Погрешность атомных часов. Самые точные часы в мире - квантовые

Часто мы слышим фразу, что атомные часы всегда показывают точное время. Но из их названия сложно понять, почему атомные часы самые точные или как они устроены.

То, что в названии есть слово «атомные» вовсе не означает, что часы представляют собой опасность для жизни, даже если в голову сразу же приходят мысли об атомной бомбе или атомной электростанции. В данном случае мы всего лишь говорим о принципе работы часов. Если в обычных механических часах колебательные движения совершают шестеренки и ведется подсчет их движений, то в атомных часах ведется подсчет колебаний электронов внутри атомов. Чтобы лучше понять принцип работы, вспомним физику элементарных частиц.

Все вещества в нашем мире состоят из атомов. Атомы же состоят из протонов, нейтронов и электронов. Протоны и нейтроны объединяются друг с другом в ядро, которое также называют нуклоном. Вокруг ядра движутся электроны, которые могут находиться на разных энергетических уровнях. Самое интересное, что при поглощении или отдаче энергии, электрон может переходить со своего энергетического уровня на более высокий или низкий. Электрон может получать энергию из электромагнитного излучения, при каждом переходе поглощая или испуская электромагнитное излучение определенной частоты.

Чаще всего встречаются часы, в которых для изменения используют атомы элемента Цезий -133. Если за 1 секунду маятник обычных часов совершает 1 колебательное движение, то электроны в атомных часах на основе Цезия-133 при переходе с одного энергетического уровня на другой испускают электромагнитное излучение с частотой 9192631770 Гц. Получается, именно на такое количество промежутков делится одна секунда, если её рассчитывать в атомных часах. Эта величина была официально принята международным сообществом в 1967 году. Представьте огромный циферблат, где находится не 60, а 9192631770 делений, которые составляют всего 1 секунду. Неудивительно, что атомные часы такие точные и обладают целым рядом преимуществ: атомы не подвержены старению, не изнашиваются, а частота колебания будет всегда одинаковой для одного химического элемента, благодаря чему можно синхронно сравнивать, например, показания атомных часов далеко в космосе и на Земле, не боясь погрешностей.

Благодаря атомным часам человечество на практике смогло проверить правильность теории относительности и удостовериться, что , чем на Земле. Атомные часы установлены на многих спутниках и космических аппаратах, они используются для телекоммуникационных нужд, для мобильной связи, по ним сравнивают точное время на всей планете. Без преувеличения, именно благодаря изобретению атомных часов человечество смогло войти в эпоху высоких технологий.

Как работают атомные часы?

Цезий-133 нагревают, выпаривая атомы цезия, которые проходит через магнитное поле, где отбираются атомы с нужным энергетическим состояниям.

Затем отобранные атомы проходят через магнитное поле с частотой, близкой к 9192631770 Гц, которое создает кварцевый генератор. Под воздействием поля атомы цезия снова меняют энергетические состояния, и попадают на детектор, который фиксирует, когда наибольшее количество попадающих атомов будет обладать «правильным» энергетическим состоянием. Максимальное количество атомов с измененным энергетическим состоянием говорит о том, что частота микроволнового поля подобрана верно, и затем её значение подается в электронное устройство – делитель частоты, который, уменьшая частоту в целое число раз, получает число 1, которое и является эталонной секундой.

Таким образом, атомы цезия используются для проверки правильности частоты магнитного поля, создаваемой кварцевым генератором, помогая поддерживать ее в постоянном значении.

Это интересно: хотя существующие на сегодняшний момент атомные часы беспрецедентно точно и могут миллионы лет идти без погрешностей, физики не собираются останавливаться на достигнутом. Используя атомы различных химических элементов, они постоянно работают над повышением точности атомных часов. Из последних изобретений – атомные часы на стронции , которые в три раза точнее их цезиевого аналога. Чтобы отстать всего на секунду им потребуется 15 млрд. лет – время, превышающее возраст нашей Вселенной…

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Архив Статьи

Какие "часовщики" придумали и совершенствовали этот чрезвычайно точный механизм? Есть ли ему замена? Попробуем разобраться.

В 2012 году атомное хронометрирование будет праздновать своё сорокапятилетие. В 1967 году категория времени в Международной системе единиц стала определяться не астрономическими шкалами, а цезиевым стандартом частоты. Именно его в простонародье и именуют атомными часами.

Каков же принцип работы атомных осцилляторов? В качестве источника резонансной частоты эти "устройства" используют квантовые энергетические уровни атомов или молекул. Квантовая механика связывает с системой "атомное ядро - электроны" несколько дискретных энергетических уровней. Электромагнитное поле определённой частоты может спровоцировать переход этой системы с низкого уровня на более высокий. Возможно и обратное явление: атом может перейти с высокого энергетического уровня на более низкий с излучением энергии. И тем и другим явлением можно управлять и фиксировать эти энергетические межуровневые скачки, создав тем самым подобие колебательного контура. Резонансная частота этого контура будет равна разности энергий двух уровней перехода, делённой на постоянную Планка .

Получаемый при этом атомный осциллятор обладает несомненными преимуществами по отношению к своим астрономическим и механическим предшественникам. Резонансная частота всех атомов выбранного для осциллятора вещества будет, в отличие от маятников и пьезокристаллов, одинакова. Кроме того, атомы с течением времени не изнашиваются и не меняют свои свойства. Идеальный вариант для практически вечного и чрезвычайно точного хронометра.

Впервые возможность использования межуровневых энергетических переходов в атомах в качестве стандарта частоты в далёком 1879 году рассмотрел британский физик Уильям Томсон, более известный как лорд Келвин . В качестве источника атомов-резонаторов он предлагал использовать водород. Однако его изыскания носили скорее теоретический характер. Наука того времени ещё не была готова к разработке атомного хронометра.

Потребовалось почти сто лет, чтобы идея лорда Келвина обрела практическое воплощение. Срок немалый, но и задачка была не из лёгких. Превратить атомы в идеальные маятники на практике оказалось труднее, чем в теории. Сложность заключалась в битве с так называемой резонансной шириной - небольшим колебанием частоты поглощения и испускания энергии при переходе атомов с уровня на уровень. Отношение резонансной частоты к резонансной ширине и определяет качество атомного осциллятора. Очевидно, что чем больше значение резонансной ширины, тем ниже качество атомного маятника. К сожалению, повысить резонансную частоту для улучшения качества невозможно. Она постоянна для атомов каждого конкретного вещества. А вот уменьшить резонансную ширину можно путём увеличения времени наблюдения за атомами.

Технически этого можно добиться следующим образом: пусть внешний, например кварцевый, осциллятор периодически генерирует электромагнитное излучение, заставляющее атомы вещества-донора прыгать по энергетическим уровням. При этом задачей настройщика атомного хронографа является максимальное приближение частоты этого кварцевого осциллятора к резонансной частоте межуровневого перехода атомов. Возможным это становится в случае достаточно большого периода наблюдения за колебаниями атомов и создания обратной связи, регулирующей частоту кварца.

Правда, кроме проблемы снижения резонансной ширины в атомном хронографе существует масса других проблем. Это и допплеровский эффект - смещение резонансной частоты вследствие движения атомов, и взаимные столкновения атомов, вызывающие незапланированные энергетические переходы, и даже влияние всепроникающей энергии тёмной материи.

Впервые попытка практической реализации атомных часов была предпринята в тридцатые годы прошлого столетия учёными Колумбийского университета под руководством будущего нобелевского лауреата доктора Айсидора Раби . В качестве вещества - источника атомов-маятников Раби предложил использовать изотоп цезия 133 Cs. К сожалению, работы Раби, очень заинтересовавшие NBS, были прерваны Второй мировой войной.

После её окончания первенство реализации атомного хронографа перешло к сотруднику NBS Гарольду Лайонсу. Его атомный осциллятор работал на аммиаке и давал погрешность, соизмеримую с лучшими образцами кварцевых резонаторов. В 1949 году аммиачные атомные часы были продемонстрированы широкой публике. Несмотря на довольно посредственную точность, в них были реализованы основные принципы будущих поколений атомных хронографов.

Полученный Луи Эссеном прототип цезиевых атомных часов обеспечивал точность 1*10 -9 , обладая при этом шириной резонанса всего в 340 Герц

Чуть позже профессор Гарвардского университета Норман Рэмси усовершенствовал идеи Айсидора Раби, снизив влияние на точность измерений допплеровского эффекта. Он предложил вместо одного длительного высокочастотного импульса, возбуждающего атомы, использовать два коротких, посланных в плечи волновода на некотором расстоянии друг от друга. Это позволило резко снизить резонансную ширину и фактически сделало возможным создание атомных осцилляторов, на порядок превосходящих по точности своих кварцевых предков.

В пятидесятые годы прошлого столетия на основе схемы, предложенной Норманом Рэмси, в Национальной физической лаборатории (Великобритания) её сотрудник Луи Эссен вёл работу над атомным осциллятором на основе предложенного ранее Раби изотопа цезия 133 Cs. Цезий был выбран неслучайно.

Схема сверхтонких уровней перехода атомов изотопа цезия-133

Относясь к группе щелочных металлов, атомы цезия чрезвычайно просто возбуждаются для скачка между энергетическими уровнями . Так, например, пучок света легко способен выбить из атомной структуры цезия поток электронов. Именно благодаря этому свойству цезий широко применяется в составе фотодетекторов.

Устройство классического цезиевого осциллятора на основе волновода Рэмси

Первый официальный цезиевый стандарт частоты NBS-1

Потомок NBS-1 - осциллятор NIST-7 использовал лазерную накачку луча атомов цезия

Чтобы прототип Эссена стал настоящим стандартом, потребовалось более четырёх лет. Ведь точная настройка атомных часов была возможна только путём сравнения с существующими эфемеридными единицами времени. В течение четырёх лет атомный осциллятор калибровался с помощью наблюдений за вращением Луны вокруг Земли с помощью точнейшей лунной камеры, изобретённой сотрудником Военно-морской обсерватории США Уильямом Марковицем.

"Подгонка" атомных часов по лунным эфемеридам велась с 1955 по 1958 год, после чего устройство было официально признано NBS в качестве стандарта частоты. Более того, беспрецедентная точность цезиевых атомных часов сподвигла NBS сменить в стандарте SI единицу измерения времени. С 1958 года в качестве секунды официально была принята "продолжительность 9 192 631 770 периодов излучения, соответствующая переходу между двумя сверхтонкими уровнями стандартного состояния атома изотопа цезия-133".

Устройство Луи Эссена получило наименование NBS-1 и стало считаться первым цезиевым стандартом частоты.

За последующие тридцать лет были разработаны шесть модификаций NBS-1, последняя из которых - NIST-7, созданная в 1993 году благодаря замене магнитов на лазерные ловушки, обеспечивает точность 5*10 -15 при резонансной ширине всего шестьдесят два Герца.

Сравнительная таблица характеристик цезиевых стандартов частоты, используемых NBS

Цезиевый стандарт частоты Время функционирования Время работы в качестве официального стандарта NPFS Резонансная ширина Длина СВЧ-волновода Величина погрешности
NBS-1 1952-1962 1959-1960 300 Гц 55 см 1*10 -11
NBS-2 1959-1965 1960-1963 110 Гц 164 см 8*10 -12
NBS-3 1959-1970 1963-1970 48 Гц 366 см 5*10 -13
NBS-4 1965-1990-e нет 130 Гц 52,4 см 3*10 -13
NBS-5 1966-1974 1972-1974 45 Гц 374 см 2*10 -13
NBS-6 1974-1993 1975-1993 26 Гц 374 см 8*10 -14
NBS-7 1988-2001 1993-1998 62 Гц 155 см 5*10 -15

Устройства NBS являются стационарными стендами, что позволяет отнести их скорее к эталонам, чем к практически используемым осцилляторам. А вот для сугубо практических целей на благо цезиевого стандарта частоты поработала компания Hewlett-Packard. В 1964 году будущий компьютерный гигант создал компактный вариант цезиевого стандарта частоты - устройство HP 5060A.

Откалиброванные с использованием эталонов NBS, частотные стандарты HP 5060 умещались в типовую стойку радиооборудования и имели коммерческий успех. Именно благодаря цезиевому стандарту частоты, заданному в Hewlett-Packard, беспрецедентная точность атомных часов пошла в широкие массы.

Hewlett-Packard 5060A.

В результате стали возможны такие вещи, как спутниковое телевидение и связь, глобальные системы навигации и службы синхронизации времени информационных сетей. Применений доведённой до промышленного образца технологии атомного хронографа нашлось много. При этом в Hewlett-Packard не останавливались на достигнутом и постоянно улучшают качество цезиевых стандартов и их массо-габаритные показатели .

Семейство атомных часов компании Hewlett-Packard

В 2005 году подразделение Hewlett-Packard, отвечающее за разработку атомных часов, было продано компании Simmetricom .

Наряду с цезием, запасы которого в природе весьма ограничены, а спрос на него в самых разных технологических областях чрезвычайно велик, в качестве вещества-донора использовался рубидий, по свойствам очень близкий к цезию.

Казалось бы, существующая схема атомных часов доведена до совершенства. Между тем она имела досадный недостаток, устранение которого стало возможным во втором поколении цезиевых стандартов частоты, именуемых цезиевыми фонтанами.

Фонтаны времени и оптическая патока

Несмотря на высочайшую точность атомного хронометра NIST-7, использующего лазерное детектирование состояния атомов цезия, его схема принципиально не отличается от схем первых вариантов цезиевых стандартов частоты.

А конструктивным недостатком всех этих схем является то, что контролировать скорость распространения луча из атомов цезия, двигающихся в волноводе, принципиально невозможно. И это при том, что скорость движения атомов цезия при комнатной температуре - сто метров в секунду. Весьма быстро.

Именно поэтому все модификации цезиевых стандартов - это поиск баланса между размерами волновода, успевающего воздействовать на быстрые атомы цезия в двух точках, и точностью детектирования результатов этого воздействия. Чем меньше волновод, тем труднее успеть сделать последовательные электромагнитные импульсы, воздействующие на одни и те же атомы.

А что если найти способ снизить скорость движения атомов цезия? Именно этой мыслью озаботился студент Масачуссетского технологического института Джеролд Захариус , изучавший в конце сороковых годов прошлого столетия влияние силы тяжести на поведение атомов. Позднее, привлечённый к разработке варианта цезиевого стандарта частоты Atomichron , Захариус предложил идею цезиевого фонтана - способа, позволяющего снизить скорость движения атомов цезия до одного сантиметра в секунду и избавиться от двухколенного волновода традиционных атомных осцилляторов.

Идея Захариуса была проста. Что если запускать атомы цезия внутри осциллятора вертикально? Тогда одни и те же атомы будут дважды проходить через детектор: первый раз при путешествии вверх, а второй - вниз, куда они устремятся под действием силы тяжести. При этом движение атомов вниз будет существенно медленнее их взлёта, ведь за время путешествия в фонтане они подрастеряют энергию. К сожалению, в пятидесятые годы прошлого столетия реализовать свои идеи Захариус не смог. В его экспериментальных установках атомы, двигавшиеся вверх, взаимодействовали с падающими вниз, что сбивало точность детектирования.

К идее Захариуса вернулись только в восьмидесятые годы. Учёные Стенфордского университета под руководством Стивена Чу нашли способ реализации фонтана Захариуса с использованием метода, названного ими "оптическая патока".

В цезиевом фонтане Чу облако атомов цезия, выстреливаемых вверх, предварительно охлаждается системой из трёх пар противоположно направленных лазеров, имеющих резонансную частоту чуть ниже оптического резонанса атомов цезия.

Схема цезиевого фонтана с оптической патокой.

Охлаждённые лазерами атомы цезия начинают двигаться медленно, словно сквозь патоку. Их скорость падает до трёх метров в секунду. Уменьшение скорости атомов даёт исследователям возможность более точного детектирования состояния (согласитесь, значительно проще рассмотреть номера машины, двигающейся со скоростью один километр в час, чем машины, двигающейся со скоростью сто километров в час).

Шар из охлаждённых атомов цезия запускается вверх примерно на метр, по пути проходя волновод, через который на атомы воздействует электромагнитное поле резонансной частоты. И детектор системы фиксирует изменение состояния атомов в первый раз. Достигнув "потолка", охлаждённые атомы начинают падать благодаря силе тяжести и проходят волновод во второй раз. На обратном пути детектор снова фиксирует их состояние. Поскольку атомы двигаются чрезвычайно медленно, их полёт в виде достаточно плотного облака легко контролировать, а значит, в фонтане не будет одновременно летящих вверх и вниз атомов.

Установка Чу на основе цезиевого фонтана была принята NBS в качестве стандарта частоты в 1998 году и получила название NIST-F1. Её погрешность составляла 4*10 -16 , а значит, NIST-F1 была точнее предшественника NIST-7.

Фактически в NIST-F1 был достигнут предел точности измерений состояния атомов цезия. Но учёные на этой победе не остановились. Они решили устранить погрешность, которую вносит в работу атомных часов излучение абсолютно чёрного тела - результат взаимодействия атомов цезия с тепловым излучением корпуса установки, в которой они двигаются. В новом атомном хронографе NIST-F2 цезиевый фонтан размещался в криогенной камере, сводя излучение абсолютно чёрного тела практически к нулю. Погрешность NIST-F2 равна невероятной величине 3*10 -17 .

График уменьшения погрешности вариантов цезиевых стандартов частоты

В настоящее время атомные часты на основе цезиевых фонтанов дают человечеству точнейший эталон времени, относительно которого бьётся пульс нашей техногенной цивилизации. Благодаря инженерным ухищрениям импульсные водородные мазеры, которые охлаждают атомы цезия в стационарных вариантах NIST-F1 и NIST-F2, были заменены на обычный лазерный луч, работающий в паре с магнитооптической системой. Это позволило создать компактные и очень устойчивые ко внешним воздействиям варианты стандартов NIST-Fx, способные трудиться в космических аппаратах. Весьма образно названные "Aerospace Cold Atom Clock ", эти стандарты частоты установлены в спутниках таких навигационных систем, как GPS, что и обеспечивает их потрясающую синхронизацию для решения задачи очень точного вычисления координат приёмников GPS, используемых в наших гаджетах.

Компактный вариант атомных часов на основе цезиевого фонтана, называемый "Aerospace Cold Atom Clock", используется в спутниках системы GPS

Вычисление эталонного времени выполняется "ансамблем" из десяти NIST-F2, расположенных в различных исследовательских центрах, сотрудничающих с NBS. Точное значение атомной секунды получается коллегиально, и тем самым устраняются различные погрешности и влияние человеческого фактора.

Однако не исключено, что однажды цезиевый стандарт частоты будет восприниматься нашими потомками как весьма грубый механизм измерения времени, подобно тому, как ныне мы снисходительно смотрим на движения маятника в механических напольных часах наших предков.

Это устройства для измерения времени, принцип работы которых основан на атомной физике. Благодаря свойствам химических элементов, используемых в конструкции, погрешность этих часов минимальна. Например, устройства на основе тория-229 отстанут на десятую долю секунды примерно за 14 миллиардов лет.

Как работают атомные часы

Если в кварцевых часах опорная частота для определения секунды - количество колебаний кристалла кварца, то в атомных за нее принимается частота переходов электронов в атомах определенных химических элементов с одного энергетического уровня на другой.

1 - Электронный компонент (чип)

2 - Атомный источник

3 - Фотодетектор

4 - Верхний нагреватель

5 - Резонансная ячейка

6 - Волновая пластинка

7 - Нижный нагреватель

8 - Вертикально-излучающий лазер

В чем суть: в атомах есть электроны. Они обладают энергией. При поглощении или отдаче энергии электроны скачком переходят с одного энергетического уровня на другой, поглощая или испуская электромагнитные волны, частота которых всегда одинакова. Этим явлением можно управлять: когда атом подвергают воздействию микроволнового излучения, он отзывается определенным количеством колебаний.

Это свойство используется для повышения точности измерений времени. Так, признано, что секунда - это продолжительность 9192631770 циклов излучения. Данная частота соответствует переходу между двумя энергетическими уровнями атома цезия-133. Сравнивая частоту колебаний кварцевого генератора с частотой переходов атомов элемента, фиксируются малейшие отклонения. При наличии отклонений, колебания кварца отстраиваются.

В атомных часах используется не только цезий. Появляются устройства на базе химических элементов, способных обеспечить еще большую точность хода: иттербий, торий-229, стронций.

Почему атомные часы точные

Частота колебаний химического элемента одинакова, и это сводит к минимуму возможность погрешности. Кроме того, в отличие от кварцевого кристалла, атомы не изнашиваются и не утрачивают свои химические свойства со временем.

Другие названия атомных часов: квантовые, молекулярные.

    Во-первых, часы использует человечество в качестве средств программно-временного управления.

    Во-вторых, в наши дни измерение времени является и самым точным видом измерений из всех проводимых: точность измерения времени определяется сейчас невероятно погрешностью порядка 1·10-11 %, или 1 с за 300 тыс. лет.

    А добились такой точности современные люди, когда стали использовать атомы , которые в результате своих колебаний являются регулятором хода атомных часов. Атомы цезия находятся в двух, необходимых нам, энергетических состояниях (+) и (-). Электромагнитное излучение с частотой 9 192 631 770 герц образуется, когда атомы переходят из состояния (+) в (-), создавая точный постоянный периодический процесс - регулятор кода атомных часов.

    Для того, чтобы атомные часы работали точно цезий необходимо испарить в печи, в результате этого процесса выбрасываются его атомы. Позади печи находится сортирующий магнит, который обладает пропускной способностью атомов в состоянии (+), а в нем за счет облучения в микроволновом поле атомы переходят в состояние (-). Второй магнит направляет атомы, изменившие состояние (+) на (-) в приемное устройство. Много атомов, изменивших свое состояние, получается лишь в том случае, если частота микроволнового излучателя в точности совпадет с частотой колебаний цезия 9 192 631 770 герц. Иначе, количество атомов (-) в приемном устройстве уменьшается.

    Приборы постоянно отслеживают и регулируют постоянство частоты 9 192 631 770 герц. А значит, осуществилась мечта часовых конструкторов, найден абсолютно постоянный периодический процесс: частота 9 192 631 770 герц, регулирующая ход атомных часов.

    Сегодня, в результате международного соглашения, секунда определяется как период излучения умноженный на 9 192 631 770, соответствующий переходу между двумя гипертонкими структурными уровнями основного состояния атома цезия (изотопа цезия-133).

    Для измерения точного времени можно использовать также колебания других атомов и молекул, таких как, атомы кальция, рубидия, цезия, стронция, молекул водорода, йода, метана и т. д. Однако, стандартом частоты признано излучение атома цезия. Для того чтобы осуществить сравнение колебаний разных атомов со стандартом (цезия) создан титан-сапфировый лазер, генерирующий широкий диапазон частот в диапазоне от 400 до 1000 нм.

    Первым создателем кварцевых и атомных часов был английский физик-экспериментатор Эссен Льюис (1908-1997) . В 1955 г. он создал первый атомный стандарт частоты (времени) на пучке атомов цезия. Как результат этой работы через 3 года (1958) возникла служба времени, основанная на атомном стандарте частоты.

    В СССР свои идеи по созданию атомных часов выдвигал академик Николай Геннадьевич Басов.

    Итак, атомные часы, один из точных типов часов - устройство для измерения времени, где в качестве маятника используются собственные колебания атомов или молекул. Стабильность атомных часов является наилучшей среди всех существующих типов часов, что является залогом высочайшей точности. Генератор атомных часов выдает в секунду более чем 32 768 импульса в отличие от обычных часов. Колебания атомов не зависят от температуры воздуха, вибраций, влажности и многих других внешних факторов.

    В современном мире, когда без навигации просто не обойтись, атомные часы стали незаменимыми помощниками. Они способны определить местоположение космического корабля, спутника, баллистической ракеты, самолета, подводной лодки, автомобиля автоматически по спутниковой связи.

    Таким образом, последние 50 лет атомные часы, а точнее цезиевые, считаются самыми точными. Они уже давно используются службами точного времени, а также временные сигналы транслируются некоторыми радиостанциями.

    Устройство атомных часов включает в себя 3 части:

    квантовый дискриминатор,

    кварцевый осциллятор,

    комплекс электроники.

    Кварцевый осциллятор генерирует частоту (5 или 10 МГц). Осциллятор представляет собой RC-радиогенератор, у которого в качестве резонансного элемента используются пьезоэлектрические моды кварцевого кристалла, где и происходит сравнение атомов, изменивших состояние (+) на (-) Для повышения стабильности его частота постоянно сравнивается с колебаниями квантового дискриминатора (атомов или молекул). При появлении разницы в колебаниях, электроника подстраивает частоту кварцевого осциллятора до нулевого уровня, тем самым повышая стабильность и точность часов до нужного уровня.

    В современном мире атомные часы могут быть изготовлены в любой стране мира для использования их в повседневной жизни. Они весьма невелики по своим размерам и красивы. Размер последней новинки атомных часов не более спичечного коробка и их низкое энергопотребление - менее 1 Ватт. И это не предел, возможно, в будущем технический прогресс достигнет мобильных телефонов. А пока компактные атомные часы устанавливают лишь настратегические ракеты для повышения точности навигации во много раз.

    Сегодня мужские и женские атомные часы на любой вкус и кошелек можно купить в Интернет магазинах.

    В 2011 году самые маленькие в мире атомные часы создали специалисты компании Symmetricom и Национальной лаборатории Сандия. Эти часы, в 100 раз более компактные, чем предыдущие коммерчески доступные версии. По величине атомный хронометр — не больше спичечного коробка. Для работы ему достаточно мощности 100 мВт — это в 100 раз меньше по сравнению с предшественниками.

    Уменьшить размер часов удалось, установив вместо пружин и шестеренок механизм, действующий по принципу определения частоты электромагнитных волн, излучаемых атомами цезия под действием лазерного луча ничтожной мощности.

    Такие часы применяются в навигации, а также в работе шахтеров, водолазов, там, где необходимо точно синхронизировать время с коллегами на поверхности, а также службами точного времени, ведь ошибка атомных часов составляет менее 0,000001 доли секунды в сутки. Стоимость рекордно малых атомных часов Symmetricom составила около 1500 долларов.

Высокоточные атомные часы, которые совершают ошибку в одну секунду за 300 миллионов лет. Эти часы, заменившие старую модель, которая допускала ошибку в одну секунду за сто миллионов лет, теперь задают стандарт американского гражданского времени. «Лента.ру» решила вспомнить историю создания атомных часов.

Первый атом

Для того чтобы создать часы, достаточно использовать любой периодический процесс. И история появления приборов измерения времени ─ это отчасти история появления либо новых источников энергии, либо новых колебательных систем, используемых в часах. Самыми простыми часами являются, вероятно, солнечные: для их работы необходимо только Солнце и предмет, который отбрасывает тень. Недостатки этого способа определения времени очевидны. Водяные и песочные часы тоже не лучше: они пригодны лишь для измерения сравнительно коротких промежутков времени.

Самые древние механические часы были найдены в 1901 году рядом с островом Антикитера на затонувшем корабле в Эгейском море. Они содержат около 30 бронзовых шестерен в деревянном корпусе размером 33 на 18 на 10 сантиметров и датируются примерно сотым годом до нашей эры.

В течение почти двух тысяч лет механические часы были самыми точными и надежными. Появление в 1657 году классического труда Христиана Гюйгенса «Маятниковые часы» («Horologium oscillatorium, sive de motu pendulorum an horologia aptato demonstrationes geometrica») с описанием устройства отсчета времени с маятником в качестве колебательной системы, стало, вероятно, апогеем в истории развития механических приборов такого типа.

Однако астрономы и мореплаватели все равно использовали звездное небо и карты для определения своего местоположения и точного времени. Первые же электрические часы изобрел в 1814 году Фрэнсис Роналдс . Однако первый такой прибор был неточным из-за чувствительности к изменениям температуры.

Дальнейшая история часов связана с использованием в устройствах разных колебательных систем. Представленные в 1927 году сотрудниками Лабораторий Белла кварцевые часы использовали пьезоэлектрические свойства кристалла кварца: при воздействии на него электрического тока кристалл начинает сжиматься. Современные кварцевые хронометры могут обеспечить точность до 0,3 секунды в месяц. Однако, поскольку кварц подвержен старению, с течением времени часы начинают идти с меньшей точностью.

С развитием атомной физики ученые предложили использовать в качестве колебательных систем именно частицы вещества. Так появились первые атомные часы. Идею о возможности использования атомных колебаний водорода для измерения времени предложил еще в 1879 году английский физик лорд Кельвин , однако только к середине XX века это стало возможным.

Репродукция картины Губерта фон Геркомера (1907)

В 1930-х годах американский физик и первооткрыватель ядерного магнитного резонанса Исидор Раби начал работать над атомными часами с цезием-133, однако начало войны помешало ему. Уже после войны в 1949 году в Национальном комитете стандартов США с участием Гарольда Лайонсона были созданы первые молекулярные часы, использующие молекулы аммиака. Но первые такие приборы измерения времени не были точными, как современные атомные часы.

Относительно малая точность была связана с тем, что из-за взаимодействия молекул аммиака между собой и со стенками емкости, в которой находилось это вещество, изменялась энергия молекул, и их спектральные линии уширялись. Этот эффект очень похож на трение в механических часах.

Позднее, в 1955 году, Луи Эсссен из Национальной физической лаборатории Великобритании представил первые атомные часы на цезии-133. Эти часы накапливали ошибку в одну секунду за миллион лет. Прибор получил название NBS-1 и стал считаться цезиевым эталоном частоты.

Принципиальная схема атомных часов состоит из кварцевого генератора, контролируемого дискриминатором по схеме обратной связи. В генераторе используются пьезоэлектрические свойства кварца, тогда как в дискриминаторе происходят энергетические колебания атомов, так что колебания кварца отслеживаются сигналами от переходов с разных энергетических уровней в атомах или молекулах. Между генератором и дискриминатором находится компенсатор, настроенный на частоту атомных колебаний и сравнивающий ее с частотой колебаний кристалла.

Атомы, используемые в часах, должны обеспечивать стабильные колебания. Для каждой частоты электромагнитного излучения существуют свои атомы: кальция, стронция, рубидия, цезия, водорода. Или даже молекулы аммиака и йода.

Эталон времени

С появлением атомных приборов измерения времени стало возможным использовать их в качестве универсального эталона для определения секунды. С 1884 года Гринвичское время, считавшееся мировым стандартом, уступило место эталону атомных часов. В 1967 году решением 12-й Генеральной конференции мер и весов одну секунду определили как продолжительность 9192631770 периодов излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133. Такое определение секунды не зависит от астрономических параметров и может воспроизводиться в любой точке планеты. Цезий-133, используемый в эталоне атомных часов, ─ единственный стабильный изотоп цезия со 100-процентной распространенностью на Земле.

Атомные часы используются и в спутниковой системе навигации; они необходимы для определения точного времени и координат спутника. Так, в каждом спутнике системы GPS установлены по четыре комплекта таких часов: два рубидиевых и два цезиевых, которые обеспечивают точность передачи сигнала в 50 наносекунд. На российских спутниках системы ГЛОНАСС тоже установлены цезиевые и рубидиевые атомные приборы измерения времени, а на спутниках разворачивающейся европейской геопозиционной системы Galileo ─ водородные и рубидиевые.

Точность водородных часов ─ самая высокая. Она составляет 0,45 наносекунды за 12 часов. По всей видимости, использование Galileo таких точных часов выведет эту навигационную систему в лидеры уже в 2015 году, когда на орбите будет 18 ее спутников.

Компактные атомные часы

Hewlett-Packard стала первой компанией, которая занялась разработкой компактных атомных часов. В 1964 году ею был создан цезиевый прибор HP 5060A размером с большой чемодан. Компания и дальше развивала это направление, но с 2005 года продала свое подразделение, разрабатывающее атомные часы, компании Symmetricom.

В 2011 году специалисты Лаборатории Дрейпера и Сандийских национальных лабораторий разработали, а компания Symmetricom выпустила первые миниатюрные атомные часы Quantum. На момент выпуска они стоили порядка 15 тысяч долларов, были заключены в герметичный корпус размером 40 на 35 на 11 миллиметров и весили 35 граммов. Потребляемая мощность часов составляла менее 120 милливатт. Первоначально они были разработаны по заказу Пентагона и предназначались для обслуживания навигационных систем, функционирующих независимо от систем GPS, например, глубоко под водой или землей.

Уже в конце 2013 года американская компания Bathys Hawaii представила первые «наручные» атомные часы. В качестве основного компонента в них используется чип SA.45s производства компании Symmetricom. Внутри чипа располагается капсула с цезием-133. В конструкцию часов также входят фотоэлементы и маломощный лазер. Последний обеспечивает нагревание газообразного цезия, в результате чего его атомы начинают переходить с одного энергетического уровня на другой. Измерение времени как раз и производится за счет фиксирования такого перехода. Стоимость нового прибора составляет около 12 тысяч долларов.

Тенденции к миниатюризации, автономности и точности приведут к тому, что уже в недалеком будущем появятся новые устройства с использованием атомных часов во всех сферах человеческой жизни, начиная с космических исследований на орбитальных спутниках и станциях до бытового применениях в комнатных и наручных системах.