Основные открытия в физике 20 века. Людей поделили на три энтеротипа

XX век является веком научно-технической революции, которая постоянно шла по восходящей линии. Началом этой революции можно считать 28 мая 1919 г., когда великий германский физик Альберт Эйнштейн (1879- 1955) сделал свой доклад о теории относительности. Теория Эйнштейна полностью изменила представления об окружающем мире и стала фундаментом всех будущих великих открытий естествознания XX в.

Вслед за Эйнштейном в науке появились сотни молодых гениальных физиков и математиков. Если в XIX в. атом считался мельчайшей частицей материи, то теперь были открыты составляющие его позитроны, электроны, нейтроны, элементарные частицы.

Квантовая механика - так назывался раздел теоретической физики, основоположником которой был А. Эйнштейн, - в течение длительного времени разрабатывалась интернациональным кругом физиков. Эйнштейн и его сотрудник М. Планк (1858-1947) работали в Берлине в 20-х годах. М. Планк стал лауреатом Нобелевской премии в 1919 г., а Эйнштейн - в 1921 г. Нильс Бор (1885-1962), директор Института теоретической физики в Копенгагене - лауреат Нобелевской премии 1922г. Супруги П. Кюри и М. Склодовская-Кюри, открывшие радиоактивное излучение, получили Нобелевскую премию в 1903 г. Огромный вклад в теоретическую физику внес выдающийся английский ученый Э. Резерфорд (1871-1937), который создал теорию радиоактивности, предсказал существование нейтрона и осуществил первую в истории искусственную ядерную реакцию. Ему присвоили Нобелевскую премию в 1908 г. В 1931г. за выдающиеся заслуги перед Англией Резерфорд получил титул лорда Нельсона. Итальянский ученый Э. Ферми (1901-1954) открыл искусственную радиоактивность, вызванную нейтронами, построил первый в истории ядерный реактор и первым осуществил в нем (2 декабря 1942 г.) цепную ядерную реакцию, открыв путь к созданию атомной бомбы. Он стал лауреатом Нобелевской премии в 1938 г.

Теоретическая физика стала столбовой дорогой развития естественных наук XX в. Телевидение, рентгеновские лучи, радиация, электроника стали известны благодаря великим открытиям физики. Особенно большое значение имело изобретение английскими физиками радара в 1939 г. В 1940 г. человечество подошло к кибернетике. Эта наука позволила создать электронно-вычислительные машины, системы получения, обработки и хранения информации, без которых невозможно представить современную жизнь.

Научно-техническая революция вызвала фантастический рост общественного, политического и экономического сознания. Наука стала требовать огромных финансовых вложений, создания крупных мировых научных центров для проведения фундаментальных исследований.

Уже в 20-е годы XX в. начали создаваться мощные научные лаборатории, которые стали ведущими центрами научно-технической революции. Одним из таких центров была Кавендишская лаборатория в Кембриджском университете (Великобритания), основанная в 1874 г., но ставшая центром мировых фундаментальных исследований в начале 20-х годов XX в. Здесь были открыты электрон, позитрон, нейтрон, предложена модель ДНК, произведено расщепление ядерного ядра. В лаборатории сотрудничали великие ученые современности П. Ланжевен, Дж. Бернал, Ф.Астон. В течение длительного времени ее бессменным руководителем был Э. Резерфорд.

Научные центры были созданы в США (Лос-Аламосская лаборатория при Калифорнийском университете, где была создана первая атомная бомба), во Франции, где работали супруги Кюри, в Германии во главе с М. Планком, в Дании под руководством Нильса Бора. В этих научных центрах были собраны выдающиеся ученые, работавшие в области физики, математики, биологии, химии. Перед Второй мировой войной значимость научных центров возросла. Вместе с военными заказами в них широким потоком хлынули финансовые средства. Здесь создавались новейшие боеприпасы, техника, топливо для самолетов и танков. От эффективности работы ученых во многом зависел исход будущей войны.

Научно-техническая революция привела к глубоким изменениям в самом обществе. Возросла роль науки в общественной жизни. Изменилось отношение к ученым и науке. Теперь ученые стали ведущими личностями в общественно-политической жизни, не менее популярными, чем актеры и писатели. Создавались министерства по развитию науки, межправительственные институты.

Практически во всех ведущих странах мира были приняты законы об обязательном и бесплатном среднем образовании, в университетах выделялись специальные стипендии для талантливой молодежи, создавались условия для развития научных исследований. Образованность народа стала показателем развития государства, наиболее ярким свидетельством его благосостояния и мощи.

Все великие ученые XX в. были великими демократами. Они убежденно выступали против войны, диктатуры, фашизма и являлись активными борцами за мир и социальный прогресс. Они открыто порывали с фашизмом и, не желая ему служить, эмигрировали в демократические страны, чтобы принимать активное участие во всемирном движении против фашизма. А. Эйнштейн в 1933 г.. после прихода фашистов к власти, эмигрировал в США, Ферми уехал из Италии. Нильсу Бору пришлось бежать из Дании.

Научно-техническая революция привела к демократической и интеллектуальной революции. Огромные массы людей, приобщившись к образованию, пробудились к активной политической жизни. В мире появились новые ценности, определявшие достоинство человека, - интеллект, талант, образованность, культура. Новые средства передвижения и коммуникации изменили провинциальный тип мышления. Массовое сознание и массовая культура приобщили среднего человека к политике и сделали его значительным фактором в развитии политических концепций XX в.

  • Здравствуйте Господа! Пожалуйста, поддержите проект! На содержание сайта каждый месяц уходит деньги ($) и горы энтузиазма. 🙁 Если наш сайт помог Вам и Вы хотите поддержать проект 🙂 , то можно сделать это, перечислив денежные средства любым из следующих способов. Путём перечисления электронных денег:
  1. R819906736816 (wmr) рубли.
  2. Z177913641953 (wmz) доллары.
  3. E810620923590 (wme)евро.
  4. Payeer-кошелёк: P34018761
  5. Киви-кошелёк (qiwi): +998935323888
  6. DonationAlerts: http://www.donationalerts.ru/r/veknoviy
  • Полученная помощь будет использована и направлена на продолжение развития ресурса, Оплата хостинга и Домена.

Введение……………………………………………………………………..3

    Исследования микромира …………………………………………….…….4

    Исследования макро- и мегамира ……………………………………….…5

    Нобелевские премии по физике ……………………………………………7

Практическое задание ……………………………………………………...15

а) задание № 1: Таблица научных открытий …………………………......15

б) задание № 2: Основные научные итоги этапов развития науки …...…15

в) задание № 3: Вопрос – ответ к этапам развития ………………………16

г) задание № 4: Теория относительности А.Эйнштейна ………………...16

Заключение ………………………………………………………….…..…..21

Список используемой литературы ………………………………...……....22

Введение

В современной науке в основе представлений о строении мате­риального мира лежит системный подход, согласно которому лю­бой объект материального мира, будь то атом, планета, организм или галактика, может быть рассмотрен как сложное образова­ние, включающее в себя составные части, организованные в цело­стность. Для обозначения целостности объектов в науке было вы­работано понятие системы.

Естественные науки, начав изучение материального мира с наиболее простых непосредственно воспринимаемых человеком ма­териальных объектов, переходят далее к изучению сложнейших объектов глубинных структур материи, выходящих за пределы че­ловеческого восприятия и несоизмеримых с объектами повседнев­ного опыта.

Применяя системный подход, естествознание не просто выде­ляет типы материальных систем, а раскрывает их связь и соот­ношение.

В науке выделяются три уровня строения материи.

Макромир - мир макрообъектов, размерность которых со­относима с масштабами человеческого опыта: пространственные величины выражаются в миллиметрах, сантиметрах и километ­рах, а время - в секундах, минутах, часах, годах.

Микромир - мир предельно малых, непосредственно не на­блюдаемых микрообъектов, пространственная разномерность ко­торых исчисляется от 10 -8 до 10 -16 см, а время жизни - от бес­конечности до 10 -24 сек.

Мегамир - мир огромных космических масштабов и скоро­стей, расстояние в котором измеряется световыми годами, а время существования космических объектов - миллионами и мил­лиардами лет.

И хотя на этих уровнях действуют свои специфические зако­номерности, микро-, макро- и мегамиры теснейшим образом взаи­мосвязаны.

Исследования микромира

Вконце XIX- началеXXвв. физика вышла на уровень исследования микромира, для описания которого кон­цептуальные построения классической физики оказались не­пригодными.

В результате научных открытий были опровергнуты пред­ставления об атомах как о последних неделимых структурных элементах материи.

История исследования строения атома началась в 1895 г. благодаря открытию Дж. Дж. Томсоном электрона - отрица­тельно заряженной частицы, входящей в состав всех атомов. Поскольку электроны имеют отрицательный заряд, а атом в целом электрически нейтрален, то было сделано предположе­ние о наличии помимо электрона и положительно заряженной частицы. Опыты английского физика Э. Резерфорда с альфа-частицами привели его к выводу о том, что в атомах существу­ют ядра - положительно заряженные микрочастицы

Кроме того, было обнаружено, что атомы одних элементов могут превращаться в атомы других в результате радиоактивно­сти, впервые открытой французским физиком А. А. Беккерелем.

Вопросы радиоактивности различных элементов изучались французскими физиками Пьером и Марией Кюри. Ими были открыты новые элементы - полоний и радий

Открытие сложной структуры атома стало крупнейшим со­бытием в физике, поскольку оказались опровергнутыми представления классической физики об атомах как твердых и неделимых структурных единицах вещества.

При переходе к исследованию микромира оказались разрушенными и представления классической физики о веществе и поле как двух качественно своеобразных видах материи. Изучая микрочастицы, ученые столкнулись с парадок­сальной, с точки зрения классической науки, ситуацией: одни и те же объекты обнаруживали как волновые, так и корпуску­лярные свойства.

Исследования макро- и мегамира

В истории изучения природы можно выделить два этапа: донаучный и научный.

Донаучный, или натурфилософский, охватывает период от античности до становления экспериментального естествозна­ния в XVI-XVII вв. В этот период учения о природе носили чисто натурфилософский характер: наблюдаемые природные явления объяснялись на основе умозрительных философских принципов.

Наиболее значимой для последующего развития естествен­ных наук была концепция дискретного строения материи - атомизм, согласно которому все тела состоят" из атомов - мельчайших в мире частиц.

Сущность протекания природных процессов объяснялась на основе механического взаимодействия атомов, их притяже­ния и отталкивания. Механическая программа описания при­роды, впервые выдвинутая в античном атомизме, наиболее полно реализовалась в классической механике, со становления которой начинается научный этап изучения природы.

Поскольку современные научные представления о струк­турных уровнях организации материи были выработаны в ходе критического переосмысления представлений классической науки, применимых только к объектам макроуровня, то начи­нать исследование нужно с концепций классической физики.

И Ньютон, опираясь на труды Галилея, разработал строгую научную теорию механики, описывающую и движение небес­ных тел, и движение земных объектов одними и теми же зако­нами. Природа рассматривалась как сложная механическая система.

В рамках механической картины мира, разработанной И. Ньютоном и его последователями, сложилась дискретная (кор­пускулярная) модель реальности. Материя рассматривалась как вещественная субстанция, состоящая из отдельных частиц - атомов или корпускул. Атомы абсолютно прочны, неделимы, непроницаемы, характеризуются наличием массы и веса.

Философское обоснование механическому пониманию природы дал Р. Декарт с его концепцией абсолютной дуальности (независимости) мышления и материи, из которой следовало, что мир можно описать совершенно объективно, без учета чело­века-наблюдателя.

Итогом ньютоновской картины мира явился образ Все­ленной как гигантского и полностью детерминированного механизма, где события и процессы являют собой цепь взаимозависимых причин и следствий.

Механистический подход к описанию природы оказался не­обычайно плодотворным. Вслед за ньютоновской механикой были созданы гидродинамика, теория упругости, механическая теория тепла, молекулярно-кинетическая теория и целый ряд других, в русле которых физика достигла огромных успехов. Однако были две области - оптических и электромагнитных явлений, которые не могли быть полностью объяснены в рам­ках механистической картины мира.

Разрабатывая оптику, Л. Ньютон, следуя логике своего учения, считал свет потоком материальных частиц - кор­пускул.

Эксперименты английского естествоиспытателя М. Фарядея итеоретические работы английского физика Дж.К. Максвелла окончательно разрушили представления ньютоновской физики о дискретном веществе как единственном виде материи и положили начало электромагнитной картине мира.

Явление электромагнетизма открыл датский естествоис­пытатель Х.К. Эрстед, который впервые заметил магнитное действие электрических токов. Продолжая исследования в этом направлении, М.Фарадей обнаружил, что временное изменение в магнитных полях создает электрический ток, он ввел понятие "силовые ли­нии"

К концу XIX в. физика пришла к выводу, что материя существует в двух видах: дискретного вещества и непрерывного поля.

Материя во Вселенной представлена сконденсировавшими­ся космическими телами и диффузной материей. Диффузная материя существует в виде разобщенных атомов и молекул, а также более плотных образований - гигантских облаков пыли и газа - газово-пылевых туманностей. Значительную долю ма­терии во Вселенной, наряду с диффузными образованиями, за­нимает материя в виде излучения. Следовательно, космическое межзвездное пространство никоим образом не пусто.

На современном этапе эволюции Вселенной вещество в ней находится преимущественно в звездном состоя­нии. 97% вещества в нашей Галактике сосредоточено в звездах, представляющих собой гигантские плазменные образования различной величины, температуры, с разной характеристикой движения. У многих, если не у большинства других галактик, "звездная субстанция" составляет более чем 99,9% их массы.

Огромное значение имеет исследование взаимосвязи между звездами и межзвездной средой, включающие проблему непре­рывного образования звезд из конденсирующейся диффузной материи.

Нобелевские премии по физике

Жорес АЛФЁРОВ, 2000 г.Исследованиями Жореса Алфёрова фактически сформировано новое направление – физика гетероструктур, электроника и оптоэлектроника.

Луис У. АЛЬВАРЕС, 1968 г.За открытие большого числа резонансов, что стало возможно благодаря разработанной им технике с использованием водородной пузырьковой камеры и оригинальному анализу данных.

Ханнес АЛЬФВЕН, 1970 г.За фундаментальные работы и открытия в магнитной гидродинамике и плодотворные приложения их в различных областях физики плазмы. Он разделил эту премию с Луи Неелем, награжденным за вклад в теорию магнетизма.

Карл Д. АНДЕРСОН, 1936 г.За открытие позитрона. Он разделил ее с Виктором Ф. Гессом. Им удалось найти один из строительных кирпичей Вселенной – положительный электрон. Андерсону принадлежит открытие частицы, ныне известной как мюон.

Филип У. АНДЕРСОН, 1977 г.За фундаментальные теоретические исследования электронной структуры магнитных и неупорядоченных систем.

Джон БАРДИН, 1956 г., 1972 г.Премия 1956 г. за исследования полупроводников и открытие транзисторного эффекта, в 1972 г. премия за создание теории сверхпроводимости, обычно называемой БКШ-теорией.

Чарлз Г. БАРКЛА, 1917 г.За открытие характеристического рентгеновского излучения элементов.

Николай БАСОВ, 1964 г.За фундаментальную работу в области квантовой электроники, которая привела к созданию генераторов и усилителей, основанных на лазерно-мазерном принципе. Б. разделил премию с Александром ПрохоровымиЧарлзом Х. Таунсом.

Анри БЕККЕРЕЛЬ, 1903 г.Беккерель удостоен премии совместно с Мари КюрииПьером Кюри. Сам Б. был особо упомянут в знак признания его выдающихся заслуг, выразившихся в открытии самопроизвольной радиоактивности.

Ханс А. БЕТЕ, 1967 г.За открытия, касающиеся источников энергии звезд.

Герд БИННИНГ, 1986 г.Герд Биннинг и Рорерразделили половину премии за изобретение сканирующего туннелирующего микроскопа. Другую половину премии получилЭрнст Русказа работу над электронным микроскопом.

Николас БЛОМБЕРГЕН, 1981 г.За вклад в развитие лазерной спектроскопии Бломберген и Шавловразделили между собой половину премии. Другой половиной был награжденКай Сигбанза электронную спектроскопию с помощью рентгеновских лучей.

Феликс БЛОХ, 1952 г.За развитие новых методов для точных ядерных магнитных измерений и связанные с этим открытия.

П.М.С. БЛЭККЕТ, 1948 г.За усовершенствование метода камеры Вильсона и сделанные в связи с этим открытия в области ядерной физики и космической радиации.

Нильс БОР, 1922 г.Нильс Бор за заслуги в исследовании строения атомов и испускаемого ими излучения награжден премией.

Оге БОР, 1975 г.За открытие взаимосвязи между коллективным движением и движением отдельной частицы в атомном ядре и развитие теории строения атомного ядра, базирующейся на этой взаимосвязи.

Макс БОРН, 1954 г.За фундаментальные исследования по квантовой механике, особенно за его статистическую интерпретацию волновой функции.

Вальтер БОТЕ, 1954 г.За метод совпадений для обнаружения космических лучей и сделанные в связи с этим открытия Боте разделил премию с Максом Борном, который был награжден за вклад в квантовую механику.

Уолтер БРАТТТЕЙН, 1956 г.За исследования полупроводников и открытие транзисторного эффекта.

Фердинанд БРАУН, 1909 г.Браун и Маркони получили премию в знак признания их вклада в создание беспроволочной телеграфии.

Перси Уильямс БРИДЖМЕН, 1946 г.За изобретение прибора, позволяющего создавать сверхвысокие давления.

Луи де БРОЙЛЬ, 1929 г.За открытие волновой природы электронов.

Уильям Генри БРЭГГ, 1915 г.За заслуги в исследовании структуры кристаллов с помощью рентгеновских лучей был удостоен премии.

Уильям Лоренс БРЭГГ, 1915 г.За заслуги в исследовании структуры кристаллов с помощью рентгеновских лучей.

Стивен ВАЙНБЕРГ, 1979 г.За вклад в объединенную теорию слабых и электромагнитных взаимодействий между элементарными частицами.

Джон X. ВАН ФЛЕК, 1977 г.За фундаментальные теоретические исследования электронной структуры магнитных и неупорядоченных систем.

Ян Дидерик ВАН-ДЕР-ВААЛЬС,1910 г.За работу над уравнением состояния газов.

Эуген П. ВИГНЕР, 1963 г.За вклад в теорию атомного ядра и элементарных частиц.

Кеннет Г. ВИЛЬСОН, 1982 г.За теорию критических явлений в связи с фазовыми переходами.

Роберт В. ВИЛЬСОН, 1978 г.половину премии за открытие микроволнового реликтового излучения. Другую половину премии получил Петр Капица.

Ч.Т.Р. ВИЛЬСОН, 1927 г.За метод визуального обнаружения траекторий электрически заряженных частиц с помощью конденсации пара.

Вильгельм ВИН,1911 г.За открытия в области законов, управляющих тепловым излучением.

Деннис ГАБОР, 1971 г.За изобретение и разработку голографического метода.

Вернер ГЕЙЗЕНБЕРГ, 1932 г.За создание квантовой механики.

Марри ГЕЛЛ-МАНН, 1969 г.За открытия, связанные с классификацией элементарных частиц и их взаимодействий.

Мария ГЁППЕРТ-МАЙЕР, 1963 г.За открытие оболочечной структуры ядра, что убедительно доказало всю важность оболочечной модели для систематизации накопленного материала и предсказания новых явлений, связанных с основным состоянием и низко лежащими возбужденными состояниями ядер.

Густав ГЕРЦ, 1925 г.За открытие законов соударения электрона с атомом.

Виктор Ф. ГЕСС, 1936 г.За открытие космических лучей Гесс удостоен премии.

Шарль ГИЛЬОМ, 1920 г.В знак признания его заслуг перед точными измерениями в физике – открытия аномалий в никелевых стальных сплавах Шарль Гильом был удостоен премии. Изобрел сплав элинвар.

Доналд А. ГЛАЗЕР, 1960 г.За изобретение пузырьковой камеры.

Шелдон Л. ГЛЭШОУ, 1979 г.Новаторские теоретические идеи, за которые Глэшоу был удостоен премии, привели к объединению электромагнетизма и слабого взаимодействия.

Нильс ДАЛЕН, 1912 г.За изобретение автоматических регуляторов, использующихся в сочетании с газовыми аккумуляторами для источников света на маяках.

Айвар ДЖАЙЕВЕР, 1973 г.За экспериментальные открытия явлений туннелирования в полупроводниках и сверхпроводниках.

Брайан Д. ДЖОЗЕФСОН, 1973 г.За теоретические предсказания свойств тока, проходящего через туннельный барьер, в частности явлений, общеизвестных ныне под названием эффектов Джозефсона.

Поль А. Морис ДИРАК, 1933 г.За открытие новых продуктивных форм атомной теории.

Клинтон Дж. ДЭВИССОН, 1937 г.За экспериментальное открытие дифракции электронов на кристаллах.

Пьер Жиль де ЖЕН, 1991 г.За обнаружение того, что методы, развитые для изучения явлений упорядоченности в простых системах, могут быть обобщены на жидкие кристаллы и полимеры.

Питер ЗЕЕМАН, 1902 г.Магнитное расщепление спектральных линий, известное как эффект Зеемана, – это важный инструмент исследования природы атома, он полезен и при определении магнитных полей звезд.

Йоханнес Ханс Д. ЙЕНСЕН, 1963 г.Йоханнес Ханс Даниель Йенсен и Мария Гёпперт-Майербыли удостоены премии за открытие оболочечной структуры ядра.

Хейке КАМЕРЛИНГ-ОННЕС, 1913 г. За исследования свойств вещества при низких температурах, которые привели к производству жидкого гелия.

Петр КАПИЦА, 1978 г.За фундаментальные изобретения и открытия в области физики низких температур получил премию.

Альфред КАСТЛЕР, 1966 г.За открытие и разработку оптических методов исследования резонансов Герца в атомах.

Клаус фон КЛИТЦИНГ, 1985 г.За открытие квантового эффекта Холла.

Джон КОКРОФТ, 1951 г.За работы по трансмутации атомных ядер с помощью искусственно ускоренных атомных частиц.

Артур КОМПТОН, 1927 г.За открытие эффекта, названного его именем. Разделив рассеянные рентгеновские лучи по компонентам с соответствующими длинами волн продемонстрировал, что рентгеновские лучи ведут себя аналогично свету.

Джеймс У. КРОНИН, 1980 г.За открытие нарушений фундаментальных принципов симметрии при распаде нейтральных K -мезонов.

Леон КУПЕР, 1972 г.За создание теории сверхпроводимости, обычно называемой БКШ-теорией.

Поликарп КУШ, 1955 г.За точное определение магнитного момента электрона.

Пьер КЮРИ, 1903 г. в знак признания их совместных исследований явлений радиации.

Лев ЛАНДАУ, 1962 г.За основополагающие теории конденсированной материи, в особенности жидкого гелия.

Макс фон ЛАУЭ, 1914 г.За открытие дифракции рентгеновских лучей на кристаллах, которое Эйнштейн назвал «одним из наиболее красивых в физике».

Филипп фон ЛЕНАРД, 1905 г.За работы по катодным лучам.

Цзундао ЛИ, 1957 г.За проницательное исследование так называемых законов сохранения.

Габриель ЛИПМАН, 1908 г.Габриель Липман продемонстрировал метод получения невыцветающих цветных фотографий. За создание метода фотографического воспроизведения цветов на основе явления интерференции.

Хендрик ЛОРЕНЦ, 1902 г.Хендрик Лоренц первым выдвинул гипотезу о том, что вещество состоит из микроскопических частиц, называемых электронами, которые являются носителями вполне определенных зарядов.

Эрнест O. ЛОУРЕНС, 1939 г.За изобретение и создание циклотрона, за достигнутые с его помощью результаты, особенно получение искусственных радиоактивных элементов.

Уиллис Ю. ЛЭМБ, 1955 г.За открытия, связанные с тонкой структурой спектра водорода.

Альберт А. МАЙКЕЛЬСОН, 1907 г.Он измерил скорость света с точностью, невиданной ранее, пользуясь приборами, обошедшимися немногим дороже десяти долларов.

Гульельмо МАРКОНИ, 1909 г.Гулельмо Маркони передал первый беспроволочный сигнал через Атлантику с запада на восток, открыл первую трансатлантическую службу беспроволочной связи.

Симон ван дер МЕР, 1984 г.Симон ван дер Мер за решающий вклад в большой проект, осуществление которого привело к открытию полевых частиц W и Z , переносчиков слабого взаимодействия, удостоен премии.

Рудольф Л. МЁССБАУЭР, 1961 г.Явление упругого ядерного резонансного поглощения гамма-излучения ныне носит название эффекта Мёссбауэра и позволяет получить информацию о магнитных и электрических свойствах ядер и окружающих их электронов.

Роберт МИЛЛИКЕН, 1923 г.За эксперименты по определению элементарного электрического заряда и фотоэлектрическому эффекту он был удостоен премии.

Невилл МОТТ, 1977 г.За фундаментальные теоретические исследования электронной структуры магнитных и неупорядоченных систем.

Бенжамин Р. МОТТЕЛЬСОН, 1975 г.За открытие связи между коллективным движением и движением одной частицы в атомных ядрах и создание на основе этой связи теории строения атомного ядра был удостоен премии.

Луи НЕЕЛЬ, 1970 г.Работа Луи Нееля по палеомагнетизму помогла объяснить «магнитную память» скальных пород в процессе изменения магнитного поля Земли и решающим образом способствовала подтверждению теории дрейфа континентов и теории тектонических плит.

Вольфганг ПАУЛИ, 1945 г.За открытие принципа запрета Паули удостоен премии.

Сесил Ф. ПАУЭЛЛ, 1950 г.За разработку фотографического метода исследования ядерных процессов и открытие мезонов, осуществленное с помощью этого метода.

Арно А. ПЕНЗИАС, 1978 г.За открытие космического микроволнового фонового излучения.

Жан ПЕРРЕН, 1926 г.За работу по дискретной природе материи и в особенности за открытие седиментационного равновесия.

Эдуард М. ПЁРСЕЛЛ, 1952 г.За создание новых точных методов ядерных магнитных измерений.

Макс ПЛАНК, 1918 г.За открытие квантов энергии Макс Планк удостоен премии, его вклад в современную физику не исчерпывается открытием кванта и постоянной.

Александр ПРОХОРОВ, 1964 г.За фундаментальные работы в области квантовой электроники.

Изидор Айзек РАБИ, 1944 г.За резонансный метод измерений магнитных свойств атомных ядер.

Мартин РАЙЛ, 1974 г.За новаторские исследования в радиоастрофизике.

Венката РАМАН, 1930 г.За работы по рассеянию света и за открытие эффекта.

Джеймс РЕЙНУОТЕР, 1975 г.За открытие связи между коллективным движением и движением частиц в атомных ядрах.

Вильгельм РЕНТГЕН, 1901 г.в знак признания необычайно важных заслуг перед наукой, выразившихся в открытии замечательных лучей.

Бертон РИХТЕР, 1976 г.За новаторские работы по открытию тяжелой элементарной частицы нового типа.

Оуэн У. РИЧАРДСОН, 1928 г.За работы по термионным исследованиям, и особенно за открытие закона, носящего его имя.

Гейнрих РОРЕР, 1986 г.За создание сканирующего туннелирующего микроскопа Гейнрих Рорер и Герд Биннигбыли удостоены половины премии.

Карло РУББИА, 1984 г.за решающий вклад в большой проект, который привел к открытию квантов поля W - и Z -частиц, переносчиков слабого взаимодействия.

Эрнст РУСКА, 1986 г.За фундаментальные работы по электронной оптике и создание первого электронного микроскопа Эрнст Руска был награжден премией.

Абдус САЛАМ, 1979 г.Новые теоретические идеи, за которые Салам, Шелдон Л. ГлэшоуиСтивен Вайнбергбыли удостоены Нобелевской премии, привели к построению теории, объединившей электромагнетизм и слабое взаимодействие.

Эмилио СЕГРЕ, 1959 г.За открытие антипротона.

Кай СИГБАН, 1981 г.За вклад в развитие электронной спектроскопии высокого разрешения.

Манне СИГБАН, 1924 г.За открытия и исследования в области рентгеновской спектроскопии.

Мари СКЛОДОВСКАЯ-КЮРИ, 1903 г., 1911 г.в знак признания совместных исследований явлений радиации, открытых профессором Анри Беккерелем. Вторую премию она получила за открытие элементов радия и полония, выделение радия и изучение природы и соединений этого замечательного элемента.

Джон У. CTPETT, лорд Рэлей, 1904 г.За исследования плотностей наиболее распространенных газов и за открытие аргона в ходе этих исследований.

Игорь ТАММ, 1958 г.За открытие и истолкование эффекта Черенкова.

Чарлз Х. ТАУНС, 1964 г.Фундаментальная работа Таунса в области квантовой электроники привела к созданию осцилляторов и усилителей.

Сэмюэл Ч. Ч. ТИНГ, 1976 г.За изыскательскую работу по открытию тяжелой элементарной частицы нового типа.

Синъитиро ТОМОНАГА, 1965 г.За изобретение математической процедуры перенормировки для исключения бесконечных масс и зарядов.

Дж. Дж. ТОМСОН, 1906 г.в знак признания заслуг в области теоретических и экспериментальных исследований проводимости электричества в газах.

Дж. П. ТОМСОН, 1937 г.Джордж Паджет Томсон и Клинтон Дж Дэвиссонразделили премию за экспериментальное открытие дифракции электронов на кристаллах.

Эрнест УОЛТОН, 1951 г.За исследовательскую работу по превращению атомных ядер с помощью искусственно ускоряемых атомных частиц.

Уильям ФАУЛЕР, 1983 г.За теоретическое и экспериментальное исследование ядерных реакций, имеющих важное значение для образования химических элементов.

Ричард Ф. ФЕЙНМАН, 1965 г.За фундаментальные работы по квантовой электродинамике, имевшие глубокие последствия для физики элементарных частиц.

Энрико ФЕРМИ, 1938 г.За доказательства существования новых радиоактивных элементов, полученных при облучении нейтронами.

Вал Л. ФИТЧ, 1980 г.За открытие нарушений фундаментальных принципов в распаде нейтральных K -мезонов.

Джеймс ФРАНК, 1925 г.За открытие законов соударений электронов с атомами.

Илья ФРАНК, 1958 г.Открытие и истолкование эффекта Черенковапослужило основанием для присуждения премии русскому учёному Илье Франку.

Роберт ХОФСТЕДТЕР, 1961 г.За основополагающие исследования по рассеянию электронов на атомных ядрах и связанных с ними открытий в области структуры нуклонов.

Энтони ХЬЮИШ, 1974 г.За пионерские исследования в области радиофизики.

Фриц ЦЕРНИКЕ, 1953 г.За обоснование фазово-контрастного метода, особенно за изобретение фазово-контрастного микроскопа. Премия за вклад в классическую физику.

Субрахманьян ЧАНДРАСЕКАР, 1983 г.За теоретические исследования физических процессов, играющих важную роль в строении и эволюции звезд был удостоен премии.

Джеймс ЧЕДВИК, 1935 г.За открытие нейтрона.

Оуэн ЧЕМБЕРЛЕН, 1959 г.За открытие антипротона.

Павел ЧЕРЕНКОВ, 1958 г.Черенков обнаружил, что гамма-лучи, испускаемые радием, дают слабое голубое свечение, и убедительно показал, что свечение представляет собой нечто экстраординарное.

Артур Л. ШАВЛОВ, 1981 г.За вклад в развитие лазерной спектроскопии.

Джулиус С. ШВИНГЕР, 1965 г.Выдающиеся достижения в теоретической физике, за которые ему была присуждена премия, закладывались, когда он проявил интерес к фундаментальной природе материи.

Уильям ШОКЛИ, 1956 г.За исследования полупроводников и открытие транзисторного эффекта был удостоен премии.

Эрвин ШРЕДИНГЕР, 1933 г.Открытие новых продуктивных форм атомной теории.

Джон ШРИФФЕР, 1972 г.За созданную теорию сверхпроводимости, обычно называемую теорией БКШ.

Презентация на тему "Физики 18–20 веков" по физике в формате powerpoint. В данной презентации для школьников рассказывается об ученых 18-20 веков, внесших наибольший вклад в развитие физики. Автор презентации: Кравченко Иван Иванович, учитель физики и информатики.

Фрагменты из презентации

Физики 18 века

Томас Юнг

Дата рождения 13 июня 1773, - английский физик, врач, астроном и востоковед, один из создателей волновой теории света. Наиболее важные направления его работ - оптика, механика, физиология зрения. Высказал гипотезу о поперечности световых колебаний,разработал также теорию цветного зрения. Исследовал деформациию сдвига, ввёл числовую характеристику упругости при растяжении и сжатии - так называемый модуль Юнга. Он впервые рассмотрел механическую работу как величину, пропорциональную энергии (термин ввёл Юнг), под которой понимал величину, пропорциональную массе и квадрату скорости тела.

Майкл Фарадей

Дата рождения 22 сентября 1791 - английский физик, химик и физико-химик, основоположник учения об электромагнитном поле, В 1832 году открыл электрохимические законы, которые легли в основу нового раздела науки - электрохимии, имеющего сегодня огромное количество технологических приложений. Фарадея увлекла проблема связи между электричеством и магнетизмом. Он поставил задачу «Превратить магнетизм в электричество» и через 10 лет нашёл решение этой проблемы.

Физики начала 19 века

Джеймс Клерк Максвелл

Дата рождения 13 июня 1831 - британский физик и математик. Заложил основы современной классической электродинамики (уравнения Максвелла), ввёл в физику понятия тока смещения и электромагнитного поля, получил ряд следствий из своей теории (предсказание электромагнитных волн, электромагнитная природа света, давление света и другие). Один из основателей кинетической теории газов, получил ряд важных результатов в молекулярной физике и термодинамике. Пионер теории цветов и теории упругости.

Дмитрий Иванович Менделеев

Дата рождения 27 января 1834- русский учёный-энциклопедист: химик, физикохимик, физик, метролог, экономист, технолог, геолог, метеоролог, педагог, воздухоплаватель, приборостроитель. Профессор Санкт-Петербургского университета; член-корреспондент по разряду «физический» Императорской Санкт-Петербургской Академии наук. Среди наиболее известных открытий - периодический закон химических элементов, один из фундаментальных законов мироздания, неотъемлемый для всего естествознания.

Антуан Анри Беккерель

Дата рождения 15 декабря 1852 - французский физик, В 1896 г. Беккерель случайно открыл радиоактивность во время работ по исследованию фосфоресценции в солях урана. В 1903 г. он получил совместно с Пьером и Марией Кюри Нобелевскую премию по физике «В знак признания его выдающихся заслуг, выразившихся в открытии самопроизвольной радиоактивности».

Генрих Рудольф Герц

Дата рождения - 22 февраля 1857 - немецкий физик. Основное достижение - экспериментальное подтверждение электромагнитной теории света Джеймса Максвелла. Герц доказал существование электромагнитных волн. Исследовал отражение, интерференцию, дифракцию и поляризацию электромагнитных волн, доказал, что свет – это разновидность электромагнитных волн. Герц впервые наблюдал и дал описание внешнего фотоэффекта.

Физики второй половины 19 века

Константин Эдуардович Циолковский

Дата рождения 5 сентября 1857- российский и советский учёный-самоучка, исследователь, школьный учитель. Один из пионеров космонавтики. Обосновал вывод уравнения реактивного движения, пришёл к выводу о необходимости использования «ракетных поездов» - прототипов многоступенчатых ракет. Автор работ по аэродинамике, воздухоплаванию и другим наукам. Сторонник и пропагандист идей освоения космического пространства. Предлагал заселить космическое пространство с использованием орбитальных станций, выдвинул идею поездов на воздушной подушке

Александр Степанович Попов
  • Дата рождения 4 марта 1859 - русский физик и электротехник, профессор, изобретатель радио.
  • Впервые он представил своё изобретение 7 мая 1895 года на заседании Русского физико-химического общества. С 1897 года Попов проводил опыты по радиотелеграфированию на кораблях Балтийского флота. Летом 1901 года Попов модифицировал свой приёмник, поставив вместо чувствительного реле телефонные трубки, после этого фирмой Дюкрете, уже выпускавшей в 1898 году приёмники его конструкции, был налажен выпуск телефонных приёмников.
Эрнест Резерфорд

Дата рождения 30 августа 1871- британский физик. Известен как «отец» ядерной физики, создал планетарную модель атома. Открыл альфа- и бета-излучение, короткоживущий изотоп радона и множество изотопов. Объяснил на основе свойств радона радиоактивность тория, открыл и объяснил радиоактивное превращение химических элементов, создал теорию радиоактивного распада, расщепил атом азота, обнаружил протон. Доказал, что альфа-частица - ядро гелия. вывел формулу Резерфорда. Первым открыл образование новых химических элементов при распаде тяжелых химических радиоактивных элементов.

Фредерик Содди

Дата рождения 2 сентября 1877 - английский радиохимик, член Лондонского королевского общества (1910), лауреат Нобелевской премии по химии (1921). Совместно с Резерфордом предложил теорию радиоактивного распада В 1903 Резерфорд и Содди установили, что радиоактивный распад протекает по закону, описывающему ход мономолекулярной реакции. Всего им было опубликовано более 70 статей по химии.

Физики начала 20 века

Альберт Эйнштейн

Эйнштейн - автор более 300 научных работ по физике. Он разработал несколько значительных физических теорий: Специальная теория относительности (1905), Общая теория относительности, Квантовая теория фотоэффекта, Квантовая теория теплоёмкости, Квантовая статистика Бозе - Эйнштейна, Статистическая теория броуновского движения, Теория индуцированного излучения, Теория рассеяния света на термодинамических флуктуациях в среде. Эйнштейн способствовал пересмотру понимания физической сущности пространства и времени и построению новой теории гравитации. Вместе с Планком, заложил основы квантовой теории.

Отто Ган

Дата рождения 8 марта 1879 - немецкий химик, учёный-новатор в области радиохимии, открывший ядерную изомерию (Уран Z) и расщепление урана. В 1920-х годах разработал метод применения радиоизотопов в химии, включая выращивание кристаллов и использование меченых атомов в химических реакциях и создал тем самым новую область химии - прикладную радиохимию. Решительно выступал против применения ядерной энергии в военных целях. Он считал такое использование его открытия злоупотреблением и даже преступлением.

Джеймс Чедвик

Дата рождения 20 октября 1891 - английский физик, известный по открытие нейтрона, Ученик Э.Резерфорда. В 1920 году экспериментально подтвердил равенство заряда ядра порядковому номеру элемента. Изучал искусственное превращение элементов под действием альфа-частиц (совместно с Резерфордом). В 1943-1945 гг. возглавлял группу английских учёных, работавших в Лос-Аламосской лаборатории (США) над проектом атомной бомбы.

Физики второй половины 20 века

Энрико Ферми

Дата рождения 29 сентября 1901 - итало-американский физик, внёсший большой вклад в развитие современной теоретической и экспериментальной физики, один из основоположников квантовой физики. Разработал статистику частиц с полуцелым спином (фермионов). Разработал правила квантования электромагнитного поля. Создал теорию бета-распада, прототип теории слабых взаимодействий элементарных частиц. Пришёл к выводу, что нейтроны должны быть наиболее эффективным орудием для получения радиоактивных элементов. Открыл более 60 изотопов и замедление нейтронов (эффект Ферми), селективное поглощение нейтронов.

Вернер Гейзенберг

Дата рождения 5 декабря 1901 - немецкий физик-теоретик, один из создателей квантовой механики. Автор ряда фундаментальных результатов в квантовой теории: заложил основы матричной механики, сформулировал соотношение неопределённостей, применил формализм квантовой механики к проблемам ферромагнетизма, аномального эффекта Зеемана и прочим. Участвовал в развитии квантовой электродинамики (теория Гейзенберга - Паули) и квантовой теории поля, предпринимал попытки создания единой теории поля. Ведущий теоретик немецкого ядерного проекта. Изучал физику космических лучей, теорию турбулентности.

Фриц Штрассман

Дата рождения 22 февраля 1902 - немецкий химик и физик. Изучал процессы ядерного деления, свойства радиоактивных изотопов урана и тория. В 1938 совместно с О. Ганом открыл деление ядер урана при бомбардировке их нейтронами, химическими методами доказал факт деления.

Поль Адриен Морис Дирак

Дата рождения 8 августа 1902 - английский физик-теоретик, один из создателей квантовой механики. Работы Дирака посвящены квантовой физике, теории элементарных частиц, общей теории относительности. Автор трудов по квантовой механике, квантовой электродинамике и квантовой теории поля. Предложил релятивистское уравнение электрона, что объяснило спин, Ввел представление об античастицах. К другим известным результатам Дирака относятся статистическое распределение для фермионов, концепция магнитного монополя, гипотеза больших чисел, гамильтонова формулировка теории гравитации.

Дата рождения 29 июля 1904 - советский физик-теоретик. Работы относятся к ядерной физике, теории поля, синхротронному излучению, единой теории поля, теории гравитации, истории физики. Большинство работ выполнены совместно с крупнейшими физиками первой половины XX-го века. С Г. Гамовым вывел уравнение Шредингера, исходя из модели 5-мерного пространства. С Ландау рассматривал уравнение Клейна - Гордона, статистику Ферми - Дирака и геометрию Иваненко - Ландау - Кэлера. Рассматривал теорию мировых констант, предложил протон-нейтронную модель ядра

Игорь Васильевич Курчатов

Дата рождения 12 января 1903 - русский советский физик, «отец» советской атомной бомбы. Основатель и первый директор Института атомной энергии, главный научный руководитель атомной проблемы в СССР, один из основоположников использования ядерной энергии в мирных целях. Под его руководством был произведён взрыв первой советской атомной бомбы, разработана первая в мире водородная бомба и термоядерная бомба АН602 (Царь-бомба) рекордной мощности 52 000 кт. Занимался проблемой управляемого термоядерного синтеза. Руководил разработкой и строительством первой в мире атомной электростанцией.

Сергей Павлович Королев

Дата рождения 12 января 1907 - советский учёный, конструктор и организатор производства ракетно-космической техники и ракетного оружия СССР, основоположник практической космонавтики. Крупнейшая фигура XX века в области космического ракетостроения и кораблестроения. Создатель советской ракетно-космической техники, обеспечившей стратегический паритет и сделавшей СССР передовой ракетно-космической державой, ключевая фигура в освоении человеком космоса, создатель практической космонавтики. Осуществил запуск первого искусственного спутника Земли и первого космонавта Юрия Гагарина.

В статье поговорим о великих открытиях 20 века. Неудивительно, что с древних времен люди пытались воплотить в реальность свои самые смелые мечты. На рубеже прошлого века были изобретены невероятные вещи, которые перевернули жизнь всего мира.

Рентгеновские лучи

Список великих открытий 20 века начнём с рассмотрения электромагнитного излучения, которое на самом деле открыли в конце XIX века. Автором изобретения стал немецкий физик Вильгельм Рентген. Ученый заметил, что при включении тока в катодной трубке, покрытой кристаллами бария, начинает появляться небольшое свечение. Есть и другая версия, согласно которой жена приносила мужу ужин, и он заметил, что видит её кости, просвечивающиеся сквозь кожу. Это всё версии, но есть и факты. Например, Вильгельм Рентген отказывался получить патент за свое изобретение, так как считал, что эта деятельность не может приносить реальный доход. Таким образом, мы причисляем рентгеновские лучи к великим открытиям 20 века, которые оказали влияние на развитие научно-технического потенциала.

Телевидение

Совсем недавно телевизор был вещью, свидетельствующей о состоятельности своего хозяина, однако в современном мире телевидение отошло на второй план. При этом сама идея изобретения зародилась еще в 19 веке одновременно у русского изобретателя Порфирия Гусева и профессора из Португалии Адриано де Пайва. Они первые сказали о том, что скоро будет изобретено устройство, позволяющее передавать изображение при помощи провода. Первый приемник, размер экрана которого был всего лишь 3 на 3 см, продемонстрировал миру Макс Дикманн. При этом Борис Розинг доказал, что можно применять катодно-лучевую трубку для того, чтобы была возможность преобразовывать электрический сигнал в изображение. В 1908 году физик Ованес Адамян из Армении запатентовал аппарат для передачи сигналов, состоящий из двух цветов. Считается, что первый телевизор был разработан в начале XX веке в Америке. Собрал его русский эмигрант Владимир Зворыкин. Именно он разбил световой луч на зелёный, красный и синий, таким образом получив цветное изображение. Такое изобретение он назвал иконоскопом. На западе изобретателем телевидения считают Джона Берда, который первым запатентовал устройство, создающее картинку из 8 линий.

Мобильные телефоны

Первый мобильный телефон появился в 70-х годах прошлого столетия. Однажды сотрудник известной компании Motorola, которая занималась разработкой портативных устройств, Мартин Купер, показал своим друзьям огромную трубку. Тогда они не поверили, что нечто подобное можно было изобрести. Позже, гуляя по Манхэттену, Мартин позвонил начальнику из компании конкурента. Таким образом, он впервые на практике показал действенность своей огромной телефонной трубки. Советский учёный Леонид Куприянович ещё за 15 лет до этого проводил похожие эксперименты. Именно поэтому определенно говорить о том, кто на самом деле является открывателем портативных устройств, довольно трудно. В любом случае мобильные телефоны - это достойное открытие 20 века, без которого представить современную жизнь просто невозможно.

Компьютер

Одно из самых великих научных открытий XX века - это изобретение компьютера. Согласитесь, что сегодня без этого устройства невозможно ни работать, ни отдыхать. Еще несколько лет назад компьютеры использовались только в специальных лабораториях и организациях, но уже сегодня это обычная вещь в каждой семье. Как же была изобретена эта супермашина?

Немец Конрад Цузе в 1941 году создал вычислительную машину, которая, по сути, могла производить те же операции, что и современный компьютер. Отличие было в том, что машина работала при помощи телефонных реле. Спустя год физик из Америки Джон Атанасов и его аспирант Клиффорд Берри совместно разработали электронный компьютер. Однако этот проект не был завершён, поэтому нельзя говорить о том, что они являются реальными создателями такого устройства. В 1946 году Джон Мокли продемонстрировал, по его заявлению, первый электронный компьютер ЭНИАК. Прошло еще много времени, и огромные коробки заменили маленькие и тонкие устройства. Кстати, персональные компьютеры появились только в конце прошлого века.

Интернет

Великое технологическое открытие 20 века - это интернет. Согласитесь, что без него даже самый мощный компьютер не так уж и полезен, особенно в современном мире. Многие люди не любят смотреть телевизор, но они забывают о том, что власть над человеческим сознанием давно захватил интернет. У кого же возникла идея такой глобальной международной сети? Она появилась в группе ученых в 50-х годах прошлого века. Они хотели создать качественную сеть, которую было бы сложно взломать или прослушать. Причиной возникновения такой мысли послужила Холодная война.

Власти США во время Холодной войны использовали определенное устройство, которое позволяло передавать данные на расстоянии, не прибегая к помощи почты или телефона. Это устройство называлось APRA. Позже ученые исследовательских центров разных штатов занялись созданием сети APRANET. Уже в 1969 году благодаря этому изобретению получилось связать все компьютеры университетов, представленных данной группой ученых. Спустя 4 года к этой сети присоединились другие исследовательские центры. После того как появился e-mail, количество людей, желающих проникнуть во Всемирную паутину начало быстро расти в геометрической прогрессии. Что касается современного состояния, то на данный момент более 3 млрд человек пользуются интернетом каждый день.

Парашют

Несмотря на то что идея парашюта пришла в голову Леонардо да Винчи, всё же это изобретение в современном виде относят к великим открытиям 20 века. С появлением воздухоплавания начались регулярные прыжки с больших воздушных шаров, к которым крепили полураскрытые парашюты. Уже в 1912 году один американец решил прыгнуть с таким устройством из самолёта. Он удачно приземлился на землю и стал самым смелым жителем Америки. Позже инженер Глеб Котельников изобрел парашют исключительно из шелка. Также он сумел упаковать его в небольшой ранец. Проверка изобретения происходила на движущемся автомобиле. Таким образом придумали тормозной парашют, который бы позволял задействовать систему аварийного торможения. Так, перед началом Первой мировой войны ученый получил патент на свое изобретение во Франции, и таким образом стал первооткрывателем парашюта в 20 веке.

Физики

Теперь поговорим о великих физиках 20 века и их открытиях. Всем известно, что физика является основой, без которой представить комплексное развитие какой-либо другой науки в принципе невозможно.

Отметим квантовую теорию Планка. В 1900 году немецкий профессор Макс Планк стал открывателем формулы, которая описывала распределение энергии в спектре черного тела. Заметим, что до этого считалось, что энергия всегда распределяется равномерно, но изобретатель доказал, что распределение происходит пропорционально благодаря квантам. Ученый составил доклад, которому на то время никто не поверил. Однако уже через 5 лет благодаря выводам Планка великий ученый Эйнштейн смог создать квантовую теорию фотоэффекта. Благодаря квантовой теории Нильс Бор сумел построить модель атома. Таким образом, Планк создал мощную базу для дальнейших открытий.

Нельзя забывать о самом великом открытии 20 века - открытии теории относительности Альберта Эйнштейна. Ученому удалось доказать, что гравитация представляет собой следствие искривления четырехмерного пространства, а именно времени. Также он объяснил эффект замедления времени. Благодаря открытиям Эйнштейна удалось рассчитать многие астрофизические величины и расстояния.

К величайшим открытиям 19-20 века можно отнести изобретение транзистора. Первое рабочее устройство было создано в 1947 году исследователями из Америки. Учёные экспериментально подтвердили верность своих идей. В 1956 году они уже получили Нобелевскую премию за открытия. Благодаря им в электронике началась новая эра.

Медицина

Рассмотрение великих открытий в медицине 20-21 века начнём с изобретения пенициллина Александром Флемингом. Известно, что это ценное вещество было обнаружено в результате небрежности. Благодаря открытию Флеминга люди перестали бояться опаснейших болезней. В этом же столетии была открыта структура ДНК. Её открывателями считаются Фрэнсис Крик и Джеймс Уотсон, которые при помощи картона и металла создали первую модель молекулы ДНК. Невероятную шумиху подняла информация о том, что у всех живых организмов принцип строения ДНК одинаков. За это революционное открытие ученые были награждены Нобелевской премией.

Великие открытия 20-21 века продолжаются нахождением возможности пересаживать органы. Такие действия довольно долго воспринимались как нечто нереальное, но уже в прошлом веке ученые поняли, что добиться безопасной качественной пересадки можно. Официальное открытие этого факта состоялось в 1954 году. Тогда врач из Америки Джозеф Мюррей пересадил почку одному из своих пациентов от брата-близнеца. Таким образом он показал, что можно пересадить человеку чужой орган, и он будет еще долго жить.

В 1990 году врач был награжден Нобелевской премией. Однако еще длительное время специалисты пересаживали всё, кроме сердца. Наконец, в 1967 году мужчине в пожилом возрасте пересадили сердце молодой женщины. Тогда пациенту удалось прожить всего 18 дней, но уже сегодня люди с донорскими органами и сердцами живут многие годы.

УЗИ

Также к важным изобретениям прошлого века в области медицины стоит отнести УЗИ, без которого лечение представить очень трудно. В современном мире сложно найти человека, который бы не проходил ультразвуковое сканирование. Изобретение датируют 1955 годом. Невероятнейшим открытием прошлого века считают оплодотворение в пробирке. Британским ученым удалось в лабораторных условиях оплодотворить яйцеклетку, а после поместить ее в матку женщины. В итоге на свет появилась всемирно известная "девочка из пробирки" Луиза Браун.

Великие географические открытия 20 века

В прошлом веке была подробно исследована Антарктида. Благодаря этому ученые получили точнейшие данные о климатических условиях и фауне Антарктики. Российский академик Константин Марков создал первый в мире атлас Антарктиды. Великие открытия начала 20 века в области географии продолжим экспедицией, которая отправилась в Тихий океан. Советскими исследователями была измерена глубочайшая океаническая впадина, которая получила название Марианской.

Морской атлас

Позже был создан морской атлас, который позволял изучать направление течения, ветра, определять глубину и распределение температуры. Одним из самых громких открытий прошлого века стало обнаружение озера Восток под огромным слоем льда в Антарктиде.

Как мы уже знаем, прошлый век был очень насыщен различного рода открытиями. Можно сказать, что произошел настоящий прорыв практически во всех сферах. Потенциальные возможности ученых со всего мира достигли своего максимума, благодаря чему в настоящее время мир развивается семимильными шагами. Многие открытия стали поворотным моментом в истории всего человечества, особенно это касается исследований в области медицины.


РЕЙТИНГ 100 ВЫДАЮЩИХСЯ ФИЗИКОВ-АТОМЩИКОВ XX ВЕКА

Валентин Анатольевич Белоконь, Москва

Попытка оценить научный потенциал реальных и возможных создателей ядерного и термоядерного оружия, работавших в период с 1939 по 1953 год.

Вскоре после кончины Льва Давыдовича Ландау в 1968 г его ближайший ученик и коллега Александр Соломонович Компанеец придумал такой анекдот. К постели умирающего Ландау подходит его известный соавтор Евгении Михайлович Лившиц и знакомит умирающего классика с юношей - одаренным теоретиком «Лев, умирай спокойно: Вот наш новый Ландау» Собрав последние силы. Лев Давыдович беседует с «претендентом на престол» И последние слова его были таковы «Нет Женя, это не новый Ландау. Это еще один Зельдович».

Ландау был выдающимся педагогом. Затаив дыхание, я прослушал не один десяток его лекций по теоретической физике — когда удавалось проникнуть на физфак МГУ без пропуска (поскольку учился не в МГУ, а в МФТИ). Зимой это было просто — достаточно в мороз прибегать в одном пиджаке, как бы из соседнего корпуса. Среди прочих эффектных приемов подкупала та откровенность, с которой он ранжировал физиков, называя таких, как Артур Эддингтон, классика физики звезд, «патологом», а Вернера Гайзенберга — отца квантовой теории — «нацистом» — бомбу для Гитлера делал, или «живым трупом» — ныне бесплодным физиком.

В том смысле, что они были способны профессионально (но не обязательно морально) продуктивно участвовать в разработке ядерного оружия — в качестве теоретиков, экспериментаторов, изобретателей, инженеров, либо научно-технических руководителей.

Меня поразила его характеристика Нильса Бора. После визита Бора в Москву в мае 1961 года, на осенней лекции в МГУ Ландау получил записку с просьбой дать оценку великому учителю. Помедлив, Лев Давыдович обратил свой пламенный взор к переполненной аудитории: «Ну что я могу сказать… Какой хороший старик!» Шепот недоумения был ему ответом. Из физиков XX века он на первое место ставил Эйнштейна — в согласии с новейшими оценками «лучших американских экспертов», объявивших, кстати, недавно в очередной раз этого корифея «величайшим ученым двух тысячелетий». На втором сверху уровне из советских физиков Ландау упоминал только себя. И я млел перед Львом Давидовичем, пока не разобрался, что только в одном из томов его «Теорфизики» — «Гидродинамике» — не менее дюжины нелепостей.

Гораздо более детальный рейтинг «выдавал» в моем присутствии «Шура» Компанеец — мой старший коллега по Институту химической физики АН СССР — исключительно независимый человек. Он не скрывал, что, по его мнению, многие виднейшие наши физики добились регалий за счет эксплуатации чужих достижений, добытых нелегально.

Но необязательно обладать амбициями в духе Ландау или Компанейца, чтобы иметь собственный рейтинг знаменитостей. Любой приличный историк науки вырабатывает «рабочий рейтинг» персон, о которых пишет (если не просто компилирует). Но важнее, быть может, что рейтинг такого рода характеризует принадлежность к группе, если не касте или мафии, т.е. является изощренным неафишируемым паролем единомышленников, знающих карты друг друга при игре в научную политику, да и не только. Но раскрывать карты чужакам мало кто смеет, тем более в форме печатного слова. Тем интереснее, когда это табу нарушается, хотя бы случайно.

Среди примерно 15 тысяч страниц новых зарубежных публикаций по истории создания ядерного и термоядерного оружия, с которыми мне довелось ознакомиться за последние пять лет, в этом отношении выделяется многократно премированная книга Ричарда Роудса «Сотворение атомной бомбы» (американские издания 1986, 1988 гг.). Не без ее влияния весной 1995 года журнал нью-йоркской академии «Сайнсис» писал «Германские атомщики наивно думали о себе как о мировой элите, в чем здорово промахнулись. Ибо одних только выходцев из Венгрии, ставших американскими атомщиками, а именно Лео Сциларда, Эдварда Теллера, а также Джона фон Нойманна и Евгения Вигнера, достаточно, чтобы перевесить интеллект всего сообщества немцев, пытавшихся сделать бомбу».

Эксперимент как критерий истины здесь выглядит убедительно: немцы ведь бомбу не сделали!

Но могли бы!

А стандартный аргумент — «История не знает сослагательного наклонения» — мы легко парируем: «Да, не знает, - для тех, кому лень думать».

Даже при равных интеллектуальных потенциалах «новых американцев» и немцев, оставшихся в Германии, последних ждал бы проигрыш просто из-за бомбежек, в сущности, не уступавших хиросимской: достаточно упомянуть разрушение Гамбурга, Дрездена, Берлина и рурских комплексов. Здесь, однако, важнее нечто иное.

Германский атомный проект возглавили фактически Вернер Гайзенберг и Карл Вайцзеккер. В некрологе на смерть Гайзенберга, в 1976 году, его конкурент Эдвард Теллер (журнал «Нэйче») четко утверждал, что Гайзенберг скорее не хотел делать бомбу Гитлеру, нежели не мог. А в 1993 г это мимолетное замечание Теллера было всесторонне обосновано в 600-страничной книге Томаса Пауэрса «Секретная история германской бомбы», о которой многие знают у нас, но помалкивают.

Теперь, в частности, выясняется, что Гайзенберг не только не желал делать атомную бомбу Гитлеру, но и неустанно намекал об этом «посредникам», надеясь, что и его западные коллеги не станут конструировать это страшное устройство. В отличие от нынешних резонеров из «Сайнсис» научный руководитель американского атомного проекта Роберт Оппенгеймер, их главный теоретик Ханс Бете, учитель Оппенгеймера великий Нилье Бор и «американский Берия» Лесли Гровс (он отвечал за режим секретности американского атомного «Манхэттэнского проекта») компетентно и реалистично оценивали интеллектуальный потенциал немецкой атомной элиты, боялись ее превосходства. Не потому ли они азартно и вполне серьезно обсуждали планы нейтрализации деятельности Гайзенберга и Вайцзеккера — вплоть до их физического устранения. Не этот ли ажиотаж помешал Гровсу заметить, что творится у него «под носом», когда сотни отчетов суперсекретного «Манхэттэнского проекта» уплыли в Кремль!

Смешно пытаться несколькими строками обосновывать превосходство Гайзенберга над другими. Он слишком известен. Упомяну лишь, сто его «соперник» по величию Поль Дирак назвал в своей речи в Ватикане (1976г.) Гайзенберга физиком №1 XX века… (Между прочим, сам Поль Дирак и Артур Эддингтон считали разработку ядерного оружия аморальным занятием.)

Стоит все-таки кое-что пояснить и по поводу Карла Вайцзеккера. Его уместно сопоставить с Хансом Бете, получившим Нобелевскую премию за теорию горения звезд. Прекрасны и работы Бете по динамике взрыва. И все-таки Вайцзеккера следует оценить повыше — он минимум на год опередил Ганса Бете (1938 -1937) в области физики термоядерного горения звезд, а его достижения в теории взрывных процессов посильнее, оригинальнее. Он сделал пионерскую оценку роли плутония как взрывчатки. Нобелевскую ему не дали «по анкетным данным»: мол, работал над бомбой для Гитлера. Короче, «венгерская четверка» лидеров американского атомного проекта была хороша, но уступала потенциалу уже двух конкурентов — лидеров немецкого атомного клуба. Труднее, но еще интереснее сравнивать совокупные потенциалы стран, наций. Мой анализ говорит в пользу превосходства немецкий атомщиков над теми, кто собирался под крышей «Манхэттэнсого проекта» - главным образом в Лос-Аламосе (но и там немалую роль играл Фукс — опять же немец!)

Кстати, свою ранжировку атомщиков я не считаю окончательной и с интересом жду контраргументов.

Между тем тестовыми показателями уровня при данной ранжировке являются адекватная самооценка, квалификация и природная склонность к исследованию, честность, корректность и фундаментальность оригинальных исследований, первенство достижений в теоретической, изобретательской и экспериментаторской деятельности, независимость и смелость суждений (в том числе — прогнозов!), перспективность полученных результатов для научно-технического прогресса, для понимания природы и тех путей, как ее «обманывать» через новые изобретения, кое-что еще из тех качеств, из которых складывается компетентность ученого, инженера. В данном рейтинге также учтен и организационный потенциал, но как второстепенный.

Что касается банального вопроса «а зачем это нужно?», то не совсем избитым был бы такой ответ: исследование критериев компетентности критически важно для формирования групп экспертов и подготовки экспертных опросов, в особенности — ради решения задач прогнозирования.

Далее. Недавние публикации, хотя бы книги Павла Судоплатова с одиозной главой об атомном шпионаже, а также материалы дубненской, 1996 года, конференции по истории создания советского ядерного и термоядерного оружия, особенно доклады Феоктистова и Гончарова, привели к основательной переоценке реальной роли многих наших атомщиков.

Самый «страшный» пример — роль Андрея Дмитриевича Сахарова, который знал-таки заранее о принципах устройства американской (по Уламу) водородной бомбы. Именно поэтому, при всем величайшем уважении к Андрею Дмитриевичу, он претендует скорее на 3-й уровень, чем на 2-й в данном рейтинге.

С Альбертом Эйнштейном дело проще. Судя по автобиографии Георгия Гамова «Моя мировая линия», «величайший» уклонялся от реального участия в закрытых разработках, принимая гонорары в качестве «свадебного генерала». Кстати, до 1939 г Эйнштейн категорически отвергал прогнозы практического использования ядерной энергии, подобно Бору и Резерфорду.

Замечу, наконец, что около 25 % упомянутых в моем рейтинге физиков я знал лично. Пусть не в равной степени. Около 30 % из них — это авторы работ, которые я цитирую в собственных публикациях, несколько более — в лекциях. Более 60 % — это авторы работ с которыми я более или менее детально знаком, практически в каждом случае на языке оригинала.

Я выложил свои карты на стол. Кроме яростных нападок предвижу и ответные шаги — кое-кто ведь решится выложить свои оценки.

Итак, ученые в рейтинге разбиты на пять уровней. Наиболее обоснована принадлежность к высшим двум уровням. На каждом уровне фамилии ученых даны в алфавитном порядке. В скобках после каждой фамилии указана страна (страны), где фактически работал тот или иной ученый.

ОНИ БЫЛИ СПОСОБНЫ ПРОФЕССИОНАЛЬНО (НО НЕ ОБЯЗАТЕЛЬНО МОРАЛЬНО) УЧАСТВОВАТЬ В РАЗРАБОТКЕ ЯДЕРНОГО ОРУЖИЯ — В КАЧЕСТВЕ ТЕОРЕТИКОВ, ЭКСПЕРИМЕНТАТОРОВ, ИЗОБРЕТАТЕЛЕЙ, ИНЖЕНЕРОВ, ЛИБО НАУЧНО-ТЕХНИЧЕСКИХ РУКОВОДИТЕЛЕЙ

Первый (высший) уровень

Карл Вайцзеккер/Karl-Friedrich Von Weizsacker (Германия)

Вернер Гайзенберг/Werner Heisenberg (Германия)

Поль Дирак/Paul Dirac (Англия)

Энрико Ферми/Enrico Fermi (Италия, США)

Станислав Улам/Stanislaw Ulam (Польша, США)

Субраманьян Чандрасекар/S.Chandrasekhar (Индия, Англия, США)

Эрвин Шредингер/Ervin Shroedinger (Австрия, Ирландия)


Второй уровень:

Ханс Бете (Германия, США), Адольф Буземанн (Германия, США), Герман Вайль (Германия, США), Отто Ганн (Германия), Георгий Гамов (СССР, США), Готфрид Гудерлей (Германия), Фредерик Жолио-Кюри (Франция), Дмитрий Иваненко (СССР/Россия), Петр Капица (СССР), Джон фон Нойманн (Венгрия, Германия, США), Клаус Осватич (Австрия), Вольфганг Паули (Швейцария), Гленн Сиборг (США), Джеймс Так (Англия, США), Джон Уилер (США), Владимир Фок (СССР), Клаус Фукс (Германия, Англия, США), Артур Эддингтон (Англия).

Третий уровень:

Ханнес Альфвен (Швеция), Карл Бехерт (Германия), Николай Боголюбов (СССР), Нильс Бор (Дания, США), Макс Борн (Германия, Англия), Перси Бриллюэн (Франция), Джон Вик (Италия, США), Анатолий Власов (СССР), Густав Герц (Германия, СССР), Фримен Дайсон (Англия, США), Сергей Дъяков (СССР),Евгений Забабахин (СССР), Евгений Завойский (СССР), Ирен Жолио-Кюри (Франция), Дж. Ивон (Франция), Ханс Йенсен (Германия), Паскуаль Иордан (Германия), Джон Кокрофт (Англия, США), Игорь Курчатов (СССР), Лев Ландау (СССР), Эрнест Лоуренс (США), Роберт Оппенгеймер (США), Георгий Покровский (СССР), Андрей Сахаров (СССР), Леонид Седов (СССР/Россия), Эмилио Сегре (Италия, США), Лео Сцилард (Венгрия, Германия), Игорь Тамм (СССР), Ричард Толмен (США), Джофри Тэйлор (Англия, США), Синьитиро Томонага (Япония), Ричард Фейнман (США), Яков Френкель (СССР), Ханс Халбан (Германия, Франция, Англия), Юлий Харитон (СССР.Россия), Джеймс Чедвик (Англия, США), Юлиус Швингер (США), Хидэки Юкава (Япония), Ханс Эхлер (Германия).

Четвертый уровень:

Лев Альтшулер (СССР/Россия), Манфред фон Арденне (Германия, СССР), Кейт Бракнер (США), Евгений Вигнер (Венгрия, Германия, США), Карл Виртц (Германия), Вальтер Гайтлер (Англия, США), Мария Гепперт-Майер (Германия, Швеция), Вальтер Герлах (Германия), Яков Зельдович (СССР), Александр Компанеец (СССР), Артур Комптон (Англия, США), Роберт Кристи (Англия, США), Риго Кубо (Япония), Джордж Кистяковский (США), Михаил Леонтович (СССР), Исаак Померанчук (СССР), Бруно Понтекорво (Италия, США, СССР/Россия), Виктор Сорокин (СССР), Кирилл Станюкович (СССР), Фредерик Содди (Англия), Роберт Сэрбер (США), Яков Терлецкий (СССР/Россия), Эдвард Теллер (Венгрия, Германия, США), Кирилл Щелкин (СССР), Георгий Флеров (СССР), Гарольд Юри (США)... и некоторые другие.

Пятый уровень:

Анатолий Александров (СССР/Россия), Абрам Алиханов (СССР), Виталий Гинзбург (СССР/Россия), Абрам Иоффе (СССР), Исаак Кикоин (СССР), Лиза Мейтнер (Германия, Швеция), Сет Нэдэмейр (США), Рудольф Пайерлс (ГерманияАнглия, США), Франсуа Перрен (Франция), Николай Семенов (СССР), Давид Франк-Каменецкий (СССР), Альберт Эйнштейн (Швейцария, Германия, США)... и немало других.