Правильная призма 4. Как выглядит призма

V=S осн h = a 2 h

S бок =Pl=4al

S бок =Ph=4ah

S бок.сечения =ahv2=alv2

S перп.сечения =a 2

Призма в оптике

В оптике призмой называют объект в форме геометрического тела (призмы), выполненный из прозрачного материала. Свойства призм широко используются в оптике, в частности, в биноклях. В призматических биноклях применяются двойная призма Порро и призма Аббе, названные так в честь своих изобретателей. Эти призмы за счет особой структуры и расположения создают тот или иной оптический эффект.

Призма Порро - это призма, в основании которой лежит равнобедренный треугольник. Двойная призма Порро создается благодаря особому расположению в пространстве двух призм Порро. Двойная призма Порро позволяет переворачивать изображение, увеличивать оптическое расстояние между объективом и окуляром, сохраняя внешние габариты.

Призма Аббе - это призма, в основании которой лежит треугольник с углами - 30 о, 60 о, 90 о. призма Аббе используется, когда необходимо перевернуть изображение без отклонения линии взгляда на объект.

Измерение объемов

Объемы зерновых амбаров и других сооружений в виде кубов, призм и цилиндров египтяне и вавилоняне, китайцы и индийцы вычисляли путем умножения площади основания на высоту. Однако древнему Востоку были известны в основном только отдельные правила, найденные опытным путем, которыми пользовались для нахождения объемов для площадей фигур. В более позднее время, когда геометрия сформировалась как наука, был найден общий подход к вычислению объемов многогранников.

Среди замечательных греческих ученых V - IV вв. до н.э., которые разрабатывали теорию объемов, были Демокрит из Абдеры и Евдокс Книдский. Евклид не применяет термина “объем”. Для него термин “куб”, например, означает и объем куба. В ХI книге “Начал” изложены среди других и теоремы следующего содержания.

  • 1. Параллелепипеды с одинаковыми высотами и равновеликими основаниями равновелики.
  • 2. Отношение объемов двух параллелепипедов с равными высотами равно отношению площадей их оснований.
  • 3. В равновеликих параллелепипедах площади оснований обратно пропорциональны высотам.

Теоремы Евклида относятся только к сравнению объемов, так как непосредственное вычисление объемов тел Евклид, вероятно, считал делом практических руководств по геометрии. В произведениях прикладного характера Герона Александрийского имеются правила для вычислений объема куба, призмы, параллелепипеда и других пространственных фигур.

В школьной программе по курсу стереометрии изучение объёмных фигур обычно начинается с простого геометрического тела - многогранника призмы. Роль её оснований выполняют 2 равных многоугольника, лежащих в параллельных плоскостях. Частным случаем является правильная четырёхугольная призма. Её основами являются 2 одинаковых правильных четырёхугольника, к которым перпендикулярны боковые стороны, имеющие форму параллелограммов (или прямоугольников, если призма не наклонная).

Как выглядит призма

Правильной четырёхугольной призмой называется шестигранник, в основаниях которого находятся 2 квадрата, а боковые грани представлены прямоугольниками. Иное название для этой геометрической фигуры - прямой параллелепипед.

Рисунок, на котором изображена четырёхугольная призма, показан ниже.

На картинке также можно увидеть важнейшие элементы, из которых состоит геометрическое тело . К ним принято относить:

Иногда в задачах по геометрии можно встретить понятие сечения. Определение будет звучать так: сечение - это все точки объёмного тела, принадлежащие секущей плоскости. Сечение бывает перпендикулярным (пересекает рёбра фигуры под углом 90 градусов). Для прямоугольной призмы также рассматривается диагональное сечение (максимальное количество сечений, которых можно построить - 2), проходящее через 2 ребра и диагонали основания.

Если же сечение нарисовано так, что секущая плоскость не параллельна ни основам, ни боковым граням, в результате получается усечённая призма.

Для нахождения приведённых призматических элементов используются различные отношения и формулы. Часть из них известна из курса планиметрии (например, для нахождения площади основания призмы достаточно вспомнить формулу площади квадрата).

Площадь поверхности и объём

Чтобы определить объём призмы по формуле, необходимо знать площадь её основания и высоту:

V = Sосн·h

Так как основанием правильной четырёхгранной призмы является квадрат со стороной a, можно записать формулу в более подробном виде:

V = a²·h

Если речь идёт о кубе - правильной призме с равной длиной, шириной и высотой, объём вычисляется так:

Чтобы понять, как найти площадь боковой поверхности призмы, необходимо представить себе её развёртку.

Из чертежа видно, что боковая поверхность составлена из 4 равных прямоугольников. Её площадь вычисляется как произведение периметра основания на высоту фигуры:

Sбок = Pосн·h

С учётом того, что периметр квадрата равен P = 4a, формула принимает вид:

Sбок = 4a·h

Для куба:

Sбок = 4a²

Для вычисления площади полной поверхности призмы нужно к боковой площади прибавить 2 площади оснований:

Sполн = Sбок + 2Sосн

Применительно к четырёхугольной правильной призме формула имеет вид:

Sполн = 4a·h + 2a²

Для площади поверхности куба:

Sполн = 6a²

Зная объём или площадь поверхности, можно вычислить отдельные элементы геометрического тела.

Нахождение элементов призмы

Часто встречаются задачи, в которых дан объём или известна величина боковой площади поверхности, где необходимо определить длину стороны основания или высоту. В таких случаях формулы можно вывести:

  • длина стороны основания: a = Sбок / 4h = √(V / h);
  • длина высоты или бокового ребра: h = Sбок / 4a = V / a²;
  • площадь основания: Sосн = V / h;
  • площадь боковой грани: Sбок. гр = Sбок / 4.

Чтобы определить, какую площадь имеет диагональное сечение, необходимо знать длину диагонали и высоту фигуры. Для квадрата d = a√2. Из этого следует:

Sдиаг = ah√2

Для вычисления диагонали призмы используется формула:

dприз = √(2a² + h²)

Чтобы понять, как применять приведённые соотношения, можно попрактиковаться и решить несколько несложных заданий.

Примеры задач с решениями

Вот несколько заданий, встречающихся в государственных итоговых экзаменах по математике.

Задание 1.

В коробку, имеющую форму правильной четырёхугольной призмы, насыпан песок. Высота его уровня составляет 10 см. Каким станет уровень песка, если переместить его в ёмкость такой же формы, но с длиной основания в 2 раза больше?

Следует рассуждать следующим образом. Количество песка в первой и второй ёмкости не изменялось, т. е. его объём в них совпадает. Можно обозначить длину основания за a . В таком случае для первой коробки объём вещества составит:

V₁ = ha² = 10a²

Для второй коробки длина основания составляет 2a , но неизвестна высота уровня песка:

V₂ = h (2a)² = 4ha²

Поскольку V₁ = V₂ , можно приравнять выражения:

10a² = 4ha²

После сокращения обеих частей уравнения на a² получается:

В результате новый уровень песка составит h = 10 / 4 = 2,5 см.

Задание 2.

ABCDA₁B₁C₁D₁ — правильная призма. Известно, что BD = AB₁ = 6√2. Найти площадь полной поверхности тела.

Чтобы было проще понять, какие именно элементы известны, можно изобразить фигуру.

Поскольку речь идёт о правильной призме, можно сделать вывод, что в основании находится квадрат с диагональю 6√2. Диагональ боковой грани имеет такую же величину, следовательно, боковая грань тоже имеет форму квадрата, равного основанию. Получается, что все три измерения - длина, ширина и высота - равны. Можно сделать вывод, что ABCDA₁B₁C₁D₁ является кубом.

Длина любого ребра определяется через известную диагональ:

a = d / √2 = 6√2 / √2 = 6

Площадь полной поверхности находится по формуле для куба:

Sполн = 6a² = 6·6² = 216


Задание 3.

В комнате производится ремонт. Известно, что её пол имеет форму квадрата с площадью 9 м². Высота помещения составляет 2,5 м. Какова наименьшая стоимость оклейки комнаты обоями, если 1 м² стоит 50 рублей?

Поскольку пол и потолок являются квадратами, т. е. правильными четырёхугольниками, и стены её перпендикулярны горизонтальным поверхностям, можно сделать вывод, что она является правильной призмой. Необходимо определить площадь её боковой поверхности.

Длина комнаты составляет a = √9 = 3 м.

Обоями будет оклеена площадь Sбок = 4·3·2,5 = 30 м² .

Наименьшая стоимость обоев для этой комнаты составит 50·30 = 1500 рублей.

Таким образом, для решения задач на прямоугольную призму достаточно уметь вычислять площадь и периметр квадрата и прямоугольника, а также владеть формулами для нахождения объёма и площади поверхности.

Как найти площадь куба















Объём призмы. Решение задач

Геометрия является самым могущественным средством для изощрения наших умственных способностей и дает нам возможность правильно мыслить и рассуждать.

Г.Галилей

Цель урока:

  • обучить решению задач на вычисление объема призм, обобщить и систематизировать имеющиеся у учащихся сведения о призме и ее элементах, формировать умения решать задачи повышенной сложности;
  • развивать логическое мышление, умение самостоятельно работать, навыки взаимоконтроля и самоконтроля, умение говорить и слушать;
  • выработать привычку к постоянной занятости, каким- либо полезным делом, воспитание отзывчивости, трудолюбия, аккуратности.

Тип урока: урок применения знаний, умений и навыков.

Оборудование: карточки контроля,медиапроектор, презентация “Урок. Объем Призмы”, компьютеры.

Ход урока

  • Боковые ребра призмы (рис 2).
  • Боковую поверхность призмы (рис 2, рис 5).
  • Высоту призмы (рис 3, рис 4).
  • Прямую призму (рис 2,3,4).
  • Наклонную призму (рис 5).
  • Правильную призму (рис 2, рис 3).
  • Диагональное сечение призмы (рис 2).
  • Диагональ призмы (рис 2).
  • Перпендикулярное сечение призмы (ри3, рис4).
  • Площадь боковой поверхности призмы.
  • Площадь полной поверхности призмы.
  • Объем призмы.

    1. ПРОВЕРКА ДОМАШНЕГО ЗАДАНИЯ (8 мин)
    2. Обменяйтесь тетрадями, проверьте решение на слайдах и выставьте отметку (отметка 10 если составлена задача)

      Составьте по рисунку задачу и решите её. Ученик защищает составленную им задачу у доски. Рис 6 и рис 7.

      Глава 2,§3
      Задача.2. Длины всех ребер правильной треугольной призмы равны между собой. Вычислите объем призмы, если площадь ее поверхности равна cм 2 (рис8)

      Глава 2,§3
      Задача 5. Основание прямой призмы АВСА 1В 1С1 есть прямоугольный треугольник АВС (угол АВС=90°), АВ=4см. Вычислите объем призмы, если радиус окружности, описанной около треугольника АВС, равен 2,5см, а высота призмы равна 10см. (рис 9).

      Глава2,§3
      Задача 29.Длина стороны основания правильной четырехугольной призмы равна 3см. Диагональ призмы образует с плоскостью боковой грани угол 30°. Вычислить объем призмы (рис 10).

    3. Совместная работа учителя с классом (2-3мин.).
    4. Цель: подведение итогов теоретической разминки (учащиеся проставляют оценки друг другу), изучение способов решения задач по теме.

    5. ФИЗКУЛЬТМИНУТКА (3 мин)
    6. РЕШЕНИЕ ЗАДАЧ (10 мин)
    7. На данном этапе учитель организует фронтальную работу по повторению способов решения планиметрических задач, формул планиметрии. Класс делится на две группы, одни решают задачи, другие работают за компьютером. Затем меняются. Учащимся предлагается решить всем № 8 (устно), № 9 (устно). После делятся на группы и преступают к решению задач № 14, № 30, № 32.

      Глава 2, §3, страница 66-67

      Задача 8. Все ребра правильной треугольной призмы равны между собой. Найдите объём призмы, если площадь сечения плоскостью, проходящей через ребро нижнего основания и середину стороны верхнего основания, равна см (рис.11).

      Глава 2,§3, страница 66-67
      Задача 9. основание прямой призмы – квадрат, а ее боковые ребра в два раза больше стороны основания. Вычислите объем призмы, если радиус окружности, описанной около сечения призмы плоскостью, проходящей через сторону основания и середину противолежащего бокового ребра, равен см. (рис.12)

      Глава 2,§3, страница 66-67
      Задача 14 .Основание прямой призмы – ромб, одна из диагоналей которого равна его стороне. Вычислите периметр сечения плоскостью проходящей через большую диагональ нижнего основания, если объем призмы равен и все боковые грани квадраты (рис.13).

      Глава 2,§3, страница 66-67
      Задача 30 .АВСА 1 В 1 С 1 –правильная треугольная призма, все ребра которой равны между собой, точка о середина ребра ВВ 1 . Вычислите радиус окружности, вписанной в сечение призмы плоскостью АОС, если объем призмы равен (рис.14).

      Глава 2,§3, страница 66-67
      Задача 32 .В правильной четырех угольной призме сумма площадей оснований равна площади боковой поверхности. Вычислите объем призмы, если диаметр окружности, описанной около сечения призмы плоскостью, проходящей через две вершины нижнего основания и противолежащую вершину верхнего основания, равен 6 см (рис15).

      В ходе решения задач ученики сопоставляют свои ответы с теми, что показывает учитель. Это образец решения задачи с подробными комментариями … Индивидуальная работа учителя с “сильными” учениками (10мин.).

    8. Самостоятельная работа учащихся над тестом за компьютером
    9. 1. Сторона основания правильной треугольной призмы равна , а высота-5. Найдите объем призмы.

      1) 152) 45 3) 104) 125) 18

      2. Выберите верное утверждение.

      1)Объем прямой призмы, основанием которой является прямоугольный треугольник, равен произведению площади основания на высоту.

      2) Объем правильной треугольной призмы вычисляется по формулеV=0,25а 2 h -где а- сторона основания,h-высота призмы.

      3)Объем прямой призмы равен половине произведения площади основания на высоту.

      4)Объем правильной четырехугольной призмы вычисляется по формуле V=a 2 h-где а- сторона основания,h-высота призмы.

      5)Объем правильной шестиугольной призмы вычисляется по формуле V=1.5а 2 h, где а- сторона основания,h-высота призмы.

      3.Сторона основания правильной треугольной призмы равна . Через сторону нижнего основания и противоположную вершину верхнего основания проведена плоскость, которая проходит под углом 45° к основанию. Найдите объем призмы.

      1) 92) 9 3) 4,54) 2,255) 1,125

      4. Основанием прямой призмы является ромб, сторона которого равна 13, а одна из диогоналей-24. Найдите объем призмы, если диагональ боковой грани равна 14.

Инструкция

Если в условиях задачи приведен объем (V) пространства, ограниченного гранями призмы , и площадь ее основания (s), для вычисления высоты (H) используйте формулу, общую для с основанием любой геометрической формы. Разделите объем на площадь основания: H=V/s. Например, при в 1200 см³ основания, равной 150 см², высота призмы должна быть равна 1200/150=8 см.

Если четырехугольник, лежащий в основании призмы , имеет форму какой-либо правильной фигуры, вместо площади в вычислениях можно использовать длины ребер призмы . Например, при квадратном основании площадь в формуле предыдущего шага замените второй степенью длины его ребра (a):H=V/a². А в случае в ту же формулу подставьте произведение длин двух смежных ребер основания (a и b):H=V/(a*b).

Для вычисления высоты (H) призмы может оказаться достаточным знания полной площади поверхности (S) и длины одного ребра основания (a). Так как общая площадь складывается из площадей двух оснований и четырех боковых граней, а в таком многограннике основанием , площадь одной боковой поверхности должна быть равна (S-a²)/4. Эта грань имеет два общих ребра с квадратными известного размера, значит, для вычисления длины другого ребра разделите полученную площадь на сторону квадрата: (S-a²)/(4*a). Так как рассматриваемая призма является прямоугольной, то ребро вычисленной вами длины примыкает к основаниям под углом 90°, т.е. совпадает с высотой многогранника: H=(S-a²)/(4*a).

В правильной для вычисления высоты (H) достаточно знания длины диагонали (L) и одного ребра основания (a). Рассмотрите треугольник, образуемый этой диагональю, диагональю квадратного основания и одним из боковых ребер. Ребро здесь - неизвестная величина, совпадающая с искомой высотой, а диагональ квадрата, основываясь на теореме Пифагора, равна произведению длины стороны на корень из двойки. В соответствии с той же теоремой выразите искомую величину (катет) через длины диагонали призмы (гипотенузы) основания (второй катет): H=√(L²-(a*V2)²)=√(L²-2*a²).

Источники:

  • четырехугольная призма

Призма – это прибор, который разделяет нормальный свет на отдельные цвета: красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый. Это светопроницаемый объект, с плоской поверхностью, которая преломляет световые волны в зависимости от их длин и благодаря этому позволяет увидеть свет в разных цветах. Сделать призму самостоятельно довольно легко.

Вам понадобится

  • Два листа бумаги
  • Фольга
  • Стакан
  • Компакт Диск
  • Кофейный столик
  • Фонарик
  • Булавка

Инструкция

Регулируйте положение фонарика и бумаги до тех пор пока не увидите на листах радугу – так ваш луч света раскладывается на спектры.

Видео по теме

Четырехугольная пирамида - это пятигранник с четырехугольным основанием и боковой поверхностью из четырех треугольных граней. Боковые ребра многогранника пересекаются в одной точке - вершине пирамиды.

Инструкция

Четырехугольная пирамида может быть правильной, прямоугольной или произвольной. Правильная пирамида имеет в основании правильный четырехугольник, а ее вершина проецируется в центр основания. Расстояние от вершины пирамиды до ее основания называется высотой пирамиды. Боковые грани являются равнобедренными треугольниками, а все ребра равны.

В основании правильной может лежать квадрат или прямоугольник. Высота H такой пирамиды проецируется в точку пересечения диагоналей основания. В квадрате и прямоугольнике диагонали d одинаковы. Все боковые ребра L пирамиды с квадратным или прямоугольным основанием равны между собой.

Для нахождения ребра пирамиды рассмотрите прямоугольный треугольник со сторонами: гипотенуза - искомое ребро L, катеты - высота пирамиды H и половина диагонали основания d. Вычислите ребро по теореме Пифагора: квадрат гипотенузы равен сумме квадратов катетов: L²=H²+(d/2)². В пирамиде с ромбом или параллелограммом в основании противоположные ребра попарно равны и определяются по формулам: L₁²=H²+(d₁/2)² и L₂²=H²+(d₂/2)², где d₁ и d₂ - диагонали основания.

Тип задания: 8
Тема: Призма

Условие

В правильной треугольной призме ABCA_1B_1C_1 стороны основания равны 4 , а боковые рёбра равны 10 . Найдите площадь сечения призмы плоскостью, проходящей через середины рёбер AB, AC, A_1B_1 и A_1C_1.

Показать решение

Решение

Рассмотрим следующий рисунок.

Отрезок MN является средней линией треугольника A_1B_1C_1, поэтому MN = \frac12 B_1C_1=2. Аналогично, KL=\frac12BC=2. Кроме того, MK = NL = 10. Отсюда следует, что четырёхугольник MNLK является параллелограммом. Так как MK\parallel AA_1, то MK\perp ABC и MK\perp KL. Следовательно, четырёхугольник MNLK является прямоугольником. S_{MNLK} = MK\cdot KL = 10\cdot 2 = 20.

Ответ

Тип задания: 8
Тема: Призма

Условие

Объём правильной четырёхугольной призмы ABCDA_1B_1C_1D_1 равен 24 . Точка K — середина ребра CC_1 . Найдите объём пирамиды KBCD .

Показать решение

Решение

Согласно условию, KC является высотой пирамиды KBCD . CC_1 является высотой призмы ABCDA_1B_1C_1D_1 .

Так как K является серединой CC_1 , то KC=\frac12CC_1. Пусть CC_1=H , тогдаKC=\frac12H . Заметим также, что S_{BCD}=\frac12S_{ABCD}. Тогда, V_{KBCD}= \frac13S_{BCD}\cdot\frac{H}{2}= \frac13\cdot\frac12S_{ABCD}\cdot\frac{H}{2}= \frac{1}{12}\cdot S_{ABCD}\cdot H= \frac{1}{12}V_{ABCDA_1B_1C_1D_1}. Следовательно, V_{KBCD}=\frac{1}{12}\cdot24=2.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 8
Тема: Призма

Условие

Найдите площадь боковой поверхности правильной шестиугольной призмы, сторона основания которой равна 6 , а высота — 8 .

Показать решение

Решение

Площадь боковой поверхности призмы находим по формуле S бок. = P осн. · h = 6a\cdot h, где P осн. и h — соответственно периметр основания и высота призмы, равная 8 , и a — сторона правильного шестиугольника, равная 6 . Следовательно, S бок. = 6\cdot 6\cdot 8 = 288.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 8
Тема: Призма

Условие

В сосуд, имеющий форму правильной треугольной призмы, налили воду. Уровень воды достигает 40 см. На какой высоте будет находиться уровень воды, если её перелить в другой сосуд такой же формы, у которого сторона основания в два раза больше, чем у первого? Ответ выразите в сантиметрах.

Показать решение

Решение

Пусть a — сторона основания первого сосуда, тогда 2 a — сторона основания второго сосуда. По условию объём жидкости V в первом и втором сосуде один и тот же. Обозначим через H уровень, на который поднялась жидкость во втором сосуде. Тогда V= \frac12\cdot a^2\cdot\sin60^{\circ}\cdot40= \frac{a^2\sqrt3}{4}\cdot40, и, V=\frac{(2a)^2\sqrt3}{4}\cdot H. Отсюда \frac{a^2\sqrt3}{4}\cdot40=\frac{(2a)^2\sqrt3}{4}\cdot H, 40=4H, H=10.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 8
Тема: Призма

Условие

В правильной шестиугольной призме ABCDEFA_1B_1C_1D_1E_1F_1 все рёбра равны 2 . Найдите расстояние между точками A и E_1 .

Показать решение

Решение

Треугольник AEE_1 — прямоугольный, так как ребро EE_1 перпендикулярно плоскости основания призмы, прямым углом будет угол AEE_1.

Тогда по теореме Пифагора AE_1^2 = AE^2 + EE_1^2. Найдём AE из треугольника AFE по теореме косинусов. Каждый внутренний угол правильного шестиугольника равен 120^{\circ}. Тогда AE^2= AF^2+FE^2-2\cdot AF\cdot FE\cdot\cos120^{\circ}= 2^2+2^2-2\cdot2\cdot2\cdot\left (-\frac12 \right).

Отсюда, AE^2=4+4+4=12,

AE_1^2=12+4=16,

AE_1=4.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 8
Тема: Призма

Условие

Найдите площадь боковой поверхности прямой призмы, в основании которой лежит ромб с диагоналями, равными 4\sqrt5 и 8 , и боковым ребром, равным 5 .

Показать решение

Решение

Площадь боковой поверхности прямой призмы находим по формуле S бок. = P осн. · h = 4a\cdot h, где P осн. и h соответственно периметр основания и высота призмы, равная 5 , и a — сторона ромба. Найдём сторону ромба, пользуясь тем, что диагонали ромба ABCD взаимно перпендикулярны и точкой пересечения делятся пополам.