Согласно второму закону Ньютона произведение массы тела m на ускорение его равно равнодействующей всех сил, приложенных к телу:

Разделив левую и правую части этого уравнения на m, получим

Ранее предполагалось, что углы отклонения нити маятника от вертикали могут быть любыми. В дальнейшем будкм считать их малыми. При малых углах, если угол измерен в радианах,


Если угол мал, то проекция ускорения примерно равна проекции ускорения на ось ОХ: (см. рис. 3.5). Из треугольника АВО для малого угла а имеем:

Подставив это выражение в равенство (3.8) вместо угла , получим

Это уравнение имеет такой же вид, что и уравнение (3.4) для ускорения шарика, прикрепленного к пружине. Следовательно, и решение этого уравнения будет иметь тот же вид, что и решение уравнения (3.4). Это означает, что движение шарика и колебания маятника происходят одинаковым образом. Смещения шарика на пружине и тела маятника от положений равновесия изменяются со временем по одному и тому же закону, несмотря на то, что силы, вызывающие колебания, имеют различную физическую природу. Умножив уравнения (3.4) и (3.10) на m и вспомнив второй закон Ньютона mа x = Fх рез, можно сделать вывод, что колебания в этих двух случаях совершаются под действием сил, равнодействующая которых прямо пропорциональна смещению колеблющегося тела от положения равновесия и направлена в сторону, противоположную этому смещению.

Уравнение (3.4), как и (3.10), на вид очень простое: ускорение прямо пропорционально координате (смещению от положения равновесия).

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Для того чтобы описать количественно колебания тела под действием силы упругости пружины или колебания шарика, подвешенного на нити, воспользуемся законами механики Ньютона. Уравнение движения тела, колеблющегося под действием сил упругости. Согласно второму закону Ньютона произведение массы тела т на ускорение а равно равнодействующей F всех сил, приложенных к телу: Запишем уравнение движения шарика, движущегося прямолинейно вдоль горизонтали под действием силы упругости F пружины (см. рис. 56). Направим ось Ох вправо. Пусть начало отсчета координат соответствует положению равновесия (см. рис. 56, а). В проекциях на ось Ох уравнение (3.1) запишется так: max=Fxynp, где ах и Fxyn соответственно проекции ускорения и силы упругости. Согласно закону Гука проекция Fx прямо пропорциональна смещению шарика из положения равновесия. Смещение равно координате х шарика, причем проекция силы и координата имеют противоположные знаки (см. рис. 56, б, в). Следовательно, Fx m=~kx, (3.2) где k - жесткость пружины. Уравнение движения шарика тогда примет вид: max=~kx. (3.3) Разделив левую и правую части уравнения (3.3) на т, получим а=- - х. + (3.4) х т v " Так как масса т и жесткость k - постоянные величины, то их от-" k ношение - также постоянная величина. т Мы получили уравнение движения тела, колеблющегося под действием силы упругости. Оно очень простое: проекция ах ускорения тела прямо пропорциональна его координате х, взятой с противоположным знаком. Уравнение движения математического маятника. При колебании шарика на нерастяжимой нити он все время движется по дуге окружности, радиус которой равен длине нити /. Поэтому положение шарика в любой момент времени определяется одной величиной - углом а отклонения нити от вертикали. Будем считать угол а положительным, если маятник отклонен вправо от положения равновесия, и отрицательным, если он отклонен влево (см. рис. 58). Касательную к траектории будем считать направленной в сторону положительного отсчета углов. Обозначим проекцию силы тяжести на касательную к траектории маятника через Fz. Эта проекция в момент, когда нить маятника отклонена от положения равновесия на угол а, выражается так: Fl=-Fs\na=-mgs"ma. (3.5) Здесь знак « - » стоит потому, что Fx и а имеют противоположные знаки. При отклонении маятника вправо (а>0) составляющая Fx силы тяжести направлена влево и ее проекция отрицательна: Fx 0. Обозначим проекцию ускорения маятника на касательную к его траектории через аТ Эта проекция характеризует быстроту изменения модуля скорости маятника. Согласно второму закону Ньютона Разделив левую и правую части этого уравнения на т, получим jf. ax~-g sin а. (3.7) До сих пор предполагалось, что углы отклонения нити маятника от вертикали могут быть любыми. В дальнейшем будем считать их малыми. При малых углах, если угол измерен в радианах, sin а~а. Следовательно, можно принять a=~ga. (3.8) Обозначив длину дуги OA через s (см. рис. 58), можно записать s=al, откуда а=у. (3.9) Подставив это выражение в равенство (3.8) вместо угла а, получим ax= - js. (3.10) Это уравнение имеет такой же вид, что и уравнение (3.4) движения шарика, прикрепленного к пружине. Здесь только вместо проекции ах ускорения стоит проекция аТ ускорения и вместо координаты х - величина s. Да и коэффициент пропорциональности зависит уже не от жесткости пружины и массы шарика, а от ускорения свободного падения и длины нити. Но по-прежнему ускорение прямо пропорционально смещению (определяемому дугой) шарика от положения равновесия. Мы пришли к замечательному выводу: уравнения движения, описывающие колебания таких различных систем, как шарик на пружине и маятник, одинаковы. Это означает, что движение шарика и колебания маятника происходят одинаковым образом. Смещения шарика на пружине и шарика маятника от положений равновесия изменяются со временем по одному и тому же закону, несмотря на то что силы, вызывающие колебания, имеют различную физическую природу. В первом случае это сила упругости пружины, а во втором - составляющая силы тяжести. Уравнение движения (3.4), как и уравнение (3.10), на вид очень простое: ускорение прямо пропорционально координате. Но решить его, т. е. определить, как меняется положение колеблющегося тела в пространстве с течением времени, далеко не просто.