Тахион - гипотетическая частица. Тахион, тахионная энергия

Путенихин П.В. mailto: [email protected]

Тахион - это гипотетическая частица, движущаяся со сверхсветовой скоростью. В нижеследующих выкладках, если это не влияет на выводы, я не буду делать различия между тахионом (tachyon) и любой частицей, движущейся со сверхсветовой скоростью (faster than light), например, сверхсветовой частицей квантино (quantino), упоминавшейся Вейником . Общепринятой скорости движения тахиона нет, в литературе вообще не указывается какая-либо определённая скорость тахиона. Из логических соображений следует рассматривать три варианта этой скорости: бесконечно большая скорость (мгновенная), переменная в процессе движения и некая фиксированная сверхсветовая скорость. Первый вариант не физичен по причине бесконечности, поэтому не заслуживает серьёзного внимания. Реалистичным неявно считается второй вариант, но третий - более простой, более удобный для анализа. Общепризнано, что тахион впервые описал Зоммерфельд , затем теор етически его исследовали многие физики. Сам термин тахион (tachyon) был предложен в 1967 году Фейнбергом . Справедливости ради следует заметить, что Зоммерфельд исследовал не тахион, а сверхсветовое движение электрона, то есть электрически заряженной частицы, и его взаимодействие с собственным полем. Параграф 5 его статьи так и называется:

«§ 5.Сила, действующая на электрон со стороны его собственного поля, когда скорость постоянна и превышает скорость света».

Он приходит к выводу, что физическими законами движение электрона со сверхсветовой скоростью не запрещено, хотя и не является свободным, легко осуществимым:

«Несмотря на то, что движение с постоянной скоростью, превышающей скорость света, не является для электрона свободным, это движение не запрещено с физической точки зрения, так как требует (даже если скорость бесконечна) в каждый момент приложения только конечной силы, а также для любого конечного пути только конечной работы» .

Полученные выводы, таким образом, относить к тахиону, который, по мнению многих исследователей, не имеет заряда и может иметь любую сверхсветовую (superluminal) скорость, вряд ли корректно:

«Движение электронов, имеющих равномерный поверхностный заряд, с постоянной скоростью, превышающей скорость света, на самом деле невозможно, это потребовало бы бесконечно больших затрат сил и энерги и» .

В своих выкладках Зоммерфельд использовал подход, отличающийся от методики Лоренца и от используемого впоследствии аппарата теор ии относительности:

«... я использовал общие выражения для поля электрона, движущегося по произвольн ому пути, которые оказываются более простым, чем известные ныне формулы, в основе которых лежат работы Лоренца» .

Использование математики теор ии относительности, в основе которой лежат те же работы Лоренца, как известно, приводят к тому, что тахион приобретает весьма экзотические характеристики. Считается, что в момент испускания тахиона в сторону наблюдателя возникает картина, которую Википедия описывает следующим образом . Рассматривается тахион, «наивно уподобленный обычному «шарику», который можно наблюдать визуально в отраженном свете. Поскольку тахион движется быстрее света, он обгоняет отражённый от него свет, поэтому достигает наблюдателя раньше, чем собственное изображение. Лишь после этого наблюдатель увидит свет, отражённый от тахиона, то есть увидит сам тахион. Тахион как бы возникает перед наблюдателем из ничего. При этом наблюдателю будут видны две разлетающиеся в разные стороны частицы - тахионы:

Рис.1 Рисунок из Википедии: таким мог бы видеться наблюдателю тахион

Одна продолжает двигаться в первоначальном направлении, вторая - в том направлении, откуда тахион появился. При этом время на тахионе будет видеться наблюдателю текущим в обратном направлении. Это объясняется тем, что изображения тахиона от точки испускания будут достигать наблюдателя в обратном порядке: сначала он увидит последние «кадры» тахиона, затем предыдущие и так далее.

Кстати, рассмотренная картина не является чем-то экзотическим. Подобный эффект можно обнаружить со сверхзвуковым движением. Если мимо наблюдателя пролетит сверхзвуковой истребитель, то точно так же наблюдатель «услышит» его, когда тот с ним поравняется. Затем продолжится звук истребителя, удаляющегося в разные стороны от наблюдателя. Как и в случае с тахионом, обгоняющим испускаемый им свет, истребитель обгоняет звук, который сам издаёт.

На рисунке не учтены релятиви стские эффекты - сжатие движущихся объектов, хотя в литературе в большинстве случаев принимается, что тахион не нарушает лоренц-инвариантности. В этом случае, казалось бы, уравнение должно иметь такой же вид, как и для досветовой скорости:

Здесь L - это собственная длина движущегося тахиона, а L` - его длина в неподвижной системе отсчета. Поскольку скорость тахиона выше скорости света, из уравнения следует, что длина движущегося объекта должна стать мнимой. Для простоты примем, что на рисунке объект - тахион, движущийся слева направо, изображён вытянутым в 3-4 раза. Это соответствует скорости тахиона, превышающей скорость света примерно в 4 раза. Отношение квадратов скоростей существенно больше единицы, поэтому отбросим единицу за малостью:

В левой половине рисунка лоренц-инвариантность не учтена: сфера тахиона не вытянута, а сжата, хотя некоторые авторы считают, что под научным употреблением термина тахион подразумеваются лоренц-инвариантные объекты, которые не нарушают принцип относительности.

Если внимательно приглядеться, то можно сделать вывод, что приведённый из Википедии рисунок более соответствует ньютоновой физике: приближающийся тахион видится сжатым, а удаляющийся - вытянутым. Действительно, если осветить приближающийся тахион, то свет от ближнего края отразится лишь ненамного раньше, чем от дальнего, поскольку дальний край тахиона успеет переместиться вперёд после отражения света от переднего края, сокращая кажущуюся длину тахиона. Напротив, удаляющийся тахион будет казаться вытянутым, поскольку дальний край тахиона успеет удалиться вперёд после отражения света от ближнего края, что визуально увеличивает его длину.

Теперь посмотрим, что показывают часы, движущиеся со сверхсветовой скоростью, часы на тахионе. Аналогичные уравнения для времени показывают:

Признавать энерги ю мнимой величиной считается невозможным, следовательно, для сохранения равенства какая-то из величин в правой его части должна быть мнимой. Выбор, как говорится, невелик: мнимой может быть только масса тахиона. Аналогично, получаем уравнение для импульса тахиона:

Как в уравнении для энерги и, здесь также мнимой приходится сделать массу. Все эти мнимые параметры тахиона мы получили, применив к нему математику специальной теор ии относительности. То есть, вся эта «мнимость» - следствие релятиви стских операций над тахионом. Что такое «мнимая длина» представить вряд ли возможно. Для того, чтобы характеристики тахиона стали измеримыми, Биланюк предлагает:

«Единственный способ сделать их такими - это вновь постул ировать, что их собственные длины, собственные времена жизни - мнимые параметры, подобно собственной массе. И поскольку никакая величина, которая должна описываться мнимым параметром, недоступна измерению, их мнимость не должна служить источником беспокойства» .

В этом случае уравнение будет иметь иной, «спокойный» вид:

где l - мнимая собственная длина тахиона.

В приведённых лоренц-уравнениях для тахиона мнимую единицу можно было бы «присоединить» к скорости тахиона. Тогда мы получили бы во всех уравнениях единственную единую для всех уравнений мнимую величину - мнимую сверхсветовую скорость тахиона. Однако этому противится теор ия струн, в которой основное состояние струны является тахионом, так как для квадрата массы струны получается отрицательное выражение, то есть, мнимая масса .

Применение к тахиону лоренц-инвариантности формально исключает вопросы о нарушении причинности. В некоторых работах проскальзывает мысль, что сверхсветовая скорость тахиона - едва ли не условность, что она не позволяет передавать информацию быстрее света, следовательно, не нарушает постул атов СТО, что и приводит к сохранению причинности. Другими словами, поскольку тахион не передает информации со сверхсветовой скоростью, он не нарушает постул атов СТО и причинности. С другой стороны, есть противоположный подход к передаче информации, от противного. Тахион потому не может передавать информацию со сверхсветовой скоростью, что будет нарушена причинность. Здесь важно отметить, что причинность нарушается при сверхсветовой передаче информации только в теор ии относительности, только в СТО при этом возникают эффекты движения в прошлое, изменение направления причинно-связанных событий.

По мнению Мандельштама «...опровергнуть [теор ию относительности] можно только в том случае, если в природе найдутся процессы сигнального характера , более скорые, чем свет».

Наличие таких сигнальных процессов неизбежно привело бы и к другим противоречиям:

«Если бы сверхсветовые частицы существовали в действительности, их можно было бы естественным образом использовать для синхронизации часов наблюдателей при относительном движении. Такие наблюдатели были бы связаны не лоренц-преобразованиями, а новой группой преобразований, и тогда отпала бы часть аргументов в пользу требования лоренц-инвариантности. Более детальный анализ показывает, что такая точка зрения обманчива» .

Это интересное замечание. К нему следует добавить ещё одно интересное высказывание Биланюка, которое он противопоставляет претензиям к лоренц-инвариантности тахиона:

«Следует ожидать, что наши друзья-скептики так легко от нас не отстанут. Они могут указать, что величина 1/2 встречается не только в выражении для массы, но также и в выражении для длины, интервала времени и т. п. Поскольку все эти величины измеримы, они должны описываться действительными числами» .

И это верно! Друзья-скептики утверждают, что преобразования Лоренца появились как следствие инвариантности скорости света. Если есть инвариантная скорость, то она становится предельной скоростью передачи информации и наоборот . В этом случае нет и быть не может других скоростей, превышающих эту, инвариантную. Отсюда следует, что признание сверхсветовой скорости тахиона требует, как предположил Фейнберг, замены инварианта скорости света на инвариант скорости тахиона. Хотя он тут же и отвергает такую возможность, но её следует проанализировать более тщательно. Рассмотрим одно из приведённых выше уравнений Лоренца «поэлементно»:

Нас должно интересовать главным образом подкоренное выражение. Опишем входящие в него величины полным, развёрнутым текстом:

с - это скорость света, инвариантной величины; значение этой скорости неизменно, из какой бы системы отсчёта мы её ни фиксировали;

v - это скорость инерциальной системы отсчёта, движущейся относительно нашей условно неподвижной системы, и длину которой мы вычисляем в этом уравнении; инерциальная система отсчета представляет собой, условно говоря, некоторую тележку, с которой связана система координат, и на которой установлены часы.

Сразу же с далеко идущими последствиями становится видна весьма сомнительная процедура применения этого выражения (1) к тахиону. Действительно, мы считаем, что в этом выражении v - это скорость тахиона. Тогда в соответствии с канонами специальной теор ии относительности мы фактически утверждаем, что с тахионом связана инерциальная система отсчёта, тележка с часами и осями координат. Из этого сразу же следует вывод об ошибочности мнения Фейнберга: место инварианта - в знаменателе! Если хотя бы предполагается использовать тахион в качестве нового инварианта, скорость тахиона должна быть подставлена вместо скорости света. В противном случае это банальная подмена понятий, естественно и неизбежно ведущая к появлению субстанции, имеющей сомнительно материальную природу с большим набором мнимых характеристик: нельзя требовать от ИСО инвариантности её скорости.

Более того, если существует скорость передачи информации (или движения), превышающая скорость инварианта, в теор ии относительности неизбежно возникает парадокс, абсурд. Представим себе эту систему отсчёта, связанную с тахионом, из которой мы наблюдаем за движущимися мимо неё фотонами. Эти фотоны из тахионной системы отсчёта будут иметь разную скорость, которая зависит от скорости тахиона! Представим себе, например, попутное и встречное движение фотона в тахионной системе отсчета. В этих случаях фотон ведёт себя не менее удивительно, чем тахион. Во-первых, в одном из направлений - попутном, фотон вообще не может двигаться от источника. Во-вторых, в тахионной системе отсчёта фотон может двигаться только во встречном направлении. В-третьих, если же директивно применить к тахионной системе отсчёта инвариантность скорости света, требуя, чтобы внутри неё фотон двигался с неизменной скоростью во всех направлениях, то для любой обычной досветовой ИСО, движущейся мимо, этот фотон будет иметь скорость не меньше скорости тахионной системы отсчета. Таким образом, в случае тахионной инерциальной системы отсчёта скорость света в принципе не может быть инвариантом ! Но если скорость света - не инвариант, а скорость тахиона - не постоянная, то мы возвращаемся к давно отвергнутой физике Ньютона. Суть её в том, что скорости суммируются, то есть, к скорости тахиона может быть прибавлена скорость его источника.

Однако, постоянство скорости тахиона отвергается именно его якобы лоренц-инвариантностью, что следует из релятиви стского уравнения для энерги и тахиона. Поскольку, мол, энерги я тахиона изменяется, то скорость его не может быть одинаковой для всех ИСО. Но ведь изменчивость энерги и тахиона возникает вследствие того, что мы это сами и постул ировали, применив к нему лоренц-инвариантность. Как можно требовать постоянства энерги и и инварианта скорости, если тахиону постул ятивно «назначены» непостоянная энерги я и непостоянная скорость? Если же мы признаемся, что лоренц-инвариантность к тахиону неприменима, то всё неожиданно встаёт на свои разумные места, опровергая доводы Фейнберга:

«Инвариантность скорости света относительно различных наблюдателей связана не только с использованием света для синхронизации часов, но и с тем эмпирическ им фактом, что относительно любого наблюдателя скорость света не зависит от его энерги и, т. е. скорости источника света. Поскольку для тахионов это условие не может быть выполнено, их скорость будет различной для различных наблюдателей» .

Заключение о невыполнимости условия независимости энерги и тахиона от его скорости следует из релятиви стского уравнения его энерги и. Из уравнения, которое само по себе противоречит «расширенной» сверхсветовыми коммуникациями теор ии относительности, её исходным положениям. Тахион не является релятиви стским объектом, к нему неприменима теор ия относительности. Значит, и положение о зависимости его энерги и от скорости тоже неверно. И теперь уже ничто не препятствует тому, чтобы скорость тахиона стала инвариантом. В этом случае сразу же исчезают все мнимости в его описании, и мы получаем либо физику Ньютона с возможностью бесконечных скоростей, либо тахионную теор ию относительности с новым инвариантом скорости.

Казалось бы, в этом случае теор ия относительности превращается в ошибочную теор ию. Но не следует спешить. Теор ия относительности - это исключительно математическая теор ия. Вследствие этого она принципиально не может быть ошибочной, но только в рамках своих математических постул атов. Кроме того, применение её к реальности не имеет признанно подтверждённых отклонений. Поэтому все попытки противников релятиви зма опровергнуть его мысленными (читай: математическими) экспериментам обречены на провал . Только реальный физический эксперимент может показать, насколько полно математика специальной теор ии относительности относится к реальному физическому миру.

Конечно, все приведённые выкладки имеют смысл только при условии существования тахиона, сверхсветовой частицы. Пока она не обнаружена, но зато известно физическое, экспериментально подтверждённое явление - квантовая запутанность, объяснить которое без привлечения сверхсветовой коммуникации невозможно. В связи с этим следует ожидать, что физический эксперимент покажет нарушение инвариантности скорости света .

Литература

  1. Sommerfeld A. «Simplified deduction of the field and the forces of an electron, moving in a given way» Proc. Amsterdam Acad. 7 346 (1904)
  2. Барбашов Б.М., Нестеренко В.В. «Суперструны - новый подход к единой теор ии фундаментальных взаимодействий», УФН 150 (4) 489 (1986)
  3. Биланюк О., Сударшан Е., Частицы за световым барьером (Перевод Урнова А.М.). В книге «Эйнштейновский сборник. 1973», М., Наука, 1974, стр. 112-133.
  4. (дата обращения 16.02.2013)

    Tachyon and the special relativity

    Putenikhin P.V. mailto: [email protected]

    Abstract

    Superluminal communication, move and tachyon are incompatible with the special relativity. Introduction to the special relativity superluminal particles - tachyons (quantino) allows movement to the past, leads to disruption of causality denies Lorentz invariance and invariance of the speed of light - the second postulate of special relativity. Moving of superluminal particles into the past and violation of causality - this phenomenon, inherent only the special relativity. In reality no the movement to the past and there is no violation of causality. Predictions of special relativity in regarding to tachyon are wrong, absurd and rejects the invariance of the speed of light. Invariant`s should be the speed of tachyons. In this case, there is no movement in time and violation of causality. However, in the limits of its applicability, in part of their postulates the mathematic of the special relativity is irrefutable by any thought experiments.

Посвященная прямому измерению скорости движения нейтрино. Результаты звучат сенсационно: скорость нейтрино оказалась слегка - но статистически достоверно! - больше скорости света. Статья коллаборации содержит анализ разнообразных источников погрешностей и неопределенностей, однако реакция подавляющего большинства физиков остается очень скептической, прежде всего потому, что такой результат не согласуется с другими экспериментальными данными по свойствам нейтрино.


Рис. 1.

Подробности эксперимента

Идея эксперимента (см. OPERA experiment) очень проста. Нейтринный пучок рождается в ЦЕРНе, летит сквозь Землю в итальянскую лабораторию Гран-Сассо и проходит там сквозь специальный нейтринный детектор OPERA. Нейтрино очень слабо взаимодействуют с веществом, но из-за того, что их поток из ЦЕРНа очень велик, некоторые нейтрино всё же сталкиваются с атомами внутри детектора. Там они порождают каскад заряженных частиц и тем самым оставляют в детекторе свой сигнал. Нейтрино в ЦЕРНе рождаются не непрерывно, а «всплесками», и если мы знаем момент рождения нейтрино и момент его поглощения в детекторе, а также расстояние между двумя лабораториями, мы можем вычислить скорость движения нейтрино.

Расстояние между источником и детектором по прямой составляет примерно 730 км и измерено оно с точностью 20 см (точное расстояние между реперными точками составляет 730 534,61 ± 0,20 метров). Правда, процесс, приводящий к рождению нейтрино, вовсе не локализован с такой точностью. В ЦЕРНе пучок протонов высокой энергии вылетает из ускорителя SPS, сбрасывается на графитовую мишень и порождает в ней вторичные частицы, в том числе мезоны. Они по-прежнему летят вперед с околосветовой скоростью и на лету распадаются на мюоны с испусканием нейтрино. Мюоны тоже распадаются и порождают дополнительные нейтрино. Затем все частицы, кроме нейтрино, поглощаются в толще вещества, а те беспрепятственно долетают до места детектирования. Общая схема этой части эксперимента приведена на рис. 1.

Весь каскад, приводящий к появлению нейтринного пучка, может растянуться на сотни метров. Однако поскольку все частицы в этом сгустке летят вперед с околосветовой скоростью, для времени детектирования нет практически никакой разницы, родилось нейтрино сразу или через километр пути (однако имеет большое значение, когда именно тот исходный протон, который привел к рождению данного нейтрино, вылетел из ускорителя). В результате рожденные нейтрино по большому счету просто повторяют профиль исходного протонного пучка. Поэтому ключевым параметром здесь является именно временной профиль пучка протонов, вылетающих из ускорителя, в особенности - точное положение его переднего и заднего фронтов, а этот профиль измеряется с хорошим временны м разрешением (см. рис. 2).

Каждый сеанс сброса протонного пучка на мишень (по-английски такой сеанс называется spill , «выплеск») длится примерно 10 микросекунд и приводит к рождению огромного числа нейтрино. Однако практически все они пролетают Землю (и детектор) насквозь без взаимодействия. В тех же редких случаях, когда детектор всё-таки регистрирует нейтрино, невозможно сказать, в какой именно момент в течение 10-микросекундного интервала оно было испущено. Анализ можно провести лишь статистически, то есть накопить много случаев детектирования нейтрино и построить их распределение по временам относительно момента начала отсчета для каждого сеанса. В детекторе за начало отсчета принимается тот момент времени, когда условный сигнал, движущийся со скоростью света и излученный ровно в момент переднего фронта протонного пучка, достигает детектора. Точное измерение этого момента стало возможно благодаря синхронизации часов в двух лабораториях с точностью в несколько наносекунд.

На рис. 3 показан пример такого распределения. Черные точки - это реальные нейтринные данные, зарегистрированные детектором и просуммированные по большому числу сеансов. Красная кривая показывает условный «опорный» сигнал, который двигался бы со скоростью света. Видно, что данные начинаются примерно на 1048,5 нс раньше опорного сигнала. Это, впрочем, еще не означает, что нейтрино действительно на микросекунду опережает свет, а является лишь поводом для того, чтобы тщательно перемерить все длины кабелей, скорости срабатывания аппаратуры, времена задержки электроники и так далее. Эта перепроверка была выполнена, и оказалось, что она смещает «опорный» момент на 988 нс. Таким образом, получается, что нейтринный сигнал действительно обгоняет опорный, но лишь примерно на 60 наносекунд. В пересчете на скорость нейтрино это отвечает превышению скорости света примерно на 0,0025%.

Погрешность этого измерения была оценена авторами анализа в 10 наносекунд, что включает в себя и статистическую, и систематическую погрешности. Таким образом, авторы утверждают, что они «видят» сверхсветовое движение нейтрино на уровне статистической достоверности в шесть стандартных отклонений.

Отличие результатов от ожиданий на шесть стандартных отклонений уже достаточно велико и называется в физике элементарных частиц громким словом «открытие». Однако надо правильно понимать это число: оно лишь означает, что вероятность статистической флуктуации в данных очень мала, но не говорит о том, насколько надежна методика обработки данных и насколько хорошо физики учли все инструментальные погрешности. В конце концов, в физике элементарных частиц имеется немало примеров, когда необычные сигналы с исключительно большой статистической достоверностью не подтверждались другими экспериментами.

Чему противоречат сверхсветовые нейтрино?

Вопреки широко распространенному мнению, специальная теория относительности не запрещает само по себе существование частиц, движущихся со сверхсветовой скоростью. Однако для таких частиц (их обобщенно называют «тахионы») скорость света тоже является пределом, но только снизу - они не могут двигаться медленнее нее. При этом зависимость энергии частиц от скорости получается обратной: чем больше энергия, тем ближе скорость тахионов к скорости света.

Гораздо более серьезные проблемы начинаются в квантовой теории поля. Эта теория приходит на смену квантовой механике, когда речь идет про квантовые частицы с большими энергиями. В этой теории частицы - это не точки, а, условно говоря, сгустки материального поля, и рассматривать их отдельно от поля нельзя. Оказывается, что тахионы понижают энергию поля, а значит, делают вакуум нестабильным. Пустоте тогда выгоднее спонтанно рассыпаться на огромное число этих частиц, и потому рассматривать движение одного тахиона в обычном пустом пространстве просто бессмысленно. Можно сказать, что тахион - это не частица, а нестабильность вакуума.

В случае тахионов-фермионов ситуация несколько сложнее, но и там тоже возникают сравнимые трудности, мешающие созданию самосогласованной тахионной квантовой теории поля, включающей обычную теорию относительности.

Впрочем, это тоже не последнее слово в теории. Так же, как экспериментаторы измеряют всё, что поддается измерению, теоретики тоже проверяют все возможные гипотетические модели, которые не противоречат имеющимся данным. В частности, существуют теории, в которых допускается небольшое, не замеченное пока отклонение от постулатов теории относительности - например, скорость света сама по себе может быть переменной величиной. Прямой экспериментальной поддержки у таких теорий пока нет, но они пока и не закрыты.

Под этой краткой зарисовкой теоретических возможностей можно подвести такой итог: несмотря на то что в некоторых теоретических моделях движение со сверхсветовой скоростью возможно, они остаются исключительно гипотетическими конструкциями. Все имеющиеся на сегодня экспериментальные данные описываются стандартными теориями без сверхсветового движения. Поэтому если бы оно достоверно подтвердилось хоть для каких-нибудь частиц, квантовую теорию поля пришлось бы кардинально переделывать.

Стоит ли считать результат OPERA в этом смысле «первой ласточкой»? Пока нет. Пожалуй, самым главным поводом для скепсиса остается тот факт, что результат OPERA не согласуется с другими экспериментальными данными по нейтрино.

Во-первых, во время знаменитой вспышки сверхновой SN1987A были зарегистрированы и нейтрино, которые пришли за несколько часов до светового импульса. Это не означает, что нейтрино шли быстрее света, а лишь отражает тот факт, что нейтрино излучаются на более раннем этапе коллапса ядра при вспышке сверхновой, чем свет. Однако раз нейтрино и свет, проведя в пути 170 тысяч лет, не разошлись более, чем на несколько часов, значит, скорости у них очень близки и различаются не более чем на миллиардные доли. Эксперимент же OPERA показывает в тысячи раз более сильное расхождение.

Тут, конечно, можно сказать, что нейтрино, рождающиеся при вспышках сверхновых, и нейтрино из ЦЕРНа сильно различаются по энергии (несколько десятков МэВ в сверхновых и 10–40 ГэВ в описываемом эксперименте), а скорость нейтрино меняется в зависимости от энергии. Но это изменение в данном случае работает в «неправильную» сторону: ведь чем выше энергия тахионов, тем ближе их скорость должна быть к скорости света. Конечно, и тут можно придумать какую-то модификацию тахионной теории, в которой эта зависимость была бы совсем другой, но в таком случае придется уже обсуждать «дважды-гипотетическую» модель.

Далее, из множества экспериментальных данных по нейтринным осцилляциям, полученным за последние годы, следует, что массы всех нейтрино отличаются друг от друга лишь на доли электронвольта. Если результат OPERA воспринимать как проявление сверхсветового движения нейтрино, то тогда величина квадрата массы хотя бы одного нейтрино будет порядка –(100 МэВ) 2 (отрицательный квадрат массы - это и есть математическое проявление того, что частица считается тахионом). Тогда придется признать, что все сорта нейтрино - тахионы и обладают примерно такой массой. С другой стороны, прямое измерение массы нейтрино в бета-распаде ядер трития показывает, что масса нейтрино (по модулю) не должна превышать 2 электронвольта. Иными словами, все эти данные согласовать друг с другом не удастся.

Вывод отсюда можно сделать такой: заявленный результат коллаборации OPERA трудно вместить в какие-либо, даже в самые экзотические теоретические модели.

Что дальше?

Во всех больших коллаборациях в физике элементарных частиц нормальной практикой является ситуация, когда каждый конкретный анализ выполняется небольшой группой участников, и лишь затем результаты выносятся на общее обсуждение. В данном случае, по-видимому, этот этап был слишком кратким, в результате чего далеко не все участники коллаборации согласились подставить свою подпись под статьей (полный список насчитывает 216 участников эксперимента, а у препринта имеется лишь 174 автора). Поэтому в ближайшее время, по всей видимости, внутри коллаборации будет проведено множество дополнительных проверок, и только после этого статья будет послана в печать.

Конечно, сейчас можно ожидать и поток теоретических статей с разнообразными экзотическими объяснениями этого результата. Однако пока заявленный результат не будет надежно перепроверен, считать его полноправным открытием нельзя.

March 25th, 2017

Путешествие на сверхсветовой скорости — одна из основ космической научной фантастики. Однако наверное, всем - даже людям, далеким от физики, - известно, что предельно возможной скоростью движения материальных объектов или распространения любых сигналов является скорость света в вакууме. Она обозначается буквой с и составляет почти 300 тысяч километров в секунду; точная величина с = 299 792 458 м/с.

Скорость света в вакууме - одна из фундаментальных физических констант. Невозможность достижения скоростей, превышающих с, вытекает из специальной теории относительности (СТО) Эйнштейна. Если бы удалось доказать, что возможна передача сигналов со сверхсветовой скоростью, теория относительности пала бы. Пока что этого не случилось, несмотря на многочисленные попытки опровергнуть запрет на существование скоростей, больших с. Однако в экспериментальных исследованиях последнего времени обнаружились некоторые весьма интересные явления, свидетельствующие о том, что при специально созданных условиях можно наблюдать сверхсветовые скорости и при этом принципы теории относительности не нарушаются.

Для начала напомним основные аспекты, относящиеся к проблеме скорости света.

Прежде всего: почему нельзя (при обычных условиях) превысить световой предел? Потому, что тогда нарушается фундаментальный закон нашего мира - закон причинности, в соответствии с которым следствие не может опережать причину. Никто никогда не наблюдал, чтобы, например, сначала замертво упал медведь, а потом выстрелил охотник. При скоростях же, превышающих с, последовательность событий становится обратной, лента времени отматывается назад. В этом легко убедиться из следующего простого рассуждения.

Предположим, что мы находимся на неком космическом чудо-корабле, движущемся быстрее света. Тогда мы постепенно догоняли бы свет, испущенный источником во все более и более ранние моменты времени. Сначала мы догнали бы фотоны, испущенные, скажем, вчера, затем - испущенные позавчера, потом - неделю, месяц, год назад и так далее. Если бы источником света было зеркало, отражающее жизнь, то мы сначала увидели бы события вчерашнего дня, затем позавчерашнего и так далее. Мы могли бы увидеть, скажем, старика, который постепенно превращается в человека средних лет, затем в молодого, в юношу, в ребенка... То есть время повернуло бы вспять, мы двигались бы из настоящего в прошлое. Причины и следствия при этом поменялись бы местами.

Хотя в этом рассуждении полностью игнорируются технические детали процесса наблюдения за светом, с принципиальной точки зрения оно наглядно демонстрирует, что движение со сверхсветовой скоростью приводит к невозможной в нашем мире ситуации. Однако природа поставила еще более жесткие условия: недостижимо движение не только со сверхсветовой скоростью, но и со скоростью, равной скорости света, - к ней можно только приближаться. Из теории относительности следует, что при увеличении скорости движения возникают три обстоятельства: возрастает масса движущегося объекта, уменьшается его размер в направлении движения и замедляется течение времени на этом объекте (с точки зрения внешнего "покоящегося" наблюдателя). При обычных скоростях эти изменения ничтожно малы, но по мере приближения к скорости света они становятся все ощутимее, а в пределе - при скорости, равной с, - масса становится бесконечно большой, объект полностью теряет размер в направлении движения и время на нем останавливается. Поэтому никакое материальное тело не может достичь скорости света. Такой скоростью обладает только сам свет! (А также "всепроникающая" частица - нейтрино, которая, как и фотон, не может двигаться со скоростью, меньшей с.)

Теперь о скорости передачи сигнала. Здесь уместно воспользоваться представлением света в виде электромагнитных волн. Что такое сигнал? Это некая информация, подлежащая передаче. Идеальная электромагнитная волна - это бесконечная синусоида строго одной частоты, и она не может нести никакой информации, ибо каждый период такой синусоиды в точности повторяет предыдущий. Cкорость перемещения фазы cинусоидальной волны - так называемая фазовая скорость - может в среде при определенных условиях превышать скорость света в вакууме. Здесь ограничения отсутствуют, так как фазовая скорость не является скоростью сигнала - его еще нет. Чтобы создать сигнал, надо сделать какую-то "отметку" на волне. Такой отметкой может быть, например, изменение любого из параметров волны - амплитуды, частоты или начальной фазы. Но как только отметка сделана, волна теряет синусоидальность. Она становится модулированной, состоящей из набора простых синусоидальных волн с различными амплитудами, частотами и начальными фазами - группы волн. Скорость перемещения отметки в модулированной волне и является скоростью сигнала. При распространении в среде эта скорость обычно совпадает с групповой скоростью, характеризующей распространение вышеупомянутой группы волн как целого (см. "Наука и жизнь" № 2, 2000 г.). При обычных условиях групповая скорость, а следовательно, и скорость сигнала меньше скорости света в вакууме. Здесь не случайно употреблено выражение "при обычных условиях", ибо в некоторых случаях и групповая скорость может превышать с или вообще терять смысл, но тогда она не относится к распространению сигнала. В СТО устанавливается, что невозможна передача сигнала со скоростью, большей с.

Почему это так? Потому, что препятствием для передачи любого сигнала со скоростью больше с служит все тот же закон причинности. Представим себе такую ситуацию. В некоторой точке А световая вспышка (событие 1) включает устройство, посылающее некий радиосигнал, а в удаленной точке В под действием этого радиосигнала происходит взрыв (событие 2). Понятно, что событие 1 (вспышка) - причина, а событие 2 (взрыв) - следствие, наступающее позже причины. Но если бы радиосигнал распространялся со сверхсветовой скоростью, наблюдатель вблизи точки В увидел бы сначала взрыв, а уже потом - дошедшую до него со скоростью с световую вспышку, причину взрыва. Другими словами, для этого наблюдателя событие 2 совершилось бы раньше, чем событие 1, то есть следствие опередило бы причину.

Уместно подчеркнуть, что "сверхсветовой запрет" теории относительности накладывается только на движение материальных тел и передачу сигналов. Во многих ситуациях возможно движение с любой скоростью, но это будет движение не материальных объектов и не сигналов. Например, представим себе две лежащие в одной плоскости достаточно длинные линейки, одна из которых расположена горизонтально, а другая пересекает ее под малым углом. Если первую линейку двигать вниз (в направлении, указанном стрелкой) с большой скоростью, точку пересечения линеек можно заставить бежать сколь угодно быстро, но эта точка - не материальное тело. Другой пример: если взять фонарик (или, скажем, лазер, дающий узкий луч) и быстро описать им в воздухе дугу, то линейная скорость светового зайчика будет увеличиваться с расстоянием и на достаточно большом удалении превысит с. Световое пятно переместится между точками А и В со сверхсветовой скоростью, но это не будет передачей сигнала из А в В, так как такой световой зайчик не несет никакой информации о точке А.

Казалось бы, вопрос о сверхсветовых скоростях решен. Но в 60-х годах двадцатого столетия физиками-теоретиками была выдвинута гипотеза существования сверхсветовых частиц, названных тахионами. Это очень странные частицы: теоретически они возможны, но во избежание противоречий с теорией относительности им пришлось приписать мнимую массу покоя. Физически мнимая масса не существует, это чисто математическая абстракция. Однако это не вызвало особой тревоги, поскольку тахионы не могут находиться в покое - они существуют (если существуют!) только при скоростях, превышающих скорость света в вакууме, а в этом случае масса тахиона оказывается вещественной. Здесь есть некоторая аналогия с фотонами: у фотона масса покоя равна нулю, но это просто означает, что фотон не может находиться в покое - свет нельзя остановить.

Наиболее сложным оказалось, как и следовало ожидать, примирить тахионную гипотезу с законом причинности. Попытки, предпринимавшиеся в этом направлении, хотя и были достаточно остроумными, не привели к явному успеху. Экспериментально зарегистриро вать тахионы также никому не удалось. В итоге интерес к тахионам как к сверхсветовым элементарным частицам постепенно сошел на нет.

Однако в 60-х же годах было экспериментально обнаружено явление, поначалу приведшее физиков в замешательство. Об этом подробно рассказано в статье А. Н. Ораевского "Сверхсветовые волны в усиливающих средах" (УФН № 12, 1998 г.). Здесь мы кратко приведем суть дела, отсылая читателя, интересующегося подробностями, к указанной статье.

Вскоре после открытия лазеров - в начале 60-х годов - возникла проблема получения коротких (длительностью порядка 1 нс = 10-9 с) импульсов света большой мощности. Для этого короткий лазерный импульс пропускался через оптический квантовый усилитель. Импульс расщеплялся светодели тельным зеркалом на две части. Одна из них, более мощная, направлялась в усилитель, а другая распространялась в воздухе и служила опорным импульсом, с которым можно было сравнивать импульс, прошедший через усилитель. Оба импульса подавались на фотоприемники, а их выходные сигналы могли визуально наблюдаться на экране осциллографа. Ожидалось, что световой импульс, проходящий через усилитель, испытает в нем некоторую задержку по сравнению с опорным импульсом, то есть скорость распространения света в усилителе будет меньше, чем в воздухе. Каково же было изумление исследователей, когда они обнаружили, что импульс распространялся через усилитель со скоростью не только большей, чем в воздухе, но и превышающей скорость света в вакууме в несколько раз!

Оправившись от первого шока, физики стали искать причину столь неожиданного результата. Ни у кого не возникло даже малейшего сомнения в принципах специальной теории относительности, и именно это помогло найти правильное объяснение: если принципы СТО сохраняются, то ответ следует искать в свойствах усиливающей среды.

Не вдаваясь здесь в детали, укажем лишь, что подробный анализ механизма действия усиливающей среды полностью прояснил ситуацию. Дело заключалось в изменении концентрации фотонов при распространении импульса - изменении, обусловленном изменением коэффициента усиления среды вплоть до отрицательного значения при прохождении задней части импульса, когда среда уже поглощает энергию, ибо ее собственный запас уже израсходован вследствие передачи ее световому импульсу. Поглощение вызывает не усиление, а ослабление импульса, и, таким образом, импульс оказывается усиленным в передней и ослабленным в задней его части. Представим себе, что мы наблюдаем за импульсом при помощи прибора, движущегося со скоростью света в среде усилителя. Если бы среда была прозрачной, мы видели бы застывший в неподвижности импульс. В среде же, в которой происходит упомянутый выше процесс, усиление переднего и ослабление заднего фронта импульса будет представляться наблюдателю так, что среда как бы подвинула импульс вперед. Но раз прибор (наблюдатель) движется со скоростью света, а импульс обгоняет его, то скорость импульса превышает скорость света! Именно этот эффект и был зарегистрирован экспериментаторами. И здесь действительно нет противоречия с теорией относительности: просто процесс усиления таков, что концентрация фотонов, вышедших раньше, оказывается больше, чем вышедших позже. Со сверхсветовой скоростью перемещаются не фотоны, а огибающая импульса, в частности его максимум, который и наблюдается на осциллографе.

Таким образом, в то время как в обычных средах всегда происходит ослабление света и уменьшение его скорости, определяемое показателем преломления, в активных лазерных средах наблюдается не только усиление света, но и распространение импульса со сверхсветовой скоростью.

Некоторые физики пытались экспериментально доказать наличие сверхсветового движения при туннельном эффекте - одном из наиболее удивительных явлений в квантовой механике. Этот эффект состоит в том, что микрочастица (точнее говоря, микрообъект, в разных условиях проявляющий как свойства частицы, так и свойства волны) способна проникать через так называемый потенциальный барьер - явление, совершенно невозможное в классической механике (в которой аналогом была бы такая ситуация: брошенный в стену мяч оказался бы по другую сторону стены или же волнообразное движение, приданное привязанной к стене веревке, передавалось бы веревке, привязанной к стене с другой стороны). Сущность туннельного эффекта в квантовой механике состоит в следующем. Если микрообъект, обладающий определенной энергией, встречает на своем пути область с потенциальной энергией, превышающей энергию микрообъекта, эта область является для него барьером, высота которого определяется разностью энергий. Но микрообъект "просачивается" через барьер! Такую возможность дает ему известное соотношение неопределенностей Гейзенбер га, записанное для энергии и времени взаимодействия. Если взаимодействие микрообъекта с барьером происходит в течение достаточно определенного времени, то энергия микрообъекта будет, наоборот, характеризоваться неопределенностью, и если эта неопределен ность будет порядка высоты барьера, то последний перестает быть для микрообъекта непреодолимым препятствием. Вот скорость проникновения через потенциальный барьер и стала предметом исследований ряда физиков, полагающих, что она может превышать с.

В июне 1998 года в КЈльне состоялся международный симпозиум по проблемам сверхсветовых движений, где обсуждались результаты, полученные в четырех лабораториях - в Беркли, Вене, КЈльне и во Флоренции.

И, наконец, в 2000 году появились сообщения о двух новых экспериментах, в которых проявились эффекты сверхсветового распространения. Один из них выполнил Лиджун Вонг с сотрудниками в исследовательском институте в Принстоне (США). Его результат состоит в том, что световой импульс, входящий в камеру, наполненную парами цезия, увеличивает свою скорость в 300 раз. Получалось, что главная часть импульса выходит из дальней стенки камеры даже раньше, чем импульс входит в камеру через переднюю стенку. Такая ситуация противоречит не только здравому смыслу, но, в сущности, и теории относитель ности.

Сообщение Л. Вонга вызвало интенсивное обсуждение в кругу физиков, большинство которых не склонны видеть в полученных результатах нарушение принципов относительно сти. Задача состоит в том, полагают они, чтобы правильно объяснить этот эксперимент.

В эксперименте Л.Вонга световой импульс, входящий в камеру с парами цезия, имел длительность около 3 мкс. Атомы цезия могут находиться в шестнадцати возможных квантовомеханических состояниях, называемых "сверхтонкие магнитные подуровни основного состояния". При помощи оптической лазерной накачки почти все атомы приводились только в одно из этих шестнадцати состояний, соответствующее почти абсолютному нулю температуры по шкале Кельвина (-273,15оC). Длина цезиевой камеры составляла 6 сантиметров. В вакууме свет проходит 6 сантиметров за 0,2 нс. Через камеру же с цезием, как показали выполненные измерения, световой импульс проходил за время на 62 нс меньшее, чем в вакууме. Другими словами, время прохождения импульса через цезиевую среду имеет знак "минус"! Действительно, если из 0,2 нс вычесть 62 нс, получим "отрицательное" время. Эта "отрицательная задержка" в среде - непостижимый временной скачок - равен времени, в течение которого импульс совершил бы 310 проходов через камеру в вакууме. Следствием этого "временного переворота" явилось то, что выходящий из камеры импульс успел удалиться от нее на 19 метров, прежде чем приходящий импульс достиг ближней стенки камеры. Как же можно объяснить такую невероятную ситуацию (если, конечно, не сомневаться в чистоте эксперимента)?

Судя по развернувшейся дискуссии, точное объяснение еще не найдено, но несомненно, что здесь играют роль необычные дисперсионные свойства среды: пары цезия, состоящие из возбужденных лазерным светом атомов, представляют собой среду с аномальной дисперсией. Напомним кратко, что это такое.

Дисперсией вещества называется зависимость фазового (обычного) показателя преломления n от длины волны света l. При нормальной дисперсии показатель преломления увеличивается с уменьшением длины волны, и это имеет место в стекле, воде, воздухе и всех других прозрачных для света веществах. В веществах же, сильно поглощающих свет, ход показателя преломления с изменением длины волны меняется на обратный и становится гораздо круче: при уменьшении l (увеличении частоты w) показатель преломления резко уменьшается и в некоторой области длин волн становится меньше единицы (фазовая скорость Vф > с). Это и есть аномальная дисперсия, при которой картина распространения света в веществе меняется радикальным образом. Групповая скорость Vгр становится больше фазовой скорости волн и может превысить скорость света в вакууме (а также стать отрицательной). Л. Вонг указывает на это обстоятельство как на причину, лежащую в основе возможности объяснения результатов его эксперимента. Следует, однако, заметить, что условие Vгр > с является чисто формальным, так как понятие групповой скорости введено для случая малой (нормальной) дисперсии, для прозрачных сред, когда группа волн при распространении почти не меняет своей формы. В областях же аномальной дисперсии световой импульс быстро деформируется и понятие групповой скорости теряет смысл; в этом случае вводятся понятия скорости сигнала и скорости распространения энергии, которые в прозрачных средах совпадают с групповой скоростью, а в средах с поглощением остаются меньше скорости света в вакууме. Но вот что интересно в эксперименте Вонга: световой импульс, пройдя через среду с аномальной дисперсией, не деформируется - он в точности сохраняет свою форму! А это соответствует допущению о распространении импульса с групповой скоростью. Но если так, то получается, что в среде отсутствует поглощение, хотя аномальная дисперсия среды обусловлена именно поглощением! Сам Вонг, признавая, что многое еще остается неясным, полагает, что происходящее в его экспериментальной установке можно в первом приближении наглядно объяснить следующим образом.

Световой импульс состоит из множества составляющих с различными длинами волн (частотами). На рисунке показаны три из этих составляющих (волны 1-3). В некоторой точке все три волны находятся в фазе (их максимумы совпадают); здесь они, складываясь, усиливают друг друга и образуют импульс. По мере дальнейшего распространения в пространстве волны расфазируются и тем самым "гасят" друг друга.

В области аномальной дисперсии (внутри цезиевой ячейки) волна, которая была короче (волна 1), становится длиннее. И наоборот, волна, бывшая самой длинной из трех (волна 3), становится самой короткой.

Следовательно, соответственно меняются и фазы волн. Когда волны прошли через цезиевую ячейку, их волновые фронты восстанавливаются. Претерпев необычную фазовую модуляцию в веществе с аномальной дисперсией, три рассматриваемые волны вновь оказываются в фазе в некоторой точке. Здесь они снова складываются и образуют импульс точно такой же формы, как и входящий в цезиевую среду.

Обычно в воздухе и фактически в любой прозрачной среде с нормальной дисперсией световой импульс не может точно сохранять свою форму при распространении на удаленное расстояние, то есть все его составляющие не могут быть сфазированы в какой-либо удаленной точке вдоль пути распространения. И в обычных условиях световой импульс в такой удаленной точке появляется спустя некоторое время. Однако вследствие аномальных свойств использованной в эксперименте среды импульс в удаленной точке оказался сфазирован так же, как и при входе в эту среду. Таким образом, световой импульс ведет себя так, как если бы он имел отрицательную временную задержку на пути до удаленной точки, то есть пришел бы в нее не позже, а раньше, чем прошел среду!

Большая часть физиков склонна связывать этот результат с возникновением низкоинтенсивного предвестника в диспергирующей среде камеры. Дело в том, что при спектральном разложении импульса в спектре присутствуют составляющие сколь угодно высоких частот с ничтожно малой амплитудой, так называемый предвестник, идущий впереди "главной части" импульса. Характер установления и форма предвестника зависят от закона дисперсии в среде. Имея это в виду, последовательность событий в эксперименте Вонга предлагается интерпретировать следующим образом. Приходящая волна, "простирая" предвестник впереди себя, приближается к камере. Прежде чем пик приходящей волны попадет на ближнюю стенку камеры, предвестник инициирует возникновение импульса в камере, который доходит до дальней стенки и отражается от нее, образуя "обратную волну". Эта волна, распространяясь в 300 раз быстрее с, достигает ближней стенки и встречается с приходящей волной. Пики одной волны встречаются со впадинами другой, так что они уничтожают друг друга и в результате ничего не остается. Получается, что приходящая волна "возвращает долг" атомам цезия, которые "одалживали" ей энергию на другом конце камеры. Тот, кто наблюдал бы только начало и конец эксперимента, увидел бы лишь импульс света, который "прыгнул" вперед во времени, двигаясь быстрее с.

Л. Вонг считает, что его эксперимент не согласуется с теорией относительности. Утверждение о недостижимости сверхсветовой скорости, полагает он, применимо только к объектам, обладающим массой покоя. Свет может быть представлен либо в виде волн, к которым вообще неприменимо понятие массы, либо в виде фотонов с массой покоя, как известно, равной нулю. Поэтому скорость света в вакууме, считает Вонг, не предел. Тем не менее Вонг признает, что обнаруженный им эффект не дает возможности передавать информацию со скоростью больше с.

"Информация здесь уже заключена в переднем крае импульса, - говорит П. Милонни, физик из Лос-Аламосской национальной лаборатории США. - И может создаться впечатление о сверхсветовой посылке информации, даже когда вы ее не посылаете".

Большинство физиков считают, что новая работа не наносит сокрушительного удара по фундаментальным принципам. Но не все физики полагают, что проблема улажена. Профессор А. Ранфагни из итальянской исследовательской группы, осуществившей еще один интересный эксперимент 2000 года, считает, что вопрос еще остается открытым. Этот эксперимент, проведенный Даниэлом Мугнаи, Анедио Ранфагни и Рокко Руггери, обнаружил, что радиоволны сантиметрового диапазона в обычном воздухе распространяются со скоростью, превышающей с на 25%.

Резюмируя, можно сказать следующее.

Работы последних лет показывают, что при определенных условиях сверхсветовая скорость действительно может иметь место. Но что именно движется со сверхсветовой скоростью? Теория относительности, как уже упоминалось, запрещает такую скорость для материальных тел и для сигналов, несущих информацию. Тем не менее некоторые исследователи весьма настойчиво пытаются продемонстри ровать преодоление светового барьера именно для сигналов. Причина этого кроется в том, что в специальной теории относительности нет строгого математического обоснования (базирующегося, скажем, на уравнениях Максвелла для электромагнитного поля) невозможности передачи сигналов со скоростью больше с. Такая невозможность в СТО устанавливается, можно сказать, чисто арифметически, исходя из эйнштейновской формулы сложения скоростей, но фундаментальным образом это подтверждается принципом причинности. Сам Эйнштейн, рассматривая вопрос о сверхсветовой передаче сигналов, писал, что в этом случае "...мы вынуждены считать возможным механизм передачи сигнала, при использовании которого достигаемое действие предшествует причине. Но, хотя этот результат с чисто логической точки зрения и не содержит в себе, по-моему, никаких противоречий, он все же настолько противоречит характеру всего нашего опыта, что невозможность предположения V > с представляется в достаточной степени доказанной". Принцип причинности - вот тот краеугольный камень, который лежит в основе невозможности сверхсветовой передачи сигналов. И об этот камень, по-видимому, будут спотыкаться все без исключения поиски сверхсветовых сигналов, как бы экспериментаторам не хотелось такие сигналы обнаружить, ибо такова природа нашего мира.

Но все же давайте представим, что математика относительности будет по-прежнему работать на сверхсветовых скоростях. Это означает, что теоретически мы все-таки можем узнать, что произошло бы, случись телу превысить скорость света.

Представим себе два космических корабля, направляющихся от Земли в сторону звезды, которая отстоит от нашей планеты на расстоянии в 100 световых лет. Первый корабль покидает Землю со скоростью в 50% от скорости света, так что на весь путь у него уйдет 200 лет. Второй корабль, оснащенный гипотетическим варп-двигателем, отправится со скоростью в 200% от скорости света, но спустя 100 лет после первого. Что же произойдет?

Согласно теории относительности, правильный ответ во многом зависит от перспективы наблюдателя. С Земли будет казаться, что первый корабль уже прошел значительное расстояние, прежде чем его обогнал второй корабль, который движется вчетверо быстрее. А вот с точки зрения людей, находящихся на первом корабле, все немного не так.

Корабль №2 движется быстрее света, а значит может обогнать даже свет, который сам же и испускает. Это приводит к своего рода «световой волне» (аналог звуковой, только вместо вибраций воздуха здесь вибрируют световые волны), которая порождает несколько интересных эффектов. Напомним, что свет от корабля №2 движется медленнее, чем сам корабль. В результате произойдет визуальное удвоение. Иными словами, сначала экипаж корабля №1 увидит, что второй корабль возник рядом с ним словно из ниоткуда. Затем, свет от второго корабля с небольшим опозданием достигнет первого, и в результате получится видимая копия, которая будет двигаться в том же направлении с небольшим отставанием.

Нечто подобное можно увидеть в компьютерных играх, когда в результате системного сбоя движок прогружает модель и ее алгоритмы в конечной точке движения быстрее, чем заканчивается сама анимация движения, так что возникают множественные дубли. Вероятно, именно поэтому наше сознание и не воспринимает тот гипотетический аспект Вселенной, в котором тела движутся на сверхсветовой скорости — быть может, это и к лучшему.

П.С. ... а вот в последнем примере я что то не понял, почему реальное положение корабля связывается с "испускаемым им светом"? Ну и пусть что видеть его будут как то не там, но реально то он обгонит первый корабль!

источники

Верхний предел скорости известен даже школьникам: связав массу и энергию знаменитой формулой E = mc 2 , еще в начале ХХ века указал на принципиальную невозможность ничему, обладающему массой, перемещаться в пространстве быстрее, чем скорость света в вакууме. Однако уже в этой формулировке содержатся лазейки, обойти которые вполне по силам некоторым физическим явлениям и частицам. По крайней мере, явлениям, существующим в теории.

Первая лазейка касается слова «масса»: на безмассовые частицы эйнштейновские ограничения не распространяются. Не касаются они и некоторых достаточно плотных сред, в которых скорость света может быть существенно меньше, чем в вакууме. Наконец, при приложении достаточной энергии само пространство может локально деформироваться, позволяя перемещаться так, что для наблюдателя со стороны, вне этой деформации, движение будет происходить словно быстрее скорости света.

Некоторые такие «сверхскоростные» явления и частицы физики регулярно фиксируют и воспроизводят в лабораториях, даже применяют на практике, в высокотехнологичных инструментах и приборах. Другие, предсказанные теоретически, ученые еще пытаются обнаружить в реальности, а на третьи у них большие планы: возможно, когда-нибудь эти явления позволят и нам перемещаться по Вселенной свободно, не ограничиваясь даже скоростью света.

Квантовая телепортация

Статус: активно развивается

Живого существа – хороший пример технологии, теоретически допустимой, но практически, видимо, неосуществимой никогда. Но если речь идет о телепортации, то есть мгновенном перемещении из одного места в другое небольших предметов, а тем более частиц, она вполне возможна. Чтобы упростить задачу, начнем с простого – частиц.

Кажется, нам понадобятся аппараты, которые (1) полностью пронаблюдают состояние частицы, (2) передадут это состояние быстрее скорости света, (3) восстановят оригинал.

Однако в такой схеме даже первый шаг полностью реализовать невозможно. Принцип неопределенности Гейзенберга накладывает непреодолимые ограничения на точность, с которой могут быть измерены «парные» параметры частицы. Например, чем лучше мы знаем ее импульс, тем хуже – координату, и наоборот. Однако важной особенностью квантовой телепортации является то, что, собственно, измерять частицы и не надо, как не надо ничего и восстанавливать – достаточно получить пару спутанных частиц.

Например, для приготовления таких спутанных фотонов нам понадобится осветить нелинейный кристалл лазерным излучением определенной волны. Тогда некоторые из входящих фотонов распадутся на два спутанных – необъяснимым образом связанных, так что любое изменение состояния одного моментально сказывается на состоянии другого. Эта связь действительно необъяснима: механизмы квантовой спутанности остаются неизвестны, хотя само явление демонстрировалось и демонстрируется постоянно. Но это такое явление, запутаться в котором в самом деле легко – достаточно добавить, что до измерения ни одна из этих частиц не имеет нужной характеристики, при этом какой бы результат мы ни получили, измерив первую, состояние второй странным образом будет коррелировать с нашим результатом.

Механизм квантовой телепортации, предложенный в 1993 году Чарльзом Беннеттом и Жилем Брассардом, требует добавить к паре запутанных частиц всего одного дополнительного участника – собственно, того, кого мы собираемся телепортировать. Отправителей и получателей принято называть Алисой и Бобом, и мы последуем этой традиции, вручив каждому из них по одному из спутанных фотонов. Как только они разойдутся на приличное расстояние и Алиса решит начать телепортацию, она берет нужный фотон и измеряет его состояние совместно с состоянием первого из спутанных фотонов. Неопределенная волновая функция этого фотона коллапсирует и моментально отзывается во втором спутанном фотоне Боба.

К сожалению, Боб не знает, как именно его фотон реагирует на поведение фотона Алисы: чтобы понять это, ему надо дождаться, пока она пришлет результаты своих измерений обычной почтой, не быстрее скорости света. Поэтому никакую информацию передать по такому каналу не получится, но факт останется фактом. Мы телепортировали состояние одного фотона. Чтобы перейти к человеку, остается масштабировать технологию, охватив каждую частицу из всего лишь 7000 триллионов триллионов атомов нашего тела, – думается, от этого прорыва нас отделяет не более, чем вечность.

Однако квантовая телепортация и спутанность остаются одними из самых «горячих» тем современной физики. Прежде всего потому, что использование таких каналов связи обещает невзламываемую защиту передаваемых данных: чтобы получить доступ к ним, злоумышленникам понадобится завладеть не только письмом от Алисы к Бобу, но и доступом к спутанной частице Боба, и даже если им удастся до нее добраться и проделать измерения, это навсегда изменит состояние фотона и будет сразу же раскрыто.

Эффект Вавилова – Черенкова

Статус: давно используется

Этот аспект путешествий быстрее скорости света – приятный повод вспомнить заслуги российских ученых. Явление было открыто в 1934 году Павлом Черенковым, работавшим под руководством Сергея Вавилова, три года спустя оно получило теоретическое обоснование в работах Игоря Тамма и Ильи Франка, а в 1958 г. все участники этих работ, кроме уже скончавшегося Вавилова, были награждены Нобелевской премией по физике.

В самом деле, говорит лишь о скорости света в вакууме. В других прозрачных средах свет замедляется, причем довольно заметно, в результате чего на их границе с воздухом можно наблюдать преломление. Коэффициент преломления стекла равен 1,49 – значит, фазовая скорость света в нем в 1,49 раза меньше, а, например, у алмаза коэффициент преломления уже 2,42, и скорость света в нем снижается более чем в два раза. Другим частицам ничто не мешает лететь и быстрее световых фотонов.

Именно это произошло с электронами, которые в экспериментах Черенкова были выбиты высокоэнергетическим гамма-излучением со своих мест в молекулах люминесцентной жидкости. Этот механизм часто сравнивают с образованием ударной звуковой волны при полете в атмосфере на сверхзвуковой скорости. Но можно представить и как бег в толпе: двигаясь быстрее света, электроны проносятся мимо других частиц, словно задевая их плечом – и на каждый сантиметр своего пути заставляя сердито излучать от нескольких до нескольких сотен фотонов.

Вскоре такое же поведение было обнаружено и у всех других достаточно чистых и прозрачных жидкостей, а впоследствии излучение Черенкова зарегистрировали даже глубоко в океанах. Конечно, фотоны света с поверхности сюда действительно не долетают. Зато сверхбыстрые частицы, которые вылетают от небольших количеств распадающихся радиоактивных частиц, время от времени создают свечение, возможно, худо-бедно позволяющее видеть местным жителям.

Излучение Черенкова – Вавилова нашло применение в науке, ядерной энергетике и смежных областях. Ярко светятся реакторы АЭС, битком набитые быстрыми частицами. Точно измеряя характеристики этого излучения и зная фазовую скорость в нашей рабочей среде, мы можем понять, что за частицы его вызвали. Черенковскими детекторами пользуются и астрономы, обнаруживая легкие и энергичные космические частицы: тяжелые невероятно трудно разогнать до нужной скорости, и излучения они не создают.

Пузыри и норы

Вот муравей ползет по листу бумаги. Скорость его невелика, и на то, чтобы добраться от левого края плоскости до правого, у бедняги уходит секунд 10. Но стоит нам сжалиться над ним и согнуть бумагу, соединив ее края, как он моментально «телепортируется» в нужную точку. Нечто подобное можно проделать и с нашим родным пространством-временем, с той лишь разницей, что изгиб требует участия других, невоспринимаемых нами измерений, образуя туннели пространства-времени, – знаменитые червоточины, или кротовые норы.

Кстати, согласно новым теориям, такие кротовые норы – это некий пространственно-временной эквивалент уже знакомого нам квантового феномена запутанности. Вообще, их существование не противоречит никаким важным представлениям современной физики, включая . Но вот для поддержания такого туннеля в ткани Вселенной потребуется нечто, мало похожее на настоящую науку, – гипотетическая «экзотическая материя», которая обладает отрицательной плотностью энергии. Иначе говоря, это должна быть такая материя, которая вызывает гравитационное... отталкивание. Трудно представить, что когда-нибудь эта экзотика будет найдена, а тем более приручена.

Своеобразной альтернативой кротовым норам может служить еще более экзотическая деформация пространства-времени – движение внутри пузыря искривленной структуры этого континуума. Идею высказал в 1993 году физик Мигеле Алькубьерре, хотя в произведениях фантастов она звучала намного раньше. Это как космический корабль, который движется, сжимая и сминая пространство-время перед своим носом и снова разглаживая его позади. Сам корабль и его экипаж при этом остаются в локальной области, где пространство-время сохраняет обычную геометрию, и никаких неудобств не испытывают. Это прекрасно видно по популярному в среде мечтателей сериалу «Звездный путь», где такой «варп-двигатель» позволяет путешествовать, не скромничая, по всей Вселенной.

Статус: от фантастического до теоретического

Фотоны – частицы безмассовые, как и и некоторые другие: их масса в покое равна нулю, и чтобы не исчезнуть окончательно, они вынуждены всегда двигаться, и всегда – со скоростью света. Однако некоторые теории предполагают существование и куда более экзотических частиц – тахионов. Масса их, фигурирующая в нашей любимой формуле E = mc 2 , задается не простым, а мнимым числом, включающим особый математический компонент, квадрат которого дает отрицательное число. Это очень полезное свойство, и сценаристы любимого нами сериала «Звездный путь» объясняли работу своего фантастического двигателя именно «обузданием энергии тахионов».

В самом деле, мнимая масса делает невероятное: тахионы должны терять энергию, ускоряясь, поэтому для них все в жизни обстоит совсем не так, как мы привыкли думать. Сталкиваясь с атомами, они теряют энергию и ускоряются, так что следующее столкновение будет еще более сильным, которое отнимет еще больше энергии и снова ускорит тахионы вплоть до бесконечности. Понятно, что такое самоувлечение просто нарушает базовые причинно-следственные зависимости. Возможно, поэтому изучают тахионы пока лишь теоретики: ни единого примера распада причинно-следственных связей в природе пока никто не видел, а если вы увидите, ищите тахион, и Нобелевская премия вам обеспечена.

Однако теоретики все же показали, что тахионы, может, и не существуют, но в далеком прошлом вполне могли существовать, и, по некоторым представлениям, именно их бесконечные возможности сыграли важную роль в Большом взрыве. Присутствием тахионов объясняют крайне нестабильное состояние ложного вакуума, в котором могла находиться Вселенная до своего рождения. В такой картине мира движущиеся быстрее света тахионы – настоящая основа нашего существования, а появление Вселенной описывается как переход тахионного поля ложного вакуума в инфляционное поле истинного. Стоит добавить, что все это вполне уважаемые теории, несмотря на то, что главные нарушители законов Эйнштейна и даже причинно-следственной связи оказываются в ней родоначальниками всех причин и следствий.

Скорость тьмы

Статус: философический

Если рассуждать философски, тьма – это просто отсутствие света, и скорости у них должны быть одинаковые. Но стоит подумать тщательнее: тьма способна принимать форму, перемещающуюся куда быстрее. Имя этой формы – тень. Представьте, что вы показываете пальцами силуэт собаки на противоположной стене. Луч от фонаря расходится, и тень от вашей руки становится намного больше самой руки. Достаточно малейшего движения пальца, чтобы тень от него на стене сместилась на заметное расстояние. А если мы будем отбрасывать тень на Луну? Или на воображаемый экран еще дальше?..

Едва заметное мановение – и она перебежит с любой скоростью, которая задается лишь геометрией, так что никакой Эйнштейн ей не указ. Впрочем, с тенями лучше не заигрываться, ведь они легко обманывают нас. Стоит вернуться в начало и вспомнить, что тьма – это просто отсутствие света, поэтому никакой физический объект при таком движении не передается. Нет ни частиц, ни информации, ни деформаций пространства-времени, есть только наша иллюзия того, что это отдельное явление. В реальном же мире никакая тьма не сможет сравниться в скорости со светом.

Тахион= гравитон?
(По-Лаплассу, скорость гравитационного воздействия должна быть в семь миллионов раз
больше скорости... света -А.Скачинский,"Макро и Микро", Нью-Йорк,1984, стр.11-12)

Природа гравитации неясна учёным, это не электромагнитные волны света, не поток электронов тока, не магнитное взаимодействие тел...
Возможно, сохранившееся с первых мгновений Взрыва, а может и заложенные до него, свой-
ства проматерии...

Из интернета
Статья: Тахионы
ЧАСТИЦЫ, ДВИЖУЩИЕСЯ БЫСТРЕЕ СВЕТА
Попытки обнаружить такие частицы, названные тахионами, дали лишь
отрицательные результаты. Однако, вопреки существующему всеобщему
заблуждению, их существование не противоречило бы теории
относительности.
Со времени формулировки Эйнштейном специальной теории относительности в 1905 г.
и ее последующего подтверждения многочисленными экспериментами физики почти
поголовно убеждены в том, что скорость света в вакууме (около 300000
км/сек) - это максимальная скорость, с которой энергия или информация могут
распространяться в пространстве. Действительно, первая работа Эйнштейна по
теории относительности содержит утверждение: «скорости, превышающие скорость
света, существовать не могут».
В основе этого вывода Эйнштейна лежало заключение, согласно которому уравнения
теории относительности подразумевают возрастание массы объекта с увеличением
его скорости. В конце концов при достижении скорости света (которую обычно
обозначают с) масса становится бесконечной. Поскольку масса тела
является мерой его сопротивления изменению скорости в случае ее приближения к
бесконечному значению, дальнейшее ускорение тела становится невозможным. С
другой стороны, установленное соотношение между энергией и скоростью, имеющее
место в теории относительности, таково, что когда скорость тела приближается к
значению с, его энергия стремится к бесконечности. Поскольку эта энергия должна
быть сообщена каким-то образом телу в процессе ускорения, для ускорения тела от
какой-нибудь малой скорости до скорости света был бы необходим бесконечный
источник энергии. Подобные бесконечные источники энергии существовать не могут,
и поэтому никоим образом нельзя заставить тело увеличивать скорость от
величины, меньшей с вплоть до самой с.
Кроме того, если бы тело смогло хоть как-то перейти от скорости меньше c к
скорости больше с, в силу тех же уравнений теории относительности, его
энергия и импульс превратились бы в чисто мнимые числа, т. е. в числа,
содержащие квадратный корень из отрицательного числа. Подобная ситуация
кажется не имеющей никакого физического смысла. Дело в том, что объекты с
мнимой энергией, очевидно, не в состоянии обмениваться энергией с объектами,
имеющими реальную энергию, и в силу этого не могут на них воздействовать. По
этой причине подобные объекты нельзя обнаружить с помощью реальных приборов.
Поэтому вполне можно сказать, что они не существуют. В рамках теории,
разработанной Эйнштейном, в которой свойства объектов изменялись непрерывно,
а рождение новых объектов не рассматривалось, по этой причине казалось вполне
логичным допустить, что ни одна форма энергии, а тем самым, ни одна форма
вещества не в состоянии перемещаться быстрее света.
Однако с развитием субъядерной физики точка зрения на природу значительно
изменилась. Как мы теперь знаем, субъядерные частицы могут без труда
рождаться и уничтожаться и в результате взаимодействия их энергия и другие
свойства меняются скачками, а не непрерывным образом, типичным для
классической физики. Тем самым, можно представить себе ситуацию, когда
рождаются частицы, уже обладающие скоростью больше скорости света. Это
позволило бы обойти необходимость ускорения их через «световой барьер», что
должно сопровождаться бесконечным расходом энергии.
Далее можно потребовать, чтобы такие частицы всегда двигались со скоростями,
превышающими с, что, очевидно, невозможно предположить для известных частиц.
Если предположить выполнение этих условий, то без особого труда можно будет
удовлетворить требованию, согласно которому данные частицы должны переносить
вещественную энергию и импульс. Математически этого можно добиться, допустив,
чтобы определенная константа, входящая в соотношение между энергией и
скоростью, была бы чисто мнимой величиной, а не вещественной, как это имеет
место для обычных частиц. Эту константу обычно называют массой покоя,
поскольку для обычных тел, которые могут быть замедлены до состояния покоя,
она действительно дает значение массы покоя этого тела.
Соотношение между энергией и скоростью, которое должно выполняться для любого
объекта, подчиняющегося специальной теории относительности, имеет вид
(а)
где Е - энергия объекта, v - его скорость и с - скорость света.
Величину т принято называть массой покоя объекта, и она связана с
энергией покоя объекта Е0 формулой
(б)
Для тела, движущегося со скоростью, превышающей скорость света, отношение V
2/с2 больше единицы. Поэтому величина под знаком
квадратного корня в формуле (а) оказывается отрицательной, а знаменатель
величины, обозначенной в той же формуле через Е, оказывается чисто
мнимым числом (т. е. числом, содержащим квадратный корень из отрицательного
числа). Чтобы в этом случае сделать величину Е вещественной, следует
выбрать в качестве т чисто мнимое число
. Поскольку такой объект всегда перемещается со скоростью, превышающей скорость
света, его энергия, которую можно представить формулой
(в)
будет вещественной, поскольку величина (v2/c2 - 1) будет в
этом случае положительной. Импульс р любого тела, подчиняющегося
специальной теории относительности, можно выразить через его скорость формулой
(г)
в которой т не зависит от v. Как это следует из комбинации этой
формулы с формулой (а), величина, представленная формулой
E2 – p2c2 = m2c4 (д)
не зависит от v. Поэтому она будет одной и той же для всех наблюдателей.
Величина m2 (называемая квадратом массы покоя) в силу этого является
постоянной для всякого объекта, даже для частиц, подобных фотонам (световым
квантам) или тахионам, которые никогда не бывают покоящимися. Из этих
соотношений можно также вывести формулу
(е)
из которой следует, что если отношение V/с меньше единицы (как это имеет
место для обычных объектов), то рс/Е меньше единицы, Е2
- р2с2 больше нуля и, тем самым, m2 -
положительная величина. С другой стороны, для объектов, которые движутся
быстрее света, V/с больше единицы, E2 - р2
c2 меньше нуля и поэтому т2 - отрицательная
величина. В любом случае квадрат массы покоя для данного объекта имеет всегда
неизменное значение и может быть вычислен, если известны из опыта энергия и
импульс этого объекта.
Итак, для гипотетических частиц, движущихся быстрее света, которые в принципе
нельзя перевести в состояние покоя, масса покоя не является непосредственно
измеримой, и поэтому она не обязана быть вещественной. Однако квадрат массы
покоя можно выразить через измеримые величины - энергию и импульс частицы,- и,
тем самым, непосредственно измерить. Для обычных объектов квадрат массы покоя
является положительным вещественным числом. Для сверхсветовых частиц он должен
быть отрицательным числом; в действительности на этом обстоятельстве основаны
все попытки обнаружить эти частицы. Следует также упомянуть, что существует еще
и третий класс частиц, включающий фотоны (световые кванты) и нейтрино, для
которых масса покоя равна нулю, так что они всегда движутся со скоростью с.
Поэтому вполне реальной кажется возможность существования объектов природы
нового типа: они должны всегда двигаться быстрее света. Последнее утверждение
инвариантно в том смысле, что если тело движется быстрее света относительно
одного наблюдателя, оно должно двигаться быстрее света и относительно любого
другого наблюдателя, движущегося относительно первого наблюдателя со
скоростью, меньшей скорости света. Такие наблюдатели - единственные, о
которых мы что-нибудь знаем. Следует подчеркнуть, что все рассуждения,
приведенные здесь и ниже, совместимы со специальной теорией относительности и
исходят из справедливости ее формул для движущихся частиц, даже если эти
частицы движутся быстрее света.
В предвидении возможного открытия сверхсветовых частиц я назвал их
«тахионами» от греческого слова «тахис», что означает «быстрый». Чтобы
показать, как физики подходят к исследованию тахионов, я опишу ряд свойств,
благодаря которым можно было бы отличить их от обычных частиц.
Одно такое свойство следует непосредственно из соотношения между энергией и
скоростью в теории относительности. Мы видели, что для обычных частиц с
увеличением скорости их энергия также возрастает. Для тахионов же наоборот:
увеличение скорости приводит к убыванию энергии. Тем самым, тахион, который
потерял энергию за счет взаимодействия с обычной материей или за счет
испускания света, должен увеличить свою скорость. В то же время тахион,
получивший энергию от некоего источника, должен замедлиться и его скорость
должна стремиться к с сверху, а не снизу. Таким образом, скорость света
с играет роль предельной скорости и для тахионов, но для них - это нижний
предел, тогда как для обычных тел она является верхним пределом их скорости.
В предельном случае тахиона, движущегося с бесконечной скоростью, его полная
энергия должна равняться нулю, хотя его импульс остается конечным. Следует
подчеркнуть, что для тахиона, движущегося с бесконечной скоростью, в нуль
обращается именно полная энергия, а не просто кинетическая энергия. Для
обычных частиц с ненулевой массой покоя полная энергия никогда не может
обратиться в нуль.
Однако условие бесконечности скорости тахиона не инвариантно, а зависит от
наблюдателя. Если тахион движется с бесконечной скоростью с точки зрения одного
наблюдателя, то его скорость, измеренная другим наблюдателем, движущимся
относительно первого, не должна быть бесконечной, а должна быть некой конечной
величиной между с и бесконечностью. Это есть другая интерпретация
открытия Эйнштейном того, что понятие одновременности событий в различных
точках пространства имеет лишь относительный, а не абсолютный смысл.
Второе свойство тахионов, которое серьезно отличает их от обычных частиц,
связано с зависимостью значений энергии и последовательности событий во
времени от относительного движения наблюдателей. Для обычных частиц энергия -
это число, которое изменяется при переходе от наблюдателя к наблюдателю, но
остается всегда положительным. В то же время, если энергия тахиона
положительна для одного наблюдателя, она может быть отрицательной для другого
наблюдателя, движущегося относительно первого. Вследствие законов теории
относительности для тахионов справедливо следующее утверждение: энергия
тахиона всегда меньше произведения его импульса на скорость света с; это
замечание не имеет места для обычных частиц. Если тахионы отрицательной
энергии испускаются невозбуждаемыми атомами обычной материи, то испускающие
атомы должны быть нестабильными, и, тем самым, существование таких тахионов
находится в противоречии с установленной на опыте стабильностью обычной
материи.
Изменение знака энергии тахиона при переходе от наблюдателя к наблюдателю
связано с другим странным свойством тахионов. Если один наблюдатель видит, что
обычная частица была испущена (скажем, атомом А) в некоторый момент
времени и поглощена где-то (атомом Б) в последующий момент времени, то
всякий другой наблюдатель, движущийся относительно первого, увидит этот процесс
в той же хронологической последовательности - испускание атомом А
предшествует во времени поглощению атомом Б - хотя временной интервал и
будет меняться от наблюдателя к наблюдателю. В то же время тахионы из-за того,
что они движутся быстрее света, могут двигаться между точками в «пространстве -
времени», хронологическая последовательность которых может меняться от
наблюдателя к наблюдателю. Следовательно, если один из наблюдателей увидел
тахион, испущенный атомом А в момент времени t1 и
поглощенный атомом Б в последующий момент времени t2,
то другой наблюдатель может найти, что момент времени t1"
который соответствует t1, является более поздним, чем момент
времени t2, который соответствует t2"
. Если это имеет место, то второй наблюдатель естественно должен
интерпретировать эту цепочку событий следующим образом: тахион испускается
атомом Б поглощение должны взаимно превращаться друг в друга в случае
изменения скорости наблюдателя. Это означает, что между этими двумя процессами
в данном случае существует более тесная связь, чем для обычных частиц.
Это означает также, что число тахионов, находящихся в некоторой области
пространства, должно меняться от наблюдателя к наблюдателю (рис. 7.2).
Предположим, что один из наблюдателей видит процесс испускания тахиона атомом
с последующим удалением тахиона на бесконечность. Другой наблюдатель может
наблюдать тот же процесс так, как будто тахион прилетает из окружающего
пространства и поглощается атомом. Поэтому между этими двумя наблюдателями
будут разногласия относительно числа тахионов, присутствующих в системе в
прошлом и в будущем. Такая ситуация опять-таки не похожа на ситуацию с
обычными частицами, когда число частиц, имеющихся в произвольный момент
времени,

Не зависит от наблюдателя. Детальная теория взаимодействия тахионов с обычной
материей, которая пока еще не разработана, должна учитывать отмеченные
особенности.
Убедившись в том, что существование частиц, движущихся быстрее света, не
влечет за собой каких-либо противоречий с теорией относительности, следует,
тем не менее, предоставить решение вопроса о реальном существовании таких
объектов в природе физикам-экспериментаторам. При существующем уровне
развития теоретической физики имеется немного аргументов, в силу которых
теория категорически предсказывает существование каких-то новых объектов.
Напротив, известные теории, вообще говоря, лишь представляют возможность для
описания различных гипотетических объектов, и нам следует придумать
эксперименты, в которых эти объекты можно было бы реально обнаружить.
Например, имеющиеся теории не запрещают существования частиц с электрическим
зарядом, равным половине заряда электрона, и с массой, равной шести
электронным массам. Однако проведенные до сих пор эксперименты довольно
убедительно свидетельствуют о том, что такие объекты в природе не
встречаются. Мы не знаем, однако, почему это имеет место, и не сможем узнать
об этом до тех пор, пока не будет создана более фундаментальная теория
элементарных частиц, чем имеется сейчас.
В проблеме тахионов ситуация совершенно аналогична; окончательное решение..
вопроса об их существовании может принадлежать только экспериментаторам. Это
не значит, однако, что они должны надеяться лишь на то, что им удастся
наткнуться на тахионы где-то во Вселенной. Одной из особенностей всех теорий
элементарных частиц, использующих теорию относительности, является следующее
обстоятельство. В них подразумевается, что если частицы определенного типа
вообще существуют, то они могут быть рождены другими частицами, если
последние обладают достаточной энергией. Для тахионов условие, связанное с
достаточностью энергии, удовлетворить особенно легко: быстрые тахионы
обладают очень низкой энергией. Поэтому нетрудно представить себе условия
эксперимента, в котором тахионы, если они вообще существуют, могли бы
порождаться другими частицами. Единственный неизвестный фактор, кроме самой
гипотезы существования тахионов,- это вероятность, с какой они могли бы
рождаться. Среди известных частиц вероятности рождения при столкновениях
различаются по величине на много порядков. Пионы, например, рождаются
довольно легко, тогда как нейтрино - очень трудно. В силу этих обстоятельств
положительный результат эксперимента, конечно, подтвердит существование
тахионов. Однако отрицательный результат может в лучшем случае установить
лишь верхний предел вероятности, с которой тахионы могут быть рождены
обычными частицами. Только установление того факта, что эта вероятность во
всех изученных процессах оказывается намного меньше вероятности рождения
любой другой частицы, могло бы привести к выводу, что тахионы, вероятно,
вообще не существуют.
До сих пор были предприняты две попытки экспериментального рождения и
обнаружения тахионов. Эти эксперименты были чувствительны к столь различным
типам тахионов и в них были использованы столь разные методы обсуждения
последних, что имеет смысл обсудить их по отдельности. Первый эксперимент,
который был поставлен два года назад в Принстонском университете Торстеном
Альвагером и Майклом Н. Крайслером, ставил перед собой целью поиск
электрически заряженных тахионов. Как известно, около 35 лет назад было
установлено, что электрически заряженные частицы могут рождаться парами при
прохождении через вещество ***-квантов (фотонов) высокой энергии. Многие
известные сейчас заряженные элементарные частицы были впервые воспроизведены
именно таким путем. Отсюда следует, что если электрически заряженные тахионы
существуют, то их в принципе можно породить с помощью фотонов. Как отмечалось
выше, поскольку тахионы могут иметь нулевую полную энергию, пара заряженных
тахионов может быть рождена фотоном любой энергии. В то же время пара обычных
заряженных частиц может быть рождена только таким фотоном, который обладает
энергией, более чем вдвое превышающей энергию покоя каждой из заряженных
частиц.
Допустим теперь, что нам удалось породить заряженные тахионы. Возникает
вопрос: как в этом случае можно было бы их обнаружить и отличить от других
заряженных частиц, которые могут быть рождены тем же способом, например от
электрон-позитронной пары? Самый подходящий способ обнаружения - это
использование того факта, что заряженные тахионы должны непрерывно излучать
фотоны даже при движении через пустое пространство. Это явление, названное
излучением Черенкова по имени русского физика, впервые наблюдавшего его при
движении электронов в 1934 г., имеет место тогда, когда заряженный объект
движется через вещество со скоростью, превышающей скорость света в данном
веществе. Таким образом, электрон, движущийся в стекле со скоростью большей
чем 0,7с, будет испускать излучение Черенкова, поскольку скорость света в
стекле составляет около 0,7 от ее значения в пустоте. Поскольку скорость
тахиона больше скорости света в пустоте, следует ожидать, что тахион должен
испускать черенковское излучение даже в вакууме.
Расчеты подтверждают это предположение: свет должен испускаться под
характеристическим углом, зависящим только от скорости тахиона (рис. 7.3).
Вычисления также показывают, что тахион с зарядом, равным заряду электрона,
должен терять энергию за счет излучения Черенкова невероятно быстро. Даже если
он рождается с очень высокой энергией, она уменьшается до величины менее 1
эв при прохождении всего 1 мм пути. Если такое произойдет, то
излучение Черенкова не будет более представлять собой видимый свет, энергия
фотонов которого превышает 2 эв. В этом случае это излучение содержит
фотоны инфракрасного и более длинноволновых участков спектра, которые
фиксировать гораздо труднее. Чтобы

Обойти эту трудность, экспериментаторы из Принстона использовали остроумную
схему, которая позволяла каждому рожденному тахиону двигаться сквозь область,
свободную от вещества, но содержащую электрическое поле. Электрическое поле
передает энергию заряженным частицам, но в случае обычных частиц этот факт не
приводит к излучению заметных количеств света. В то же время для тахиона,
проходящего участок пути с включенным электрическим полем, за счет получаемой
от него энергии достигается равновесие между этой энергией и энергией,
теряемой на излучение. В силу этого он будет продолжать излучать фотоны
примерно одинаковой равновесной энергии. Меняя значение напряженности поля,
экспериментаторы могли выбрать эту равновесную энергию так, чтобы она
соответствовала излучению фотонов видимого света. Это должно было позволить
без труда наблюдать это излучение.
В своих экспериментах Альвагер и Крайслер использовали;-кванты от
радиоактивного цезиевого источника. Эти фотоны высокой энергии попадали в
свинцовый экран, который препятствовал попаданию их непосредственно в
детектор. За экраном находилась область высокого вакуума, содержавшая две
параллельные пластины, между которыми создавалось электрическое поле (рис.
7.4). Пары заряженных тахионов могли порождаться фотонами при прохождении
последних через свинец, и некоторые из них должны были проникнуть (поскольку
при ускорении они теряют энергию) в область между пластинами. Для обнаружения
фотонов, излучаемых тахионами, пересекающими эту область, использовался
фотоумножитель.
В проведенных экспериментах не было зарегистрировано излучение Черенкова и
поэтому не были получены данные, свидетельствующие о рождении тахионов.
Точнее говоря, было установлено, что вероятность рождения тахионных пар
составляет менее одной десятитысячной от известной вероятности рождения
электрон-позитронных пар фотонами несколько более высокой энергии.
Соотношение между массой и энергией тахионов делает в высшей степени
маловероятным предположение, что эта вероятность может сильно зависеть либо
от энергии фотона, либо от массы тахиона. Следовательно, если отбросить пока
одно уточнение, которое обсуждается ниже, можно сказать, что тахионы с
зарядом, близким по величине к заряду электрона, просто не существуют.
Тахионы с зарядами, отличающимися от заряда электрона более чем в два раза в
большую сторону или в десять раз в меньшую сторону, в данном случае,
вероятно, вообще нельзя обнаружить. Конечно, незаряженные тахионы, не
испускающие излучения Черенкова, вовсе не могли наблюдаться в этих
экспериментах.

Уточнение, которое следует сделать в этих выводах, связано с тем, что
тахионы, быть может, способны терять энергию за счет других процессов, помимо
излучения Черенкова. Одна из таких возможностей - распад отдельного тахиона
на несколько тахионов, каждый из которых обладает меньшей энергией. Если
существуют и другие механизмы энергетических потерь, то интенсивность реально
испущенного излучения Черенкова может быть меньше предполагаемой. Поэтому
значение верхнего предела для вероятности рождения тахионов может оказаться
слишком заниженным. По этой причине, а также потому, что мы, вообще говоря,
находимся в неведении относительно возможных типов взаимодействия тахионов с
обычным веществом, было бы желательно исследовать тахионы так, чтобы
результаты исследования не зависели от того, какие взаимодействия испытывают
тахионы после рождения.
Такой эксперимент был выполнен недавно группой сотрудников Колумбийского
университета, в которую входили Чарльз Балтэй, Ральф Линскер, Ноэль К. Иех и
Дж. Фейнберг.
Исследования этой группы, выполненные на примере аннигиляции антипротонов с
протонами, не дали ни одного примера рождения тахионов и привели к столь же
низкому пределу вероятности рождения их в этой реакции. В каждом из
экспериментов одиночные тахионы могли бы родиться, только если квадрат их
массы оказался бы в определенной области его значений. Поэтому данные
эксперименты могут служить проверкой возможности рождения отдельных тахионов
только для частиц со значениями квадрата массы в этой определенной области.
Однако есть некоторые основания утверждать, что рождение одиночных тахионов
вообще запрещено, точно так же как запрещено рождение одиночных электронов
без появления других сходных с ним частиц. Вместе с тем рождение двух
тахионов или тахион - антитахионной пары не является столь же запрещенным
процессом. Подобные случаи рождения двух частиц могут происходить в любом
эксперименте, независимо от того, чему равен квадрат массы отдельного
тахиона. Поэтому из выполненных экспериментов в действительности следует
довольно резкое ограничение на рождение одиночных тахионов любой массы, за
исключением таких значений масс, которые столь близки к нулю, что их можно в
пределах ошибок эксперимента считать положительными.
Таким образом, оба прямых экспериментальных исследования по обнаружению
тахионов, проведенные до сих пор, дали отрицательные результаты. Косвенные
соображения также имеют тенденцию к дальнейшему ограничению возможных
взаимодействий тахионов. Согласно одному из этих соображений, если заряженные
тахионы существуют, то фотон должен быть нестабильным и распадаться через
некоторое время на пару заряженных тахионов.
Между тем, как известно, фотоны миллиарды лет путешествуют в межгалактическом
пространстве и при этом не распадаются. Это означает, что если заряженные
тахионы вообще существуют, то либо их заряд по величине на много порядков
меньше заряда электрона, в силу чего они взаимодействуют с фотонами очень
слабо, либо квадрат их массы очень близок к нулю, что делает задачу
распознавания их среди обычных частиц очень трудной. Аналогичные выводы,
исходя из косвенных аргументов, можно сделать относительно весьма слабых
взаимодействий нейтральных тахионов.
Возможность того, что тахионы существуют, но совсем не взаимодействуют с
обычными частицами, не должна нас интересовать. Если они не взаимодействуют с
объектами, входящими в состав нашей измерительной аппаратуры, у нас не будет
никакой возможности обнаружить их, и с нашей точки зрения это означает то же
самое, как если бы они вообще не существовали.
Весьма правдоподобная интерпретация описанных выше результатов состоит в том,
что тахионы вообще не могут рождаться при столкновениях обычных частиц. Тогда
остаются две возможности. Одна маловероятная возможность связана с
допущением, что тахионы взаимодействуют с обычными частицами и могут
обмениваться с ними энергией, но не могут ими порождаться. Такая ситуация
находилась бы в очень сильном противоречии со всем нашим пониманием
релятивистской квантовой теории фундаментальных частиц, так что она
маловероятна, но не невозможна. Эту гипотезу можно было бы проверить,
исследуя тахионы в естественных условиях, например, в космических лучах.
Трудности в проведении таких исследований обусловлены тем, что тахионы быстро
теряют энергию, и их становится трудно обнаружить. Вторая возможность состоит
в том, что тахионы просто не существуют, и, тем самым, природа вообще не
заполнила эту нишу, дозволенную теорией относительности. Если это так, а
теперь это кажется наиболее вероятным, то мы не сможем разобраться, почему
это так, пока не достигнем гораздо более глубокого уровня понимания природы
элементарных частиц, чем это имеет место в настоящее время.
Автор: Дж. Фейнберг
Перевод с английского: В.П. Павлов, А.А. Славнов