Американские физики 20 века. Игорь Васильевич Курчатов

В статье поговорим о великих открытиях 20 века. Неудивительно, что с древних времен люди пытались воплотить в реальность свои самые смелые мечты. На рубеже прошлого века были изобретены невероятные вещи, которые перевернули жизнь всего мира.

Рентгеновские лучи

Список великих открытий 20 века начнём с рассмотрения электромагнитного излучения, которое на самом деле открыли в конце XIX века. Автором изобретения стал немецкий физик Вильгельм Рентген. Ученый заметил, что при включении тока в катодной трубке, покрытой кристаллами бария, начинает появляться небольшое свечение. Есть и другая версия, согласно которой жена приносила мужу ужин, и он заметил, что видит её кости, просвечивающиеся сквозь кожу. Это всё версии, но есть и факты. Например, Вильгельм Рентген отказывался получить патент за свое изобретение, так как считал, что эта деятельность не может приносить реальный доход. Таким образом, мы причисляем рентгеновские лучи к великим открытиям 20 века, которые оказали влияние на развитие научно-технического потенциала.

Телевидение

Совсем недавно телевизор был вещью, свидетельствующей о состоятельности своего хозяина, однако в современном мире телевидение отошло на второй план. При этом сама идея изобретения зародилась еще в 19 веке одновременно у русского изобретателя Порфирия Гусева и профессора из Португалии Адриано де Пайва. Они первые сказали о том, что скоро будет изобретено устройство, позволяющее передавать изображение при помощи провода. Первый приемник, размер экрана которого был всего лишь 3 на 3 см, продемонстрировал миру Макс Дикманн. При этом Борис Розинг доказал, что можно применять катодно-лучевую трубку для того, чтобы была возможность преобразовывать электрический сигнал в изображение. В 1908 году физик Ованес Адамян из Армении запатентовал аппарат для передачи сигналов, состоящий из двух цветов. Считается, что первый телевизор был разработан в начале XX веке в Америке. Собрал его русский эмигрант Владимир Зворыкин. Именно он разбил световой луч на зелёный, красный и синий, таким образом получив цветное изображение. Такое изобретение он назвал иконоскопом. На западе изобретателем телевидения считают Джона Берда, который первым запатентовал устройство, создающее картинку из 8 линий.

Мобильные телефоны

Первый мобильный телефон появился в 70-х годах прошлого столетия. Однажды сотрудник известной компании Motorola, которая занималась разработкой портативных устройств, Мартин Купер, показал своим друзьям огромную трубку. Тогда они не поверили, что нечто подобное можно было изобрести. Позже, гуляя по Манхэттену, Мартин позвонил начальнику из компании конкурента. Таким образом, он впервые на практике показал действенность своей огромной телефонной трубки. Советский учёный Леонид Куприянович ещё за 15 лет до этого проводил похожие эксперименты. Именно поэтому определенно говорить о том, кто на самом деле является открывателем портативных устройств, довольно трудно. В любом случае мобильные телефоны - это достойное открытие 20 века, без которого представить современную жизнь просто невозможно.

Компьютер

Одно из самых великих научных открытий XX века - это изобретение компьютера. Согласитесь, что сегодня без этого устройства невозможно ни работать, ни отдыхать. Еще несколько лет назад компьютеры использовались только в специальных лабораториях и организациях, но уже сегодня это обычная вещь в каждой семье. Как же была изобретена эта супермашина?

Немец Конрад Цузе в 1941 году создал вычислительную машину, которая, по сути, могла производить те же операции, что и современный компьютер. Отличие было в том, что машина работала при помощи телефонных реле. Спустя год физик из Америки Джон Атанасов и его аспирант Клиффорд Берри совместно разработали электронный компьютер. Однако этот проект не был завершён, поэтому нельзя говорить о том, что они являются реальными создателями такого устройства. В 1946 году Джон Мокли продемонстрировал, по его заявлению, первый электронный компьютер ЭНИАК. Прошло еще много времени, и огромные коробки заменили маленькие и тонкие устройства. Кстати, персональные компьютеры появились только в конце прошлого века.

Интернет

Великое технологическое открытие 20 века - это интернет. Согласитесь, что без него даже самый мощный компьютер не так уж и полезен, особенно в современном мире. Многие люди не любят смотреть телевизор, но они забывают о том, что власть над человеческим сознанием давно захватил интернет. У кого же возникла идея такой глобальной международной сети? Она появилась в группе ученых в 50-х годах прошлого века. Они хотели создать качественную сеть, которую было бы сложно взломать или прослушать. Причиной возникновения такой мысли послужила Холодная война.

Власти США во время Холодной войны использовали определенное устройство, которое позволяло передавать данные на расстоянии, не прибегая к помощи почты или телефона. Это устройство называлось APRA. Позже ученые исследовательских центров разных штатов занялись созданием сети APRANET. Уже в 1969 году благодаря этому изобретению получилось связать все компьютеры университетов, представленных данной группой ученых. Спустя 4 года к этой сети присоединились другие исследовательские центры. После того как появился e-mail, количество людей, желающих проникнуть во Всемирную паутину начало быстро расти в геометрической прогрессии. Что касается современного состояния, то на данный момент более 3 млрд человек пользуются интернетом каждый день.

Парашют

Несмотря на то что идея парашюта пришла в голову Леонардо да Винчи, всё же это изобретение в современном виде относят к великим открытиям 20 века. С появлением воздухоплавания начались регулярные прыжки с больших воздушных шаров, к которым крепили полураскрытые парашюты. Уже в 1912 году один американец решил прыгнуть с таким устройством из самолёта. Он удачно приземлился на землю и стал самым смелым жителем Америки. Позже инженер Глеб Котельников изобрел парашют исключительно из шелка. Также он сумел упаковать его в небольшой ранец. Проверка изобретения происходила на движущемся автомобиле. Таким образом придумали тормозной парашют, который бы позволял задействовать систему аварийного торможения. Так, перед началом Первой мировой войны ученый получил патент на свое изобретение во Франции, и таким образом стал первооткрывателем парашюта в 20 веке.

Физики

Теперь поговорим о великих физиках 20 века и их открытиях. Всем известно, что физика является основой, без которой представить комплексное развитие какой-либо другой науки в принципе невозможно.

Отметим квантовую теорию Планка. В 1900 году немецкий профессор Макс Планк стал открывателем формулы, которая описывала распределение энергии в спектре черного тела. Заметим, что до этого считалось, что энергия всегда распределяется равномерно, но изобретатель доказал, что распределение происходит пропорционально благодаря квантам. Ученый составил доклад, которому на то время никто не поверил. Однако уже через 5 лет благодаря выводам Планка великий ученый Эйнштейн смог создать квантовую теорию фотоэффекта. Благодаря квантовой теории Нильс Бор сумел построить модель атома. Таким образом, Планк создал мощную базу для дальнейших открытий.

Нельзя забывать о самом великом открытии 20 века - открытии теории относительности Альберта Эйнштейна. Ученому удалось доказать, что гравитация представляет собой следствие искривления четырехмерного пространства, а именно времени. Также он объяснил эффект замедления времени. Благодаря открытиям Эйнштейна удалось рассчитать многие астрофизические величины и расстояния.

К величайшим открытиям 19-20 века можно отнести изобретение транзистора. Первое рабочее устройство было создано в 1947 году исследователями из Америки. Учёные экспериментально подтвердили верность своих идей. В 1956 году они уже получили Нобелевскую премию за открытия. Благодаря им в электронике началась новая эра.

Медицина

Рассмотрение великих открытий в медицине 20-21 века начнём с изобретения пенициллина Александром Флемингом. Известно, что это ценное вещество было обнаружено в результате небрежности. Благодаря открытию Флеминга люди перестали бояться опаснейших болезней. В этом же столетии была открыта структура ДНК. Её открывателями считаются Фрэнсис Крик и Джеймс Уотсон, которые при помощи картона и металла создали первую модель молекулы ДНК. Невероятную шумиху подняла информация о том, что у всех живых организмов принцип строения ДНК одинаков. За это революционное открытие ученые были награждены Нобелевской премией.

Великие открытия 20-21 века продолжаются нахождением возможности пересаживать органы. Такие действия довольно долго воспринимались как нечто нереальное, но уже в прошлом веке ученые поняли, что добиться безопасной качественной пересадки можно. Официальное открытие этого факта состоялось в 1954 году. Тогда врач из Америки Джозеф Мюррей пересадил почку одному из своих пациентов от брата-близнеца. Таким образом он показал, что можно пересадить человеку чужой орган, и он будет еще долго жить.

В 1990 году врач был награжден Нобелевской премией. Однако еще длительное время специалисты пересаживали всё, кроме сердца. Наконец, в 1967 году мужчине в пожилом возрасте пересадили сердце молодой женщины. Тогда пациенту удалось прожить всего 18 дней, но уже сегодня люди с донорскими органами и сердцами живут многие годы.

УЗИ

Также к важным изобретениям прошлого века в области медицины стоит отнести УЗИ, без которого лечение представить очень трудно. В современном мире сложно найти человека, который бы не проходил ультразвуковое сканирование. Изобретение датируют 1955 годом. Невероятнейшим открытием прошлого века считают оплодотворение в пробирке. Британским ученым удалось в лабораторных условиях оплодотворить яйцеклетку, а после поместить ее в матку женщины. В итоге на свет появилась всемирно известная "девочка из пробирки" Луиза Браун.

Великие географические открытия 20 века

В прошлом веке была подробно исследована Антарктида. Благодаря этому ученые получили точнейшие данные о климатических условиях и фауне Антарктики. Российский академик Константин Марков создал первый в мире атлас Антарктиды. Великие открытия начала 20 века в области географии продолжим экспедицией, которая отправилась в Тихий океан. Советскими исследователями была измерена глубочайшая океаническая впадина, которая получила название Марианской.

Морской атлас

Позже был создан морской атлас, который позволял изучать направление течения, ветра, определять глубину и распределение температуры. Одним из самых громких открытий прошлого века стало обнаружение озера Восток под огромным слоем льда в Антарктиде.

Как мы уже знаем, прошлый век был очень насыщен различного рода открытиями. Можно сказать, что произошел настоящий прорыв практически во всех сферах. Потенциальные возможности ученых со всего мира достигли своего максимума, благодаря чему в настоящее время мир развивается семимильными шагами. Многие открытия стали поворотным моментом в истории всего человечества, особенно это касается исследований в области медицины.

Лежали успехи матема-тики, служившей интегрирующим фактором для всей системы научного знания. Впечатляющих успехов на протяжении XIX — на-чала XX в. добилась физика . Английский физик-самоучка М. Фара-дей (1791-1867), считающийся одним из наиболее изобретатель-ных умов нового времени, стал основоположником учения об элек-тромагнитном поле. Соотечественник Фарадея Дж. К. Максвелл (1831-1879) перевёл его идеи на общепринятый математический язык. В 1871 г. он основал в Кембридже первую в Великобритании физическую лабораторию. Открытия, сделанные Максвеллом, лег-ли в основу современной физики. Своими научно-популярными ра-ботами Максвелл раскрыл значение электричества для широкой публики. По мнению великого физика А. Эйнштейна, произведён-ный Максвеллом переворот в понятиях о физической реальности «является наиболее глубоким и плодотворным из тех, которые ис-пытала физика со времён Ньютона».

Третьим знаменитым учёным, который наряду с Фарадеем и Максвеллом осуществил «великий перелом» в физике, считается германский физик Г.-Р. Герц (1857-1894). Теоретические открытия своих предшественников он подтвердил экспериментально, пока-зав полную взаимосвязь между электрическими и магнитными явле-ниями. Работы Герца сыграли огромную роль в развитии науки и техники, способствуя появлению беспроволочного телеграфа, радиосвязи, радиолокации, телевидения. Германский физик В.-К. Рентген (1845-1923) открыл в 1895 г. не-видимые x-лучи (рентгеновское излучение). Рентген стал первым физиком, удостоенным Нобелевской премии.

Присуждение Нобелевских премий за наиболее выдаю-щиеся работы в области физики, химии, физиологии и ме-дицины началось с 1901 г. Их учредителем был А. Б. Нобель, шведский химик (изобретатель динамита) и промышленник, который завещал своё состояние для организации специ-ального фонда, из которого до сих пор выплачиваются пре-мии за научные открытия, произведения литературы, а так-же за деятельность по укреплению мира.

Англичанин А. Беккерель открыл в 1896 г. явление радиоактивности, важнейший вклад в дальнейшее ис-следование которого внесли французский физик Пьер Кюри (1859-1906) и его жена Мария Склодовская-Кюри (1867-1934). Они открыли первые радиоактивные эле-менты — полоний (назван в честь Польши — родины М. Кюри) и ра-дий. В 1903 г. все трое были удостоены Нобелевской премии. М. Кю-ри стала в 1906 г. первой женщиной-профессором Парижского уни-верситета; в 1911 г. она стала первым в мире учёным, получившим Нобелевскую премию в области химии. Материал с сайта


Мария и Пьер Кюри
А. Эйнштейн

В начале XX в. свои первые открытия сделал Э. Резерфорд (1871-1937). В ходе своих исследований он открыл сложное строе-ние атома и заложил основы учения о радиоактивности. В 1911 г. Резерфорд предложил первую электронную модель атома. Герман-ский физик М. Планк (1858-1947) в 1900 г. выяснил, что световая энергия передаётся не путём непрерывного излучения, а отдельны-ми порциями, которые получили название кванты. Введение этой величины положило начало эпохе новой, квантовой , физики . Дат-ский физик Н. Бор (1885-1962) применил идею квантовой энергии Планка к изучению атомного ядра. В 1913 г. он предложил свою мо-дель атома, положив начало квантовой атомной теории. Его иссле-дования внесли большой вклад в изучение ядерных реакций.

Важнейший этап в развитии физики и естествознания в целом связан с деятельностью Альберта Эйнштейна (1879-1955). В 1905 г. появилась его первая статья с изложением специальной теория от-носительности. После переезда в Берлин Эйнштейн завершил соз-дание общей теории относительности и продвинул вперед кванто-вую теорию излучения.

В ходе своего развития физика больше, чем любая другая наука, показала относительность всех устоявшихся прежде понятий класси-ческой науки и несостоятельность представлений об абсолютной до-стоверности научных знаний.

На этой странице материал по темам:

Введение……………………………………………………………………..3

    Исследования микромира …………………………………………….…….4

    Исследования макро- и мегамира ……………………………………….…5

    Нобелевские премии по физике ……………………………………………7

Практическое задание ……………………………………………………...15

а) задание № 1: Таблица научных открытий …………………………......15

б) задание № 2: Основные научные итоги этапов развития науки …...…15

в) задание № 3: Вопрос – ответ к этапам развития ………………………16

г) задание № 4: Теория относительности А.Эйнштейна ………………...16

Заключение ………………………………………………………….…..…..21

Список используемой литературы ………………………………...……....22

Введение

В современной науке в основе представлений о строении мате­риального мира лежит системный подход, согласно которому лю­бой объект материального мира, будь то атом, планета, организм или галактика, может быть рассмотрен как сложное образова­ние, включающее в себя составные части, организованные в цело­стность. Для обозначения целостности объектов в науке было вы­работано понятие системы.

Естественные науки, начав изучение материального мира с наиболее простых непосредственно воспринимаемых человеком ма­териальных объектов, переходят далее к изучению сложнейших объектов глубинных структур материи, выходящих за пределы че­ловеческого восприятия и несоизмеримых с объектами повседнев­ного опыта.

Применяя системный подход, естествознание не просто выде­ляет типы материальных систем, а раскрывает их связь и соот­ношение.

В науке выделяются три уровня строения материи.

Макромир - мир макрообъектов, размерность которых со­относима с масштабами человеческого опыта: пространственные величины выражаются в миллиметрах, сантиметрах и километ­рах, а время - в секундах, минутах, часах, годах.

Микромир - мир предельно малых, непосредственно не на­блюдаемых микрообъектов, пространственная разномерность ко­торых исчисляется от 10 -8 до 10 -16 см, а время жизни - от бес­конечности до 10 -24 сек.

Мегамир - мир огромных космических масштабов и скоро­стей, расстояние в котором измеряется световыми годами, а время существования космических объектов - миллионами и мил­лиардами лет.

И хотя на этих уровнях действуют свои специфические зако­номерности, микро-, макро- и мегамиры теснейшим образом взаи­мосвязаны.

Исследования микромира

Вконце XIX- началеXXвв. физика вышла на уровень исследования микромира, для описания которого кон­цептуальные построения классической физики оказались не­пригодными.

В результате научных открытий были опровергнуты пред­ставления об атомах как о последних неделимых структурных элементах материи.

История исследования строения атома началась в 1895 г. благодаря открытию Дж. Дж. Томсоном электрона - отрица­тельно заряженной частицы, входящей в состав всех атомов. Поскольку электроны имеют отрицательный заряд, а атом в целом электрически нейтрален, то было сделано предположе­ние о наличии помимо электрона и положительно заряженной частицы. Опыты английского физика Э. Резерфорда с альфа-частицами привели его к выводу о том, что в атомах существу­ют ядра - положительно заряженные микрочастицы

Кроме того, было обнаружено, что атомы одних элементов могут превращаться в атомы других в результате радиоактивно­сти, впервые открытой французским физиком А. А. Беккерелем.

Вопросы радиоактивности различных элементов изучались французскими физиками Пьером и Марией Кюри. Ими были открыты новые элементы - полоний и радий

Открытие сложной структуры атома стало крупнейшим со­бытием в физике, поскольку оказались опровергнутыми представления классической физики об атомах как твердых и неделимых структурных единицах вещества.

При переходе к исследованию микромира оказались разрушенными и представления классической физики о веществе и поле как двух качественно своеобразных видах материи. Изучая микрочастицы, ученые столкнулись с парадок­сальной, с точки зрения классической науки, ситуацией: одни и те же объекты обнаруживали как волновые, так и корпуску­лярные свойства.

Исследования макро- и мегамира

В истории изучения природы можно выделить два этапа: донаучный и научный.

Донаучный, или натурфилософский, охватывает период от античности до становления экспериментального естествозна­ния в XVI-XVII вв. В этот период учения о природе носили чисто натурфилософский характер: наблюдаемые природные явления объяснялись на основе умозрительных философских принципов.

Наиболее значимой для последующего развития естествен­ных наук была концепция дискретного строения материи - атомизм, согласно которому все тела состоят" из атомов - мельчайших в мире частиц.

Сущность протекания природных процессов объяснялась на основе механического взаимодействия атомов, их притяже­ния и отталкивания. Механическая программа описания при­роды, впервые выдвинутая в античном атомизме, наиболее полно реализовалась в классической механике, со становления которой начинается научный этап изучения природы.

Поскольку современные научные представления о струк­турных уровнях организации материи были выработаны в ходе критического переосмысления представлений классической науки, применимых только к объектам макроуровня, то начи­нать исследование нужно с концепций классической физики.

И Ньютон, опираясь на труды Галилея, разработал строгую научную теорию механики, описывающую и движение небес­ных тел, и движение земных объектов одними и теми же зако­нами. Природа рассматривалась как сложная механическая система.

В рамках механической картины мира, разработанной И. Ньютоном и его последователями, сложилась дискретная (кор­пускулярная) модель реальности. Материя рассматривалась как вещественная субстанция, состоящая из отдельных частиц - атомов или корпускул. Атомы абсолютно прочны, неделимы, непроницаемы, характеризуются наличием массы и веса.

Философское обоснование механическому пониманию природы дал Р. Декарт с его концепцией абсолютной дуальности (независимости) мышления и материи, из которой следовало, что мир можно описать совершенно объективно, без учета чело­века-наблюдателя.

Итогом ньютоновской картины мира явился образ Все­ленной как гигантского и полностью детерминированного механизма, где события и процессы являют собой цепь взаимозависимых причин и следствий.

Механистический подход к описанию природы оказался не­обычайно плодотворным. Вслед за ньютоновской механикой были созданы гидродинамика, теория упругости, механическая теория тепла, молекулярно-кинетическая теория и целый ряд других, в русле которых физика достигла огромных успехов. Однако были две области - оптических и электромагнитных явлений, которые не могли быть полностью объяснены в рам­ках механистической картины мира.

Разрабатывая оптику, Л. Ньютон, следуя логике своего учения, считал свет потоком материальных частиц - кор­пускул.

Эксперименты английского естествоиспытателя М. Фарядея итеоретические работы английского физика Дж.К. Максвелла окончательно разрушили представления ньютоновской физики о дискретном веществе как единственном виде материи и положили начало электромагнитной картине мира.

Явление электромагнетизма открыл датский естествоис­пытатель Х.К. Эрстед, который впервые заметил магнитное действие электрических токов. Продолжая исследования в этом направлении, М.Фарадей обнаружил, что временное изменение в магнитных полях создает электрический ток, он ввел понятие "силовые ли­нии"

К концу XIX в. физика пришла к выводу, что материя существует в двух видах: дискретного вещества и непрерывного поля.

Материя во Вселенной представлена сконденсировавшими­ся космическими телами и диффузной материей. Диффузная материя существует в виде разобщенных атомов и молекул, а также более плотных образований - гигантских облаков пыли и газа - газово-пылевых туманностей. Значительную долю ма­терии во Вселенной, наряду с диффузными образованиями, за­нимает материя в виде излучения. Следовательно, космическое межзвездное пространство никоим образом не пусто.

На современном этапе эволюции Вселенной вещество в ней находится преимущественно в звездном состоя­нии. 97% вещества в нашей Галактике сосредоточено в звездах, представляющих собой гигантские плазменные образования различной величины, температуры, с разной характеристикой движения. У многих, если не у большинства других галактик, "звездная субстанция" составляет более чем 99,9% их массы.

Огромное значение имеет исследование взаимосвязи между звездами и межзвездной средой, включающие проблему непре­рывного образования звезд из конденсирующейся диффузной материи.

Нобелевские премии по физике

Жорес АЛФЁРОВ, 2000 г.Исследованиями Жореса Алфёрова фактически сформировано новое направление – физика гетероструктур, электроника и оптоэлектроника.

Луис У. АЛЬВАРЕС, 1968 г.За открытие большого числа резонансов, что стало возможно благодаря разработанной им технике с использованием водородной пузырьковой камеры и оригинальному анализу данных.

Ханнес АЛЬФВЕН, 1970 г.За фундаментальные работы и открытия в магнитной гидродинамике и плодотворные приложения их в различных областях физики плазмы. Он разделил эту премию с Луи Неелем, награжденным за вклад в теорию магнетизма.

Карл Д. АНДЕРСОН, 1936 г.За открытие позитрона. Он разделил ее с Виктором Ф. Гессом. Им удалось найти один из строительных кирпичей Вселенной – положительный электрон. Андерсону принадлежит открытие частицы, ныне известной как мюон.

Филип У. АНДЕРСОН, 1977 г.За фундаментальные теоретические исследования электронной структуры магнитных и неупорядоченных систем.

Джон БАРДИН, 1956 г., 1972 г.Премия 1956 г. за исследования полупроводников и открытие транзисторного эффекта, в 1972 г. премия за создание теории сверхпроводимости, обычно называемой БКШ-теорией.

Чарлз Г. БАРКЛА, 1917 г.За открытие характеристического рентгеновского излучения элементов.

Николай БАСОВ, 1964 г.За фундаментальную работу в области квантовой электроники, которая привела к созданию генераторов и усилителей, основанных на лазерно-мазерном принципе. Б. разделил премию с Александром ПрохоровымиЧарлзом Х. Таунсом.

Анри БЕККЕРЕЛЬ, 1903 г.Беккерель удостоен премии совместно с Мари КюрииПьером Кюри. Сам Б. был особо упомянут в знак признания его выдающихся заслуг, выразившихся в открытии самопроизвольной радиоактивности.

Ханс А. БЕТЕ, 1967 г.За открытия, касающиеся источников энергии звезд.

Герд БИННИНГ, 1986 г.Герд Биннинг и Рорерразделили половину премии за изобретение сканирующего туннелирующего микроскопа. Другую половину премии получилЭрнст Русказа работу над электронным микроскопом.

Николас БЛОМБЕРГЕН, 1981 г.За вклад в развитие лазерной спектроскопии Бломберген и Шавловразделили между собой половину премии. Другой половиной был награжденКай Сигбанза электронную спектроскопию с помощью рентгеновских лучей.

Феликс БЛОХ, 1952 г.За развитие новых методов для точных ядерных магнитных измерений и связанные с этим открытия.

П.М.С. БЛЭККЕТ, 1948 г.За усовершенствование метода камеры Вильсона и сделанные в связи с этим открытия в области ядерной физики и космической радиации.

Нильс БОР, 1922 г.Нильс Бор за заслуги в исследовании строения атомов и испускаемого ими излучения награжден премией.

Оге БОР, 1975 г.За открытие взаимосвязи между коллективным движением и движением отдельной частицы в атомном ядре и развитие теории строения атомного ядра, базирующейся на этой взаимосвязи.

Макс БОРН, 1954 г.За фундаментальные исследования по квантовой механике, особенно за его статистическую интерпретацию волновой функции.

Вальтер БОТЕ, 1954 г.За метод совпадений для обнаружения космических лучей и сделанные в связи с этим открытия Боте разделил премию с Максом Борном, который был награжден за вклад в квантовую механику.

Уолтер БРАТТТЕЙН, 1956 г.За исследования полупроводников и открытие транзисторного эффекта.

Фердинанд БРАУН, 1909 г.Браун и Маркони получили премию в знак признания их вклада в создание беспроволочной телеграфии.

Перси Уильямс БРИДЖМЕН, 1946 г.За изобретение прибора, позволяющего создавать сверхвысокие давления.

Луи де БРОЙЛЬ, 1929 г.За открытие волновой природы электронов.

Уильям Генри БРЭГГ, 1915 г.За заслуги в исследовании структуры кристаллов с помощью рентгеновских лучей был удостоен премии.

Уильям Лоренс БРЭГГ, 1915 г.За заслуги в исследовании структуры кристаллов с помощью рентгеновских лучей.

Стивен ВАЙНБЕРГ, 1979 г.За вклад в объединенную теорию слабых и электромагнитных взаимодействий между элементарными частицами.

Джон X. ВАН ФЛЕК, 1977 г.За фундаментальные теоретические исследования электронной структуры магнитных и неупорядоченных систем.

Ян Дидерик ВАН-ДЕР-ВААЛЬС,1910 г.За работу над уравнением состояния газов.

Эуген П. ВИГНЕР, 1963 г.За вклад в теорию атомного ядра и элементарных частиц.

Кеннет Г. ВИЛЬСОН, 1982 г.За теорию критических явлений в связи с фазовыми переходами.

Роберт В. ВИЛЬСОН, 1978 г.половину премии за открытие микроволнового реликтового излучения. Другую половину премии получил Петр Капица.

Ч.Т.Р. ВИЛЬСОН, 1927 г.За метод визуального обнаружения траекторий электрически заряженных частиц с помощью конденсации пара.

Вильгельм ВИН,1911 г.За открытия в области законов, управляющих тепловым излучением.

Деннис ГАБОР, 1971 г.За изобретение и разработку голографического метода.

Вернер ГЕЙЗЕНБЕРГ, 1932 г.За создание квантовой механики.

Марри ГЕЛЛ-МАНН, 1969 г.За открытия, связанные с классификацией элементарных частиц и их взаимодействий.

Мария ГЁППЕРТ-МАЙЕР, 1963 г.За открытие оболочечной структуры ядра, что убедительно доказало всю важность оболочечной модели для систематизации накопленного материала и предсказания новых явлений, связанных с основным состоянием и низко лежащими возбужденными состояниями ядер.

Густав ГЕРЦ, 1925 г.За открытие законов соударения электрона с атомом.

Виктор Ф. ГЕСС, 1936 г.За открытие космических лучей Гесс удостоен премии.

Шарль ГИЛЬОМ, 1920 г.В знак признания его заслуг перед точными измерениями в физике – открытия аномалий в никелевых стальных сплавах Шарль Гильом был удостоен премии. Изобрел сплав элинвар.

Доналд А. ГЛАЗЕР, 1960 г.За изобретение пузырьковой камеры.

Шелдон Л. ГЛЭШОУ, 1979 г.Новаторские теоретические идеи, за которые Глэшоу был удостоен премии, привели к объединению электромагнетизма и слабого взаимодействия.

Нильс ДАЛЕН, 1912 г.За изобретение автоматических регуляторов, использующихся в сочетании с газовыми аккумуляторами для источников света на маяках.

Айвар ДЖАЙЕВЕР, 1973 г.За экспериментальные открытия явлений туннелирования в полупроводниках и сверхпроводниках.

Брайан Д. ДЖОЗЕФСОН, 1973 г.За теоретические предсказания свойств тока, проходящего через туннельный барьер, в частности явлений, общеизвестных ныне под названием эффектов Джозефсона.

Поль А. Морис ДИРАК, 1933 г.За открытие новых продуктивных форм атомной теории.

Клинтон Дж. ДЭВИССОН, 1937 г.За экспериментальное открытие дифракции электронов на кристаллах.

Пьер Жиль де ЖЕН, 1991 г.За обнаружение того, что методы, развитые для изучения явлений упорядоченности в простых системах, могут быть обобщены на жидкие кристаллы и полимеры.

Питер ЗЕЕМАН, 1902 г.Магнитное расщепление спектральных линий, известное как эффект Зеемана, – это важный инструмент исследования природы атома, он полезен и при определении магнитных полей звезд.

Йоханнес Ханс Д. ЙЕНСЕН, 1963 г.Йоханнес Ханс Даниель Йенсен и Мария Гёпперт-Майербыли удостоены премии за открытие оболочечной структуры ядра.

Хейке КАМЕРЛИНГ-ОННЕС, 1913 г. За исследования свойств вещества при низких температурах, которые привели к производству жидкого гелия.

Петр КАПИЦА, 1978 г.За фундаментальные изобретения и открытия в области физики низких температур получил премию.

Альфред КАСТЛЕР, 1966 г.За открытие и разработку оптических методов исследования резонансов Герца в атомах.

Клаус фон КЛИТЦИНГ, 1985 г.За открытие квантового эффекта Холла.

Джон КОКРОФТ, 1951 г.За работы по трансмутации атомных ядер с помощью искусственно ускоренных атомных частиц.

Артур КОМПТОН, 1927 г.За открытие эффекта, названного его именем. Разделив рассеянные рентгеновские лучи по компонентам с соответствующими длинами волн продемонстрировал, что рентгеновские лучи ведут себя аналогично свету.

Джеймс У. КРОНИН, 1980 г.За открытие нарушений фундаментальных принципов симметрии при распаде нейтральных K -мезонов.

Леон КУПЕР, 1972 г.За создание теории сверхпроводимости, обычно называемой БКШ-теорией.

Поликарп КУШ, 1955 г.За точное определение магнитного момента электрона.

Пьер КЮРИ, 1903 г. в знак признания их совместных исследований явлений радиации.

Лев ЛАНДАУ, 1962 г.За основополагающие теории конденсированной материи, в особенности жидкого гелия.

Макс фон ЛАУЭ, 1914 г.За открытие дифракции рентгеновских лучей на кристаллах, которое Эйнштейн назвал «одним из наиболее красивых в физике».

Филипп фон ЛЕНАРД, 1905 г.За работы по катодным лучам.

Цзундао ЛИ, 1957 г.За проницательное исследование так называемых законов сохранения.

Габриель ЛИПМАН, 1908 г.Габриель Липман продемонстрировал метод получения невыцветающих цветных фотографий. За создание метода фотографического воспроизведения цветов на основе явления интерференции.

Хендрик ЛОРЕНЦ, 1902 г.Хендрик Лоренц первым выдвинул гипотезу о том, что вещество состоит из микроскопических частиц, называемых электронами, которые являются носителями вполне определенных зарядов.

Эрнест O. ЛОУРЕНС, 1939 г.За изобретение и создание циклотрона, за достигнутые с его помощью результаты, особенно получение искусственных радиоактивных элементов.

Уиллис Ю. ЛЭМБ, 1955 г.За открытия, связанные с тонкой структурой спектра водорода.

Альберт А. МАЙКЕЛЬСОН, 1907 г.Он измерил скорость света с точностью, невиданной ранее, пользуясь приборами, обошедшимися немногим дороже десяти долларов.

Гульельмо МАРКОНИ, 1909 г.Гулельмо Маркони передал первый беспроволочный сигнал через Атлантику с запада на восток, открыл первую трансатлантическую службу беспроволочной связи.

Симон ван дер МЕР, 1984 г.Симон ван дер Мер за решающий вклад в большой проект, осуществление которого привело к открытию полевых частиц W и Z , переносчиков слабого взаимодействия, удостоен премии.

Рудольф Л. МЁССБАУЭР, 1961 г.Явление упругого ядерного резонансного поглощения гамма-излучения ныне носит название эффекта Мёссбауэра и позволяет получить информацию о магнитных и электрических свойствах ядер и окружающих их электронов.

Роберт МИЛЛИКЕН, 1923 г.За эксперименты по определению элементарного электрического заряда и фотоэлектрическому эффекту он был удостоен премии.

Невилл МОТТ, 1977 г.За фундаментальные теоретические исследования электронной структуры магнитных и неупорядоченных систем.

Бенжамин Р. МОТТЕЛЬСОН, 1975 г.За открытие связи между коллективным движением и движением одной частицы в атомных ядрах и создание на основе этой связи теории строения атомного ядра был удостоен премии.

Луи НЕЕЛЬ, 1970 г.Работа Луи Нееля по палеомагнетизму помогла объяснить «магнитную память» скальных пород в процессе изменения магнитного поля Земли и решающим образом способствовала подтверждению теории дрейфа континентов и теории тектонических плит.

Вольфганг ПАУЛИ, 1945 г.За открытие принципа запрета Паули удостоен премии.

Сесил Ф. ПАУЭЛЛ, 1950 г.За разработку фотографического метода исследования ядерных процессов и открытие мезонов, осуществленное с помощью этого метода.

Арно А. ПЕНЗИАС, 1978 г.За открытие космического микроволнового фонового излучения.

Жан ПЕРРЕН, 1926 г.За работу по дискретной природе материи и в особенности за открытие седиментационного равновесия.

Эдуард М. ПЁРСЕЛЛ, 1952 г.За создание новых точных методов ядерных магнитных измерений.

Макс ПЛАНК, 1918 г.За открытие квантов энергии Макс Планк удостоен премии, его вклад в современную физику не исчерпывается открытием кванта и постоянной.

Александр ПРОХОРОВ, 1964 г.За фундаментальные работы в области квантовой электроники.

Изидор Айзек РАБИ, 1944 г.За резонансный метод измерений магнитных свойств атомных ядер.

Мартин РАЙЛ, 1974 г.За новаторские исследования в радиоастрофизике.

Венката РАМАН, 1930 г.За работы по рассеянию света и за открытие эффекта.

Джеймс РЕЙНУОТЕР, 1975 г.За открытие связи между коллективным движением и движением частиц в атомных ядрах.

Вильгельм РЕНТГЕН, 1901 г.в знак признания необычайно важных заслуг перед наукой, выразившихся в открытии замечательных лучей.

Бертон РИХТЕР, 1976 г.За новаторские работы по открытию тяжелой элементарной частицы нового типа.

Оуэн У. РИЧАРДСОН, 1928 г.За работы по термионным исследованиям, и особенно за открытие закона, носящего его имя.

Гейнрих РОРЕР, 1986 г.За создание сканирующего туннелирующего микроскопа Гейнрих Рорер и Герд Биннигбыли удостоены половины премии.

Карло РУББИА, 1984 г.за решающий вклад в большой проект, который привел к открытию квантов поля W - и Z -частиц, переносчиков слабого взаимодействия.

Эрнст РУСКА, 1986 г.За фундаментальные работы по электронной оптике и создание первого электронного микроскопа Эрнст Руска был награжден премией.

Абдус САЛАМ, 1979 г.Новые теоретические идеи, за которые Салам, Шелдон Л. ГлэшоуиСтивен Вайнбергбыли удостоены Нобелевской премии, привели к построению теории, объединившей электромагнетизм и слабое взаимодействие.

Эмилио СЕГРЕ, 1959 г.За открытие антипротона.

Кай СИГБАН, 1981 г.За вклад в развитие электронной спектроскопии высокого разрешения.

Манне СИГБАН, 1924 г.За открытия и исследования в области рентгеновской спектроскопии.

Мари СКЛОДОВСКАЯ-КЮРИ, 1903 г., 1911 г.в знак признания совместных исследований явлений радиации, открытых профессором Анри Беккерелем. Вторую премию она получила за открытие элементов радия и полония, выделение радия и изучение природы и соединений этого замечательного элемента.

Джон У. CTPETT, лорд Рэлей, 1904 г.За исследования плотностей наиболее распространенных газов и за открытие аргона в ходе этих исследований.

Игорь ТАММ, 1958 г.За открытие и истолкование эффекта Черенкова.

Чарлз Х. ТАУНС, 1964 г.Фундаментальная работа Таунса в области квантовой электроники привела к созданию осцилляторов и усилителей.

Сэмюэл Ч. Ч. ТИНГ, 1976 г.За изыскательскую работу по открытию тяжелой элементарной частицы нового типа.

Синъитиро ТОМОНАГА, 1965 г.За изобретение математической процедуры перенормировки для исключения бесконечных масс и зарядов.

Дж. Дж. ТОМСОН, 1906 г.в знак признания заслуг в области теоретических и экспериментальных исследований проводимости электричества в газах.

Дж. П. ТОМСОН, 1937 г.Джордж Паджет Томсон и Клинтон Дж Дэвиссонразделили премию за экспериментальное открытие дифракции электронов на кристаллах.

Эрнест УОЛТОН, 1951 г.За исследовательскую работу по превращению атомных ядер с помощью искусственно ускоряемых атомных частиц.

Уильям ФАУЛЕР, 1983 г.За теоретическое и экспериментальное исследование ядерных реакций, имеющих важное значение для образования химических элементов.

Ричард Ф. ФЕЙНМАН, 1965 г.За фундаментальные работы по квантовой электродинамике, имевшие глубокие последствия для физики элементарных частиц.

Энрико ФЕРМИ, 1938 г.За доказательства существования новых радиоактивных элементов, полученных при облучении нейтронами.

Вал Л. ФИТЧ, 1980 г.За открытие нарушений фундаментальных принципов в распаде нейтральных K -мезонов.

Джеймс ФРАНК, 1925 г.За открытие законов соударений электронов с атомами.

Илья ФРАНК, 1958 г.Открытие и истолкование эффекта Черенковапослужило основанием для присуждения премии русскому учёному Илье Франку.

Роберт ХОФСТЕДТЕР, 1961 г.За основополагающие исследования по рассеянию электронов на атомных ядрах и связанных с ними открытий в области структуры нуклонов.

Энтони ХЬЮИШ, 1974 г.За пионерские исследования в области радиофизики.

Фриц ЦЕРНИКЕ, 1953 г.За обоснование фазово-контрастного метода, особенно за изобретение фазово-контрастного микроскопа. Премия за вклад в классическую физику.

Субрахманьян ЧАНДРАСЕКАР, 1983 г.За теоретические исследования физических процессов, играющих важную роль в строении и эволюции звезд был удостоен премии.

Джеймс ЧЕДВИК, 1935 г.За открытие нейтрона.

Оуэн ЧЕМБЕРЛЕН, 1959 г.За открытие антипротона.

Павел ЧЕРЕНКОВ, 1958 г.Черенков обнаружил, что гамма-лучи, испускаемые радием, дают слабое голубое свечение, и убедительно показал, что свечение представляет собой нечто экстраординарное.

Артур Л. ШАВЛОВ, 1981 г.За вклад в развитие лазерной спектроскопии.

Джулиус С. ШВИНГЕР, 1965 г.Выдающиеся достижения в теоретической физике, за которые ему была присуждена премия, закладывались, когда он проявил интерес к фундаментальной природе материи.

Уильям ШОКЛИ, 1956 г.За исследования полупроводников и открытие транзисторного эффекта был удостоен премии.

Эрвин ШРЕДИНГЕР, 1933 г.Открытие новых продуктивных форм атомной теории.

Джон ШРИФФЕР, 1972 г.За созданную теорию сверхпроводимости, обычно называемую теорией БКШ.

Открытие электрона, явления радиоактивности, атомного ядра явилось результатом изучения строения вещества, достигнутым физикой в конце XIX века. Исследования электрических явлений в жидкостях и газах, оптических спектров атомов, рентгеновских лучей, фотоэффекта показали, что вещество имеет сложную структуру. Классическая физика оказалась несостоятельной в объяснении новых экспериментальных фактов. Уменьшение временных и пространствен­ных масштабов, в которых разыгрываются физические явления, привели к «новой физике», столь непохожей на привычную традици­онную классическую физику. Развитие физики в начале XX века привело к полному пересмотру классических представлений. В основе «новой физики» лежат две фундаментальные теории:

  • теория относительности
  • квантовая теория.

Теория относительности и квантовая теория являются фундаментом, на котором построено описание явлений микромира.

Создание А. Эйнштейном в 1905 году теории относительности привело к радикальному пересмотру представлений о свойствах пространства и времени, электромагнитного поля. Стало ясно, что невозможно создание механических моделей для всех физических явлений.
В основу теории относительности положены две физические концепции.

  • Согласно принципу относительности равномерное и прямолинейное движение тел не влияет на происходящие в них процессы
  • Существует предельная скорость распространения взаимодействия - скорость света в пустоте. Скорость света является фундаментальной константой современной теории. Существование предельной скорости распространения взаимодействия означает, что существует связь между пространственными и временными интервалами.

Математической основой специальной теории относительности являются преобразования Лоренца.

Инерциальная система отсчета − система отсчета, покоящаяся или движущаяся равномерно и прямолинейно. Система, отчета, движущаяся с постоянной скоростью относительно любой инерциальной системы отсчета также является инерциальной.

Принципы относительности Галилея

  1. Если законы механики справедливы в одной системе отсчета, то они справедливы и в любой другой системе отсчета, движущейся равномерно и прямолинейно относительно первой.
  2. Время одинаково во всех инерциальных системах отсчета.
  3. Нет никакого способа обнаружить равномерное прямолинейное движение.

Постулаты специальной теории относительности

  1. Законы физики одинаковы во всех инерциальных системах отсчета.
  2. Скорость света в вакууме равна постоянной величине с независимо от скорости движения источника или приемника.

Преобразования Лоренца. Координаты материальной точки массы покоя m в инерциальной системе отсчета S определяются как (t ,) = (t ,x ,y ,z ), а скорость u = ||. Координаты той же точки в другой инерциальной системе отсчета S" (t" ,x" ,y" ,z" ), движущейся относительно S с постоянной скоростью , связаны с координатами в системе S преобразованием Лоренца (рис. 1).
В случае, если координатные оси систем z и z" сонаправлены с вектором и в начальный момент времени t = t" = 0 начала координат обеих систем совпадали, то преобразования Лоренца даются соотношениями

x" = x ; y = y "; z" = γ(z βct ); ct" = γ(ct βz ),

где β = v/c , v − скорость системы отсчета в единицах с (0 ≤ β ≤ 1), γ − лоренц-фактор.


Рис. 1. Штрихованная система S" движется относительно системы S со скоростью v вдоль оси z .

Компоненты скорости частицы в системе S" u" x , u" y , u" z связаны с компонентами скорости в системе S u x , u y , u z соотношениями

Обратные преобразования Лоренца получаются взаимной заменой координат r i r" i , u i u" i и заменой v → −v .

x = x" ; y = y" ; z = γ(z" βct" ); ct = γ(ct" βz" ).

При малых скоростях v преобразования Лоренца совпадают с нерелятивистскими преобразованиями Галилея

x" = x ; y" = y ; z" = z vt" ; t = t" .

Относительность пространственных расстояний (сокращение Лоренца-Фитцджеральда): l" = l/ γ .
Относительность промежутков времени между событиями (релятивистское замедление времени): Δt" = γ Δt .
Относительность одновременности событий.
Если в системе S для событий А и В t A = t B и
x A
x B , то в системе S" t" A = t" B + γ v /c 2 (x B − x A).

Полная энергия E и импульс p частицы определяются соотношениями

E = mc 2 γ ,
(1)

где E , р и m − полная энергия, импульс и масса частицы, c = 3·10 10 см·сек -1 − скорость света в вакууме,
Полная энергия и импульс частицы зависят от системы отсчета. Масса частицы не изменяется при переходе от одной инерциальной системы отсчета к другой. Она является лоренцевым инвариантом. Полная энергия E , импульс p и масса m частицы связаны соотношением

E 2 − p 2 c 2 = m 2 c 4 , (2)

Из соотношений (1) и (2) следует, что если энергия E и импульс p измеряются в двух различных системах движущихся друг относительно друга со скоростью v , то энергия и импульс будут иметь в этих системах различные значения. Однако величина E 2 − p 2 c 2 , которая называется релятивистский инвариант , будет в этих системах одинаковой.

При нагревании твердого тела оно раскаляется и начинает излучать в непрерывной области спектра. Это излучение называется излучением абсолютно черного тела. Было сделано много попыток описать форму спектра абсолютно черного тела, основываясь на законах классической электромагнитной теории. Сравнение экспериментальных данных с расчетами Рэлея-Джинса (рис. 2.) показывает, что они согласуются только в длинноволновой области спектра. Различие в области коротких длин волн было названо ультрафиолетовой катастрофой .


Рис. 2. Распределение энергии спектра теплового излучения.
Точками показаны экспериментальные результаты.

В 1900 г. была опубликована работа М. Планка, посвященная проблеме теплового излучения тел. М. Планк моделировал вещество как совокупность гармонических осцилляторов различной частоты. Предположив, что излучение происходит не непрерывно, а порциями - квантами, он получил формулу для распределения энергии по спектру теплового излучения, которая хорошо согласовывалась с опытными данными

где h постоянная Планка, k постоянная Больцмана, T − температура, ν − частота излучения.

h = 6.58·10 -22 МэВ∙сек,
k = 8.62·10 -11 МэВ∙К –1 .

Часто используется величина ћ = h /2π .

Так, впервые в физике появилась новая фундаментальная константа − постоянная Планка h . Гипотеза Планка о квантовой природе теплового излучения противоречит основам классической физики и показывает границы ее применимости.
Через пять лет А. Эйнштейн, обобщив идею М. Планка, показал, что квантованность является общим свойством электромагнитного излучения. Согласно идеям А. Эйнштейна электромагнитное излучение состоит из квантов, названных позднее фотонами. Каждый фотон имеет определенную энергию E и импульс p :

E = h ν ,

где λ и ν − длина волны и частота фотона, − единичный вектор в направлении распространения волны.
Представления о квантованности электромагнитного излучения позволили объяснить закономерности фотоэффекта, исследованные экспериментально Г. Герцем и А. Столетовым. На основе квантовой теории А. Комптоном в 1922 году было объяснено явление упругого рассеяния электромагнитного излучения на свободных электронах, сопровождающееся увеличением длины волны электромагнитного излучения.

где λ и λ" − длины волн падающего и рассеянного фотонов, m масса электрона, θ − угол рассеяния фотона, h/mc = 2.4·10 -10 см = 0.024 Å − комптоновская длина волны электрона.


Рис. 3. Эффект Комптона − упругое рассеяние фотона на электроне.

Открытие двойственной природы электромагнитного излучения − корпускулярно-волнового дуализма оказало значительное влияние на развитие квантовой физики, объяснение природы материи. В 1924 г. Луи де Бройль выдвинул гипотезу об универсальности корпускулярно-волнового дуализма. Согласно этой гипотезе не только фотоны, но и любые другие частицы материи наряду с корпускулярными обладают также и волновыми свойствами. Соотношения, связывающие корпускулярные и волновые свойства частиц те же, что были установлены ранее для фотонов

λ − длина волны, которую можно сопоставить с частицей. Волновой вектор ориентирован по направлению движения частицы. Прямыми опытами, подтверждающими идею корпускулярно-волнового дуализма, были опыты, выполненные в 1927 году К. Дэвиссоном и Л. Джермером по дифракции электронов на монокристалле никеля. Позднее наблюдалась дифракция и других микрочастиц. Метод дифракции частиц в настоящее время широко используется в изучении строения и свойств вещества.


В. Гейзенберг
(1901–1976)

Экспериментальное подтверждение идеи корпускулярно-волнового дуализма привело к пересмотру привычных представлений о движении частиц и способа описания частиц. Для классических материальных точек характерно движение по определенным траекториям, так, что их координаты и импульсы в любой момент времени точно известны. Для квантовых частиц это утверждение неприемлемо, так как для квантовой частицы импульс частицы связан с ее длиной волны, а говорить о длине волны в данной точке пространства бессмысленно. Поэтому для квантовой частицы нельзя одновременно точно определить значения ее координат и импульса. Если частица занимает точно определенное положение в пространст­ве, то ее импульс полностью не определен и наоборот, частица с определенным импульсом имеет полностью неопределенную координату. Неопределенность в значении координаты частицы Δx и неопределенность в значении компоненты импульса частицы Δp x связаны соотношением неопределенности, установленным В. Гейзенбергом в 1927 году

Δx ·Δp x ћ .

Из соотношения неопределенности следует, что в области квантовых явлений неправомерна постановка некоторых вопросов, вполне естественных для классической физики. Так, например, не имеет смысла говорить о движении частицы по определенной траектории. Необходим принципиально новый подход к описанию физических систем. Не все физические величины, характеризующие систему, могут быть измерены одновременно. В частности, если неопределенность времени жизни некоторого квантового состояния равна Δt , то неопределенность величины энергии этого состояния ΔE не может быть меньше ћ t , т. е.

ΔE ·Δt ћ .


Э. Шредингер
(1887–1961)

К середине 20-х годов стало очевидно, что полуклассическая теория атома Н. Бора не может дать полного описания свойств атома. В 1925–1926 гг. в работах В. Гейзенберга и Э. Шредингера был разработан общий подход описания квантовых явлений − квантовая теория. Эволюция квантовой системы в нерелятивистском случае описывается волновой функцией, удовлетворяющей уравнению Шредингера

«Научные открытия 20 века» - Первая программа для отправки электронной почты. Телевидение. Развитие технологий. Открытия двадцатого века, которые изменили мир. Любопытные факты. Научные открытия в области физики. Телефон. Научные открытия в области биологии. Интернет. Клайд Томбо. Розалин Франклин. Радио. Компьютер.

«Технические открытия и изобретения» - Каравелла. Ворот. Технические открытия и изобретения. Печатный станок. Оружие. Поршневой насос. Каравелла в порту. Доменная печь. Механизм башенных часов. Иоганн Гутенберг. Мельницы с водяным колесом.

«Физическая картина мира» - Электромагнитная картина мира. Материя как физическая реальность. Квантово-полевая картина мира. Фундаментальные концепции описания природы. Фундаментальные физические теории. Структурные уровни организации материи. Поле. Микромир: спин. Развитие представлений о пространстве и времени. Механистическая картина мира.

«Полевая физика» - Полевая физика в приложении к явлениям микромира. Реализация указанного механизма. Классический ядерный потенциал. Полная масса частицы. Знак полной массы. Использование в полевой физике суммарной переменной массы. Решение соответствующего полевого уравнения движения. Зависимость массы покоя элементарных частиц от гравитационного потенциала.

«История развития физики» - Первый космонавт Земли. Исаак Ньютон. История развития физики. Физика ХХ века. Демокрит. Архимед. Михаил Васильевич Ломоносов. Этапы развития физики. Прорыв в освоении космоса. Галилео Галилей. Ученые Древней Греции. Джеймс Максвелл. Физика и техника. Посадка на Луну.

«Механическая картина мира» - Материя. Ньютон на основе закона всемирного тяготения изложил теорию сжатия. Ядром МКМ является механика Ньютона или классическая механика. Корпускулярная теория. Движение. Гениальные идеи. Одним из первых, кто задумался о сущности движения, был Аристотель. Движение – одна из основных проблем естествознания.

Всего в теме 12 презентаций