Какое определение спортивной метрологии отражает ее содержание. Управление процессом подготовки спортсменов

В повседневной практике человечества и каждого индивида измерение - вполне обычная процедура. Измерение наряду с вычислением непосредственно связано с материальной жиз­нью общества, так как оно получило развитие в процессе прак­тического освоения мира человеком. Измерение, так же как счет и вычисление, стало неотъемлемой частью общественно­го производства и распределения, объективной отправной точ­кой для появления математических дисциплин, и в первую очередь геометрии, а отсюда и необходимой предпосылкой развития науки и техники.

В самом начале, в момент своего возникновения, измере­ния, сколь бы различными они ни были, носили, естествен­но, элементарный характер. Так, исчисление множества пред­метов определенного вида основывалось на сравнении с числом пальцев. Измерение длины тех или иных предметов строилось на сравнении с длиной пальца руки, стопы или шага. Этот доступный способ являлся изначально в буквальном смысле «экспериментальной вычислительной и измерительной тех­никой». Он уходит своими корнями в далекую эпоху «дет­ства» человечества. Прошли целые столетия, прежде чем раз­витие математики и других наук, появление измерительной техники, вызванное потребностями производства и торгов­ли, коммуникациями между отдельными людьми и народа­ми, привело к появлению хорошо разработанных и диффе­ренцированных методов и технических средств в самых различных областях знания.

Сейчас трудно себе представить какую-либо деятельность человека, в которой не использовались бы измерения. Изме­рения ведутся в науке, промышленности, сельском хозяйстве, медицине, торговле, военном деле, при охране труда и окру­жающей среды, в быту, спорте и т.д. Благодаря измерениям возможно управление технологическими процессами, промыш­ленными предприятиями, подготовкой спортсменов и народ­ным хозяйством в целом. Резко возросли и продолжают расти требования к точности измерений, быстроте получения изме­рительной информации, измерению комплекса физических величин. Увеличивается число сложных измерительных систем и измерительно-вычислительных комплексов.

Измерения на определенном этапе своего развития приве­ли к возникновению метрологии, которая в настоящее время определяется как «наука об измерениях, методах и средствах обеспечения их единства и требуемой точности». Это опреде­ление свидетельствует о практической направленности мет­рологии, которая изучает измерения физических величин и образующие эти измерения элементы и разрабатывает необ­ходимые правила и нормы. Слово «метрология» составлено из двух древнегреческих: «метро» - мера и «логос» - учение, или наука. Современная метрология включает три составляющие: за­конодательную метрологию, фундаментальную (научную) и практическую (прикладную) метрологию.



Спортивная метрология - это наука об измерениях в физи­ческом воспитании и спорте. Ее следует рассматривать как кон­кретное приложение к общей метрологии, как одну из состав­ляющих практической (прикладной) метрологии. Однако как учебная дисциплина спортивная метрология выходит за рам­ки общей метрологии по следующим обстоятельствам. В физи­ческом воспитании и спорте некоторые из физических вели­чин (время, масса, длина, сила), на проблемах единства и точности, которых сосредоточивают основное внимание спе­циалисты-метрологи, также подлежат измерению. Но более все­го специалистов нашей отрасли интересуют педагогические, психологические, социальные, биологические показатели, которые по своему содержанию нельзя назвать физическими. Методикой их измерений общая метрология практически не занимается, и поэтому возникла необходимость разработки специальных измерений, результаты которых всесторонне ха­рактеризуют подготовленность физкультурников и спортсме­нов. Особенностью спортивной метрологии является то, что в ней термин «измерение» трактуется в самом широком смыс­ле, так как в спортивной практике недостаточно измерять толь­ко физические величины. В физической культуре и спорте кро­ме измерений длины, высоты, времени, массы и других физических величин приходится оценивать техническое мас­терство, выразительность и артистичность движений и тому подобные нефизические величины. Предметом спортивной метрологии являются комплексный контроль в физическом воспитании и спорте и использование его результатов в планировании подготовки спортсменов и физ­культурников. Вместе с развитием фундаментальной и практической метро­логии происходило становление законодательной метрологии.

Законодательная метрология - это раздел метрологии, включающий комплексы взаимосвязанных и взаимообуслов­ленных общих правил, а также другие вопросы, нуждающиеся в регламентации и контроле со стороны государства, направ­ленные на обеспечение единства измерений и единообразия средств измерений.

Законодательная метрология служит средством государствен­ного регулирования метрологической деятельности посредством законов и законодательных положений, которые вводятся в практику через Государственную метрологическую службу и метрологические службы государственных органов управления и юридических лиц. К области законодательной метрологии относятся испытания и утверждение типа средств измерений и их проверка и калибровка, сертификация средств измерений, государственный метрологический контроль и надзор за сред­ствами измерений.

Метрологические правила и нормы законодательной метро­логии гармонизированы с рекомендациями и документами со­ответствующих международных организаций. Тем самым зако­нодательная метрология способствует развитию международных экономических и торговых связей и содействует взаимопони­манию в международном метрологическом сотрудничестве.

Использованная литература

1. Бабенкова, Р. Д. Внеклассная работа по физическому воспитанию во вспомогательной школе: пособие для учителей / Р. Д. Бабенкова. - М.: Просвещение, 1977. - 72 с.

2. Барчуков, И. С. Физическая культура: учебное пособие для вузов / И. С. Барчуков. - М. : ЮНИТИ-ДАНА, 2003. - 256 с.

3. Булгакова Н. Ж. Игры у воды, на воде, под водой.- М.: Физкультура и спорт, 2000. – 34 с.

4. Бутин, И. М. Физическая культура в начальных классах: методический материал / И. М. Бутин, И. А. Бутина, Т. Н. Леонтьева. - М.: ВЛАДОС-ПРЕСС, 2001. – 176 с.

5. Былеева, Л. В. Подвижные игры: учебное пособие для институтов физической культуры /Л. В. Былеева, И. М. Коротков. – 5 –е изд., перераб. и доп. – М.: ФиС, 1988.

6. Вайнбаум, Я. С., Гигиена физического воспитания и спорта: Учеб. пособие для студ. высш. пед. учеб. заведений. /Я. С. Вайнбаум, В. И. Коваль, Т. А. Родионова. – М.: Издательский центр «Академия», 2002. – 58 с.

7. Викулов, А. Д. Водные виды спорта: учебник для вузов. – М.: Академия, 2003. – 56 с.

8. Викулов, А. Д. Плавание: учебное пособие для вузов.- М.: ВЛАДОС - Пресс, 2002 – 154 с.

9. Внеклассные мероприятия по физкультуре в средней школе / сост. М. В. Видякин. - Волгоград: Учитель, 2004. – 54 с.

10. Гимнастика / под ред. М. Л. Журавина, Н. К. Меньшикова. – М.: Академия, 2005. – 448 с.

11. Гогунов, Е. Н. Психология физического воспитания и спорта: учебное пособие / Е. Н. Гогунов, Б. И. Мартьянов. – М.: Академия, 2002. – 267 с.

12. Железняк, Ю. Д. Основы научно – методической деятельности в физической культуре и спорте: Учеб. пособие для студ. высш.пед.учеб.заведений /Ю. Д. Железняк, П. К. Петров. – М.: Издательский центр «Академия», 2002. – 264 с.

13. Кожухова, Н. Н. Воспитатель по физической культуре в дошкольных учреждениях: учебное пособие / Н. Н. Кожухова, Л. А. Рыжкова, М. М. Самодурова; ред. С. А. Козлова. - М. : Академия, 2002. - 320 с.

14. Коротков, И. М. Подвижные игры: учебное пособие / И. М.Коротков, Л. В. Былеева, Р. В. Климкова. – М.: СпортАкадемПресс, 2002. – 176 с.

15. Лазарев, И. В. Практикум по легкой атлетике: учебное пособие / И. В. Лазарев, В. С. Кузнецов, Г. А. Орлов. - М. : Академия, 1999. - 160 с.

16. Лыжный спорт: учеб. пособие / И. М. Бутин. – М.: Академия, 2000.

17. Макарова, Г. А. Спортивная медицина: учебник / Г. А.Макарова. – М.: Советский спорт, 2002. – 564 с.

18. Максименко, А. М. Основы теории и методики физической культуры: учеб. пособие для студ. высш.пед.учеб.заведений /М. А. Максименко. - М., 2001.- 318 с.

19. Методика физического воспитания учащихся 10-11 классов: пособие для учителя / А. В. Березин, А. А. Зданевич, Б. Д. Ионов; под ред. В. И. Ляха. - 3-е изд. - М. : Просвещение, 2002. - 126 с.

20. Научно-методическое обеспечение физического воспитания, спортивной тренировки и оздоровительной физической культуры: сборник научных трудов / под ред. В. Н. Медведева, А.И. Федорова, С.Б. Шармановой. - Челябинск: УралГАФК, 2001.

21. Педагогическое физкультурно-спортивное совершенствование: учеб. пособие для студ. высш. пед. учеб. заведений / Ю. Д. Железняк, В. А. Кашкаров, И. П. Крацевич и др.; /под ред. Ю. Д. Железняка. – М.: Издательский центр «Академия», 2002.

22. Плавание: учебник для студентов высших учеб, заведений / под ред. В. Н. Платонова. - Киев: Олимпийская литература, 2000. – 231 с.

23. Протченко, Т. А. Обучение плаванию дошкольников и младших школьников: метод. пособие / Т. А. Протченко, Ю. А. Семенов. - М. : Айрис-пресс, 2003.

24. Спортивные игры: техника, тактика, методика обучения: учеб. для студ. высш. пед. учеб. заведений / Ю. Д. Железняк, Ю. М. Портнов, В. П. Савин, А. В. Лексаков; под ред. Ю.Д.Железняка, Ю. М. Портнова. – М.: Издательский центр «Академия», 2002. – 224 с.

25. Урок физкультуры в современной школе: метод. рекомендации для учителей. Вып. 5. Ручной мяч / метод. рек. Г. А. Баландин. - М.: Советский спорт, 2005.

26. Физическое воспитание детей дошкольного возраста: теория и практика: сборник научных трудов / Ред. С. Б. Шарманова, А. И. Федоров. – Вып. 2.- Челябинск: УралГАФК, 2002. – 68 с.

27. Холодов, Ж. К. Теория и методика физического воспитания и спорта: учебное пособие / Ж. К. Холодов, В. С. Кузнецов. - 2-е изд., испр. и доп. - М. : Академия, 2001. - 480 с. : ил.

28. Холодов, Ж.К. Теория и методика физического воспитания и спорта: учебное пособие для студ.высш.учеб.заведений. /Ж. К. Холодов, В. С. Кузнецов. – М.: Издательский центр «Академия», 2000. – 480 с.

29. Чаленко, И. А. Современные уроки физкультуры в начальной школе: научно-популярная литература / И. А. Чаленко. - Ростов н/Д: Феникс, 2003. - 256 с.

30. Шарманова, С. Б. Методические особенности использования общеразвивающих упражнений в физическом воспитании детей младшего дошкольного возраста: учебно-методическое пособие / С. Б. Шарманова. - Челябинск: УралГАФК, 2001. – 87 с.

31. Яковлева, Л. В. Физическое развитие и здоровье детей 3-7 лет: пособие для педагогов дошкольных учреждений. В 3 ч. / Л.В. Яковлева, Р.А. Юдина. - М.: ВЛАДОС. – Ч. 3.

1. Былеева, Л. В. Подвижные игры: учебное пособие для институтов физической культуры /Л. В. Былеева, И. М. Коротков. – 5 –е изд., перераб. и доп. – М.: ФиС, 1988.

2. Вайнбаум, Я. С., Гигиена физического воспитания и спорта: Учеб. пособие для студ. высш. пед. учеб. заведений. /Я. С. Вайнбаум, В. И. Коваль, Т. А. Родионова. – М.: Издательский центр «Академия», 2002. – 58 с.

3. Викулов, А. Д. Водные виды спорта: учебник для вузов. – М.: Академия, 2003. – 56 с.

4. Викулов, А. Д. Плавание: учебное пособие для вузов.- М.: ВЛАДОС - Пресс, 2002 – 154 с.

5. Гимнастика / под ред. М. Л. Журавина, Н. К. Меньшикова. – М.: Академия, 2005. – 448 с.

6. Гогунов, Е. Н. Психология физического воспитания и спорта: учебное пособие / Е. Н. Гогунов, Б. И. Мартьянов. – М.: Академия, 2002. – 267 с.

7. Железняк, Ю. Д. Основы научно – методической деятельности в физической культуре и спорте: Учеб. пособие для студ. высш.пед.учеб.заведений /Ю. Д. Железняк, П. К. Петров. – М.: Издательский центр «Академия», 2002. – 264 с.

8. Кожухова, Н. Н. Воспитатель по физической культуре в дошкольных учреждениях: учебное пособие / Н. Н. Кожухова, Л. А. Рыжкова, М. М. Самодурова; ред. С. А. Козлова. - М. : Академия, 2002. - 320 с.

9. Коротков, И. М. Подвижные игры: учебное пособие / И. М.Коротков, Л. В. Былеева, Р. В. Климкова. – М.: СпортАкадемПресс, 2002. – 176 с.

10. Лыжный спорт: учеб. пособие / И. М. Бутин. – М.: Академия, 2000.

11. Макарова, Г. А. Спортивная медицина: учебник / Г. А.Макарова. – М.: Советский спорт, 2002. – 564 с.

12. Максименко, А. М. Основы теории и методики физической культуры: учеб. пособие для студ. высш.пед.учеб.заведений /М. А. Максименко. - М., 2001.- 318 с.

13. Научно-методическое обеспечение физического воспитания, спортивной тренировки и оздоровительной физической культуры: сборник научных трудов / под ред. В. Н. Медведева, А.И. Федорова, С.Б. Шармановой. - Челябинск: УралГАФК, 2001.

14. Педагогическое физкультурно-спортивное совершенствование: учеб. пособие для студ. высш. пед. учеб. заведений / Ю. Д. Железняк, В. А. Кашкаров, И. П. Крацевич и др.; /под ред. Ю. Д. Железняка. – М.: Издательский центр «Академия», 2002.

15. Плавание: учебник для студентов высших учеб, заведений / под ред. В. Н. Платонова. - Киев: Олимпийская литература, 2000. – 231 с.

16. Спортивные игры: техника, тактика, методика обучения: учеб. для студ. высш. пед. учеб. заведений / Ю. Д. Железняк, Ю. М. Портнов, В. П. Савин, А. В. Лексаков; под ред. Ю.Д.Железняка, Ю. М. Портнова. – М.: Издательский центр «Академия», 2002. – 224 с.

17. Холодов, Ж. К. Теория и методика физического воспитания и спорта: учебное пособие / Ж. К. Холодов, В. С. Кузнецов. - 2-е изд., испр. и доп. - М. : Академия, 2001. - 480 с. : ил.

18. Холодов, Ж.К. Теория и методика физического воспитания и спорта: учебное пособие для студ.высш.учеб.заведений. /Ж. К. Холодов, В. С. Кузнецов. – М.: Издательский центр «Академия», 2000. – 480 с.

19. Чаленко, И. А. Современные уроки физкультуры в начальной школе: научно-популярная литература / И. А. Чаленко. - Ростов н/Д: Феникс, 2003. - 256 с.

20. Шарманова, С. Б. Методические особенности использования общеразвивающих упражнений в физическом воспитании детей младшего дошкольного возраста: учебно-методическое пособие / С. Б. Шарманова. - Челябинск: УралГАФК, 2001. – 87 с.

ЛЕКЦИЯ 2

ИЗМЕРЕНИЕ ФИЗИЧЕСКИХ ВЕЛИЧИН

Измерением в широком смысле слова называется установление соответствия между изучаемыми явлениями, с одной стороны, и числами, с другой.

Измерение физической величины - это нахождение опытным путем связи между измеряемой величиной и единицей измерения данной величины, производимое, как правило, с помощью специальных технических средств. При этом под физической величиной понимается характеристика различных свойств, общих в количественном отношении для многих физических объектов, но индивидуальных в качественном отношении для каждого из них. К физическим величинам относятся длина, время, масса, температура и множество других. Получение сведений о количественных характеристиках физических величин собственно и является задачей измерений.

1. Элементы системы измерения физических величин

Основные элементы, в полной мере характеризующие систему измерения любых физических величин, представлены на рис. 1.

Какие бы виды измерений физических величин не производились, все они возможны только при наличии общепринятых единиц измерений (метров, секунд, килограммов и т. п.) и шкал измерений, позволяющих упорядочить измеряемые объекты и приписать им числа. Это обеспечивается использованием соответствующих средств измерений, позволяющих получить необходимую точность. Для достижения единства измерений существуют разработанные стандарты и правила.

Следует отметить, что измерение физических величин является основой всех без исключения измерений в спортивной практике. Оно может иметь самостоятельный характер, например, при определении массы звеньев тела; служить первым этапом оценивания спортивных результатов и результатов тестов, например, при выставлении оценки в баллах по результатам измерения длины прыжка с места; косвенно влиять на качественную оценку исполнительского мастерства, например, по амплитуде движений, ритму, положению звеньев тела.

Рис. 1. Основные элементы системы измерения физических величин

2. Виды измерений

Измерения делятся по средствам измерения (органолептические и инструментальные) и по способу получения числового значения измеряемой величины (прямые, косвенные, совокупные, совместные).

Органолептическими называются измерения, основанные на использовании органов чувств человека (зрения, слуха и т. д.). Например, человеческий глаз может с высокой точностью определить при попарном сравнении относительную яркость источников света. Одним из видов органолептических измерений является обнаружение - решение о том, отлично от нуля значение измеряемой величины или нет.

Инструментальными называются измерения, выполняемые с помощью специальных технических средств. Большинство измерений физических величин являются инструментальными.

Прямые измерения - это измерения, при которых искомое значение находят непосредственно сравнением физической величины с мерой. К таким измерениям можно отнести, например, определение длины предмета путем ее сравнения с мерой - линейкой.

Косвенные измерения отличаются тем, что значение величины устанавливают по результатам прямых измерений величин, связанных с искомой определенной функциональной зависимостью. Так, измерив объем и массу тела, можно вычислить (косвенно измерить) его плотность или, измерив длительность полетной фазы прыжка, вычислить его высоту.

Совокупными измерениями называются такие, в которых значения измеряемых величин находят по данным их повторных измерений при различных сочетаниях мер. Результаты повторных измерений подставляются в уравнения, и вычисляется искомая величина. Например, объем тела может быть сначала найден по измерению объема вытесненной жидкости, а затем - по измерению его геометрических размеров.

Совместные измерения - это одновременные измерения двух и более неоднородных физических величин для установления функциональной зависимости между ними. Например, определение зависимости электрического сопротивления от температуры.

3. Единицы измерений

Единицы измерений физических величин представляют собой значения данных величин, которые по определению считаются равными единице. Они ставятся за числовым значением какой-либо величины в виде символа (5,56 м; 11,51 с и т. п.). Единицы измерений пишутся с большой буквы, если названы в честь известных ученых (724 Н; 220 В и т. п.). Совокупность единиц, относящихся к некоторой системе величин и построенных в соответствии с принятыми принципами, образует систему единиц.

Система единиц включает в себя основные и производные единицы. Основными называются выбранные и независимые друг от друга единицы. Величины, единицы которых принимаются за основные, как правило, отражают наиболее общие свойства материи (протяженность, время и т. п.). Производными называются единицы, выраженные через основные.

На протяжении истории сложилось достаточно много систем единиц измерений. Введение в 1799 г. во Франции единицы длины - метра, равного одной десятимиллионной части четверти дуги Парижского меридиана, послужило основой метрической системы. В 1832 г. немецким ученым Гауссом была предложена система, названная абсолютной, в которой в качестве основных единиц были введены миллиметр, миллиграмм, секунда. В физике нашла применение система СГС (сантиметр, грамм, секунда), в технике - МКС (метр, килограмм-сила, секунда).

Наиболее универсальной системой единиц, охватывающей все отрасли науки и техники, является Международная система единиц (Systeme International ďUnites - франц.) с сокращенным названием «SI», в русской транскрипции «СИ». Она была принята в 1960 г. XI Генеральной конференцией по мерам и весам. В настоящее время в систему СИ входят семь основных и две дополнительные единицы (табл. 1).

Таблица 1. Основные и дополнительные единицы системы СИ

Величина

Наименование

Обозначение

международное

Основные

Килограмм

Сила электрического тока

Термодинамическая температура

Количество вещества

Сила света

Дополнительные

Плоский угол

Телесный угол

Стерадиан

Кроме перечисленных в таблице 1, в систему СИ введены единицы количества информации бит (от binary digit - двоичный разряд) и байт (1 байт равен 8-и битам).

Система СИ насчитывает 18 производных единиц, имеющих специальные названия. Некоторые из них, находящие применение в спортивных измерениях, представлены в таблице 2.

Таблица 2. Некоторые производные единицы системы СИ

Величина

Наименование

Обозначение

Давление

Энергия, работа

Мощность

Электрическое напряжение

Электрическое сопротивление

Освещенность

Внесистемные единицы измерений, не относящиеся ни к системе СИ, ни к какой-либо другой системе единиц, используются в физической культуре и спорте в силу традиции и распространенности в справочной литературе. Применение некоторых из них ограничено. Наиболее часто используются следующие внесистемные единицы: единица времени - минута (1 мин = 60 с), плоского угла - градус (1 град = π/180 рад), объема - литр (1 л = 10 -3 м 3), силы - килограмм-сила (1 кГ = 9,81 Н) (не следует путать килограмм-силу кГ с килограммом массы кг), работы - килограммометр (1 кГ·м = 9,81 Дж), количества теплоты - калория (1 кал = 4,18 Дж), мощности - лошадиная сила (1 л. с. = 736 Вт), давления - миллиметр ртутного столба (1 мм рт. ст. = 121,1 Н/м 2).

К внесистемным единицам относятся десятичные кратные и дольные единицы, в наименовании которых имеются приставки: кило - тысяча (например, килограмм кг = 10 3 г), мега - миллион (мегаватт МВт = 10 6 Вт), милли - одна тысячная (миллиампер мА = 10 -3 А), микро - одна миллионная (микросекунда мкс = 10 -6 с), нано - одна миллиардная (нанометр нм = 10 -9 м) и др. В качестве единицы длины также используется ангстрем - одна десятимиллиардная метра (1 Å = 10-10 м). К этой же группе относятся национальные единицы, например, английские: дюйм = 0,0254 м, ярд = 0,9144 м или такие специфические, как морская миля = 1852 м.

Если измеренные физические величины используются непосредственно при педагогическом или биомеханическом контроле, и с ними не производятся дальнейшие вычисления, то они могут быть представлены в единицах разных систем или внесистемных единицах. Например, объем нагрузки в тяжелой атлетике может быть определен в килограммах или тоннах; угол сгибания ноги легкоатлета при беге - в градусах и т. п. Если же измеренные физические величины участвуют в вычислениях, то они обязательно должны быть представлены в единицах измерений одной системы. Например, в формулу для расчета момента инерции тела человека методом маятника период колебаний должен подставляться в секундах, расстояние - в метрах, масса - в килограммах.

4. Шкалы измерений

Шкалы измерений представляют собой упорядоченные совокупности значений физических величин. В спортивной практике находят применение четыре вида шкал.

Шкала наименований (номинальная шкала) является самой простой из всех шкал. В ней числа служат для обнаружения и различения изучаемых объектов. Например, каждому игроку футбольной команды присваивается конкретное число - номер. Соответственно, игрок под номером 1 отличается от игрока под номером 5 и т. д., но насколько они отличаются и в чем именно измерить нельзя. Можно лишь подсчитать, как часто встречается то или иное число.

Шкала порядка состоит из чисел (рангов), которые присваиваются спортсменам соответственно показанным результатам, например, местам на соревнованиях по боксу, борьбе т. п. В отличие от шкалы наименований, по шкале порядка можно установить, кто из спортсменов сильнее, а кто слабее, но насколько сильнее или слабее сказать нельзя. Шкала порядка широко используется для оценки качественных показателей спортивного мастерства. С рангами, найденными по шкале порядка, можно производить большое число математических операций, например, рассчитывать ранговые коэффициенты корреляции.

Шкала интервалов отличается тем, что числа в ней не только упорядочены по рангам, но и разделены определенными интервалами. В этой шкале установлены единицы измерения, и измеряемому объекту присваивается число, равное количеству единиц измерения, которое он содержит. Нулевая точка в шкале интервалов выбирается произвольно. Примером использования данной шкалы может быть измерение календарного времени (начало отсчета может быть выбрано разным), температуры по Цельсию, потенциальной энергии.

Шкала отношений имеет строго определенную нулевую точку. По этой шкале можно узнать, во сколько раз один объект измерения превышает другой. Например, при измерении длины прыжка находят, во сколько раз эта длина больше длины тела, принятого за единицу (метровой линейки). В спорте по шкале отношений измеряют расстояние, силу, скорость, ускорение и т. п.

5. Точность измерений

Точность измерения - это степень приближения результата измерения к действительному значению измеряемой величины. Погрешностью измерения называется разность между полученным при измерении значением и действительным значением измеряемой величины. Термины «точность измерения» и «погрешность измерения» имеют противоположный смысл и в равной мере используются для характеристики результата измерения.

Никакое измерение не может быть выполнено абсолютно точно, и результат измерения неизбежно содержит погрешность, значение которой тем меньше, чем точнее метод измерения и измерительный прибор.

По причинам возникновения погрешность разделяют на методическую, инструментальную и субъективную.

Методическая погрешность обусловлена несовершенством применяемого метода измерений и неадекватностью используемого математического аппарата. Например, маска для забора выдыхаемого воздуха затрудняет дыхание, что снижает измеряемую работоспособность; математическая операция линейного сглаживания по трем точкам зависимости ускорения звена тела спортсмена от времени может не отражать особенности кинематики движения в характерные моменты.

Инструментальная погрешность вызывается несовершенством средств измерения (измерительной аппаратуры), несоблюдением правил эксплуатации измерительных приборов. Она обычно приводится в технической документации на средства измерений.

Субъективная погрешность возникает вследствие невнимательности или недостаточной подготовленности оператора. Эта погрешность практически отсутствует при использовании автоматических средств измерений.

По характеру изменения результатов при повторных измерениях погрешность разделяют на систематическую и случайную.

Систематической называется погрешность, значение которой не меняется от измерения к измерению. Вследствие этого она часто может быть заранее предсказана и устранена. Систематические погрешности бывают известного происхождения и известного значения (например, запаздывание светового сигнала при измерении времени реакции из-за инертности электрической лампочки); известного происхождения, но неизвестного значения (прибор постоянно завышает или занижает измеряемое значение на разную величину); неизвестного происхождения и неизвестного значения.

Для исключения систематической погрешности вводятся соответствующие поправки, устраняющие сами источники погрешностей: правильно располагается измерительная аппаратура, соблюдаются условия ее эксплуатации и т. д. Применяется тарировка (нем. tariren - градуировать) - проверка показаний прибора путем сравнения с эталонами (образцовыми мерами или образцовыми измерительными приборами).

Случайной называется погрешность, возникающая под действием разнообразных факторов, которые нельзя заранее предсказать и учесть. Вследствие того, что на организм спортсмена и на спортивный результат влияют множество факторов, практически все измерения в области физической культуры и спорта имеют случайные погрешности. Они принципиально неустранимы, однако, с помощью методов математической статистики можно оценить их значение, определить необходимое число измерений для получения результата с заданной точностью, правильно интерпретировать результаты измерений. Основным способом уменьшения случайных погрешностей является проведение ряда повторных измерений.

В отдельную группу выделяют так называемую грубую погрешность, или промахи. Это - погрешность измерения, существенно превышающая ожидаемую. Промахи возникают, например, из-за неправильного отсчета по шкале прибора или ошибки в записи результата, внезапного скачка напряжения в сети и т. п. Промахи легко обнаруживаются, так как резко выпадают из общего ряда полученных чисел. Существуют статистические методы их обнаружения. Промахи должны быть отброшены.

По форме представления погрешность разделяют на абсолютную и относительную.

Абсолютная погрешность (или просто погрешность) ΔX равна разности между результатом измерения X и истинным значением измеряемой величины X 0 :

ΔX = X - X 0 (1)

Абсолютная погрешность измеряется в тех же единицах, что и сама измеряемая величина. Абсолютная погрешность линеек, магазинов сопротивлений и других мер в большинстве случаев соответствует цене деления. Например, для миллиметровой линейки ΔX = 1 мм.

Так как истинное значение измеряемой величины обычно установить не представляется возможным, в его качестве принимают значение данной величины, полученное более точным способом. Например, определение частоты шагов при беге на основе подсчета количества шагов за промежуток времени, измеренный с помощью ручного секундомера, дало результат 3,4 шаг/с. Этот же показатель, измеренный посредством радиотелеметрической системы, включающей в себя контактные датчики-переключатели, оказался 3,3 шаг/с. Следовательно, абсолютная погрешность измерения с помощью ручного секундомера составляет 3,4 - 3,3 = 0,1 шаг/с.

Погрешность средств измерения должна быть существенно ниже самой измеряемой величины и диапазона ее изменений. В противном случае результаты измерений не несут никакой объективной информации об изучаемом объекте и не могут быть использованы при любом виде контроля в спорте. Например, измерение максимальной силы сгибателей кисти динамометром с абсолютной погрешностью 3 кГ с учетом того, что значение силы находится обычно в пределах 30 - 50 кГ, не позволяет использовать результаты измерений при текущем контроле.

Относительная погрешность ԑ представляет процентное отношение абсолютной погрешности ΔX к значению измеряемой величины X (знак ΔX не учитывается):

(2)

Относительная погрешность измерительных приборов характеризуется классом точности K . Класс точности - это процентное отношение абсолютной погрешности прибора ΔX к максимальному значению измеряемой им величины X max :

(3)

Например, по степени точности электромеханические приборы делятся на 8 классов точности от 0,05 до 4.

В случае, когда погрешности измерений носят случайный характер, а сами измерения прямые и проводятся многократно, то их результат приводится в виде доверительного интервала при заданной доверительной вероятности. При небольшом количестве измерений n (объем выборки n ≤ 30) доверительный интервал:

(4)

при большом количестве измерений (объем выборки n ≥ 30) доверительный интервал:

(5)

где - выборочное среднее арифметическое (среднее арифметическое из измеренных значений);

S - выборочное стандартное отклонение;

t α - граничное значение t-критерия Стьюдента (находится по таблице t-распределения Стьюдента в зависимости от числа степеней свободы ν = n- 1 и уровня значимости α ; уровень значимости обычно принимается α = 0,05, что соответствует достаточной для большинства спортивных исследований доверительной вероятности 1 - α = 0,95, то есть 95%-й доверительной вероятности);

u α - процентные точки нормированного нормального распределения (для α = 0,05 u α = u 0,05 = 1,96).

В области физической культуры и спорта наряду с выражениями (4) и (5) результат измерений принято приводить (с указанием n ) в виде:

(6)

где - стандартная ошибка среднего арифметического .

Значения и в выражениях (4) и (5), а также в выражении (6) представляют собой абсолютную величину разности между выборочным средним и истинным значением измеряемой величины и, таким образом, характеризуют точность (погрешность) измерения.

Выборочные среднее арифметическое и стандартное отклонение, а также другие числовые характеристики могут быть рассчитаны на компьютере с использованием статистических пакетов, например, STATGRAPHICS Plus for Windows (работа с пакетом подробно изучается в курсе компьютерной обработки данных экспериментальных исследований - см. пособие А.Г. Катранова и А.В. Самсоновой, 2004).

Следует отметить, что измеряемые в спортивной практике величины не только определяются с той или иной погрешностью измерения (ошибкой), но и сами, как правило, варьируют в некоторых пределах в силу своей случайной природы. В большинстве случаев ошибки измерения существенно меньше значения естественного варьирования определяемой величины, и общий результат измерения, как и в случае случайной погрешности, приводится в форме выражений (4)-(6).

В качестве примера можно рассмотреть измерение результатов в беге на 100 м группы школьников в количестве 50 человек. Измерения проводились ручным секундомером с точностью до десятых долей секунды, то есть с абсолютной погрешностью 0,1 с. Результаты варьировали от 12,8 с до 17,6 с. Видно, что погрешность измерения существенно меньше результатов в беге и их варьирования. Вычисленные выборочные характеристики составили: = 15,4 с; S = 0,94 с. Подставляя данные значения, а также u α = 1,96 (при 95%-й доверительной вероятности) и n = 50 в выражение (5) и учитывая, что нет смысла вычислять границы доверительного интервала с большей точностью, чем точность измерения времени бега ручным секундомером (0,1 с), окончательный результат записывается в виде:

(15,4 ± 0,3) с, α = 0,05.

Часто при проведении спортивных измерений возникает вопрос: какое количество измерений надо произвести, чтобы получить результат с заданной точностью? Например, сколько необходимо выполнить прыжков в длину с места при оценке скоростно-силовых способностей, чтобы с 95%-й вероятностью определить средний результат, отличающийся от истинного значения не более, чем на 1 см? Если измеряемая величина является случайной и подчиняется нормальному закону распределения, то количество измерений (объем выборки) находится по формуле:

(7)

где d - отличие выборочного среднего результата от его истинного значения, то есть точность измерения, которая задается заранее.

В формуле (7) выборочное стандартное отклонение S рассчитывается на основе определенного количества предварительно проведенных измерений.

6. Средства измерений

Средства измерений - это технические устройства для измерения единиц физических величин, имеющие нормированные погрешности. К средствам измерений относятся: меры, датчики-преобразователи, измерительные приборы, измерительные системы.

Мерой называется средство измерения, предназначенное для воспроизведения физических величин заданного размера (линейки, гири, электрические сопротивления и др.).

Датчиком-преобразователем называется устройство для обнаружения физических свойств и преобразования измерительной информации в форму, удобную для обработки, хранения и передачи (концевые выключатели, переменные сопротивления, фоторезисторы и др.).

Измерительные приборы - это средства измерений, позволяющие получить измерительную информацию в форме, удобной для восприятия пользователем. Они состоят из преобразовательных элементов, образующих измерительную цепь, и отсчетного устройства. В практике спортивных измерений широко применяются электромеханические и цифровые приборы (амперметры, вольтметры, омметры и др.).

Измерительные системы состоят из функционально объединенных средств измерения и вспомогательных устройств, соединенных каналами связи (система измерения межзвенных углов, усилий и т. п.).

С учетом применяемых методов средства измерений подразделяются на контактные и бесконтактные. Контактные средства предполагают непосредственное взаимодействие с телом испытуемого или спортивным снарядом. Бесконтактные средства основаны на светорегистрации. Например, ускорение спортивного снаряда может быть измерено при помощи контактных средств с использованием датчиков-акселерометров или бесконтактных средств с использованием стробосъемки.

В последнее время появились мощные автоматизированные измерительные системы, такие, как система распознавания и оцифровки движений человека MoCap (motion capture - захват движения). Данная система представляет собой набор датчиков, прикрепляемых к телу спортсмена, информация с которых поступает на компьютер и обрабатывается соответствующим программным обеспечением. Координаты каждого датчика пеленгуются специальными детекторами 500 раз в секунду. Система обеспечивает точность измерения пространственных координат не хуже 5 мм.

Подробно средства и методы измерений рассматриваются в соответствующих разделах теоретического курса и практикума по спортивной метрологии.

7. Единство измерений

Единство измерений представляет собой такое состояние измерений, при котором обеспечивается их достоверность, а значения измеряемых величин выражаются в узаконенных единицах. Единство измерений базируется на правовых, организационных и технических основах.

Правовые основы обеспечения единства измерений представлены законом Российской Федерации «Об обеспечении единства измерений», принятым в 1993 г. Основные статьи закона устанавливают: структуру государственного управления обеспечения единства измерений; нормативные документы по обеспечению единства измерений; единицы величин и государственные эталоны единиц величин; средства и методики измерений.

Организационные основы обеспечения единства измерений заключаются в работе метрологической службы России, которая состоит из государственной и ведомственных метрологических служб. Ведомственная метрологическая служба есть и в спортивной области.

Технической основой обеспечения единства измерений является система воспроизведения определенных размеров физических величин и передачи информации о них всем без исключения средствам измерений в стране.

Вопросы для самоконтроля

  1. Какие элементы включает в себя система измерения физических величин?
  2. На какие виды делятся измерения?
  3. Какие единицы измерений входят в Международную систему единиц?
  4. Какие внесистемные единицы измерений наиболее часто используются в спортивной практике?
  5. Какие известны шкалы измерений?
  6. Что такое точность и погрешность измерений?
  7. Какие существуют виды погрешности измерений?
  8. Как устранить или уменьшить погрешность измерений?
  9. Как рассчитать погрешность и записать результат прямого измерения?
  10. Как найти количество измерений для получения результата с заданной точностью?
  11. Какие существуют средства измерений?
  12. Что является основами обеспечения единства измерений?

Источник: «Спортивная метрология » , 2016 г.

РАЗДЕЛ 2. АНАЛИЗ СОРЕВНОВАТЕЛЬНОЙ И ТРЕНИРОВОЧНОЙ ДЕЯТЕЛЬНОСТИ

ГЛАВА 2. Анализ соревновательной деятельности -

2.1 Статистика Международной федерации хоккея с шайбой (IIHF)

2.2 Статистика Corsi

2.3 Статистика Fenwick

2.4 Статистический показатель PDO

2.5 Статистика FenCIose

2.6 Оценка качества соревновательной деятельности игрока (QoC)

2.7 Оценка качества соревновательной деятельности партнёров но звену (QoT)

2.8 Анализ преимущественного использования хоккеиста

ГЛАВА 3. Анализ технико-тактической подготовленности -

3.1 Анализ эффективности технико-тактических действий

3.2 Анализ объёма выполненных технических действий

3.3 Анализ разносторонности технических действий

3.4 Оценка тактического мышления

ГЛАВА 4. Учёт соревновательных и тренировочных нагрузок

4.1 Учёт внешней стороны нагрузки

4.2 Учёт внутренней стороны нагрузки

РАЗДЕЛ 3. КОНТРОЛЬ ФИЗИЧЕСКОГО РАЗВИТИЯ И ФУНКЦИОНАЛЬНОГО СОСТОЯНИЯ

6.1 Методы определения состава тела

6.2.3.2 Формулы для оценки жировой массы тела

6.3.1 Физические основы метода

6.3.2 Методика интегрального исследования

6.3.2.1 Интерпретация результатов исследования.

6.3.3 Региональные и полисегментные методики оценки состава тела

6.3.4 Безопасность метода

6.3.5 Надёжность метода

6.3.6 Показатели хоккеистов высокой квалификации

6.4 Сравнение результатов, полученных при биоимпедансном анализе и калиперометрии

6.5.1 Методика измерений

6.6 Композиция мышечных волокон???

7.1 Классические методики оценки состояния спортсмена

7.2 Систематический комплексный контроль состояния и готовности спортсмена с помощью технологии Omegawave

7.2.1 Практическая реализация концепта готовности в технологии Omegawave

7.2.LI Готовность центральной нервной системы

7.2.1.2 Готовность сердечной системы и автономной нервной системы

7.2.1.3 Готовность систем энергообеспечения

7.2.1.4 Готовность нервно-мышечной системы

7.2.1.5 Готовность сенсомоторной системы

7.2.1.6 Готовность целостного организма

7.2.2. Результаты..

РАЗДЕЛ 4. Психодиагностика и психологическое тестирование в спорте

ГЛАВА 8. Основы психологического тестирования

8.1 Классификация методов

8.2 Изучение структурных компонентов личности хоккеиста

8.2.1 Исследование спортивной направленности, тревожности и уровня притязаний

8.2.2 Оценка типологических свойств и особенностей темперамента

8.2.3 Характеристика отдельных сторон личности спортсмена

8.3 Комплексная оценка личности

8.3.1 Проективные методики

8.3.2 Анализ характерологических особенностей спортсмена и тренера

8.4 Исследование личности спортсмена в системе общественных отношений

8.4.1 Социометрия и оценка команды

8.4.2 Измерение взаимоотношений между тренером и спортсменом

8.4.3 Групповая оценка личности

Оценка общей психологической устойчивости и надёжности спортсмена 151

8.4.5 Методики оценки волевых качеств.....154

8.5 Исследование психических процессов......155

8.5.1 Ощущение и восприятие155

8.5.2 Внимание.157

8.5.3 Память..157

8.5.4 Особенности мышления158

8.6 Диагностика психических состояний159

8.6.1 Оценка эмоциональных состояний.....159

8.6.2 Оценка состояния нервно-психического напряжения..160

8.6.3 Цветовой тест Лютера161

8.7 Основные причины ошибок при психодиагностических исследованиях.....162

Заключение.....163

Литература.....163

РАЗДЕЛ 5. КОНТРОЛЬ ФИЗИЧЕСКОЙ ПОДГОТОВЛЕННОСТИ

ГЛАВА 9. Проблема обратной связи в управлении подготовкой

в современном профессиональном хоккее171

9.1 Характеристика опрошенною контингента...173

9.1.1 Место работы..173

9.1.2 Возраст..174

9.1.3 Тренерский стаж175

9.1.4 Текущая должность..176

9.2 Анализ результатов анкетною опроса тренеров профессиональных клубов и Национальных сборных..177

9.3 Анализ методов оценки функциональной подготовленности спортсменов.... 182

9.4 Анализ результатов тестирований183

9.5 Выводы.....186

ГЛАВА 10. Функциональные двигательные способности.187

10.1 Подвижность.190

10.2 Устойчивость.190

10.3 Тестирование функциональных двигательных способностей191

10.3.1 Критерии оценки191

10.3.2 Интерпретация результатов.191

10.3.3 Тесты для качественной оценки функциональных двигательных способностей.192

10.3.4 Протокол результатов тестирования функциональных двигательных способностей.202

ГЛАВА 11. Силовые способности.205

11.1 Метрология силовых способностей207

11.2 Тесты для оценки силовых способностей....208

11.2.1 Тесты для оценки абсолютной (максимальной) силы мышц.209

11.2.1.1 Тесты для оценки абсолютной (максимальной) силы мышц с использованием динамометров.209

11.2.1.2 Максимальные тесты для оценки абсолютной силы мышц с использованием штанги и предельных отягощений.214

11.2.1.3 Протокол для оценки абсолютной силы мышц с использованием штанги и непредельных отягощений218

11.2.2 Тесты для оценки скоростно-силовых способностей и мощности.....219

11.2.2.1 Тесты для оценки скоростно-силовых способностей и мощности с использованием штанги.219

11.2.2.2 Тесты для оценки скоростно-силовых способностей и мощности с использованием медицинболов.222

11.2.2.3 Тесты для оценки скоростно-силовых способностей и мощности с использованием велоэргометров229

11.2.2.4 Тесты для оценки скоростно-силовых способностей и мощности с использованием иного оборудования234

11.2.2.5 Прыжковые тесты для оценки скоростно-силовых способностей и мощности.....236

11.3 Тесты для оценки специальных силовых способностей полевых игроков.... 250

ГЛАВА 12. Скоростные способности......253

12.1 Метрология скоростных способностей.....255

12.2 Тесты для оценки скоростных способностей..256

12.2.1 Тесты для оценки быстроты реакции...257

12.2.1.1 Оценка простой реакции......257

12.2.1.2 Оценка реакции выбора из нескольких сигналов258

12.2.1.3 Оценка скорости ответного действия на определённую тактическую ситуацию......260

12.2.1.4 Оценка реакции на движущийся объект261

12.2.2 Тесты для оценки скорости одиночных движений261

12.2.3 Тесты для оценки максимальной частоты движений.261

12.2.4 Тесты для оценки скорости, проявляемой в целостных двигательных действиях264

12.2.4.1 Тесты для оценки стартовой скорости265

12.2.4.2 Тесты для оценки дистанционной скорости..266

12.2.5 Тесты для оценки быстроты торможения.26“

12.3 Тесты для оценки специальных скоростных способностей полевых игроков. . 26*

12.3.1 Протокол теста бег на коньках 27.5/30/36 метров лицом и спиной вперёд для оценки мощности анаэробно-алактатного механизма энергообеспечения.. 2“3

Тесты для оценки емкости анаэробно-алактатного механизма энергообеспечения..273

НА Тесты для оценки специальных скоростных способностей вратарей277

12.4.1 Тесты для оценки быстроты реакции вратаря.277

12.4.2 Тесты для оценки скорости, проявляемой в целостных двигательных действиях вратарей..279

ГЛАВА 13. Выносливость.281

13.1 Метрология выносливости.283

13.2 Тесты для оценки выносливости285

13.2.1 Прямой метод оценки выносливости...289

13.2.1.1 Максимальные тесты для оценка скоростной выносливости и ёмкости анаэробно-алактатного механизма энергообеспечения. . 290

13.2.1.2 Максимальные тесты для оценки региональной скоростно-силовой выносливости.292

13.2.1.3 Максимальные тесты для оценки скоростной и скоростно-силовой выносливости и мощности анаэробно-гликолитического механизма энергообеспечения...295

13.2.1.4 Максимальные тесты для оценки скоростной и скоростно-силовой выносливости и ёмкости анаэробно-гликолитического механизма энергообеспечения...300

13.2.1.5 Максимальные тесты для оценки глобальной силовой выносливости.301

13.2.1.6 Максимальные тесты для оценки МПК и общей (аэробной) выносливости.316

13.2.1.7 Максимальные тесты для оценки ПАНО и общей (аэробной) выносливости.320

13.2.1.8 Максимальные тесты для оценки ЧССоткл и общей (аэробной) выносливости.323

13.2.1.9 Максимальные тесты для оценки общей (аэробной) выносливости. . 329

13.2.2 Косвенный метод оценки выносливости (тесты с субмаксимальной мощностью нагрузок)330

13.3 Тесты для оценки специальной выносливости полевых игроков336

13.4 Тесты для оценки специальной выносливости вратарей341

ГЛАВА 14. Гибкость.343

14.1 Метрология гибкости345

14.1.1 Факторы, влияющие на гибкость.....345

14.2 Тесты для оценки гибкости.346

ГЛАВА 15. Координационные способности..353

15.1 Метрология координационных способностей.355

15.1.1 Классификация видов координационных способностей357

15.1.2 Критерии оценки координационных способностей..358

5.2 Тесты для оценки координационных способностей.359

15.2.1 Контроль координации движений.....362

15.2.2 Контроль способности поддерживать равновесие тела (баланс)......364

15.2.3 Контроль точности оценивания и отмеривания параметров движений. . . 367

15.2.4 Контроль координационных способностей в их комплексном проявлении. . 369

15.3 Тесты для оценки специальных координационных способностей и технической подготовленности полевых игроков.382

15.3.1 Тесты для оценки техники передвижения на коньках и владения шайбой. . 382

15.3.1.1 Контроль техники бега на коньках скрестным шагом382

15.3.1.2 Контроль способности к смене направления движения на коньках. . 384

15.3.1.3 Контроль техники исполнения виражей на коньках387

15.3.1.4 Контроль техники переходов с бега на коньках лицом вперёд на бег спиной вперёд и наоборот.388

15.3.1.5 Контроль техники владения клюшкой и шайбой392

15.3.1.6 Контроль специальных координационных способностей в их комплексном проявлении

15.3.2 Тесты для оценки техники торможений и способности к быстрой смене направлений движений

15.3.3 Гесты для оценки точности бросков и передач шайбы

15.3.3.1 Контроль точности бросков

15.3.3.2 Контроль точности передач шайбы

15.4 Тесты для оценки специальных координационных способностей и технической подготовленности вратарей

15.4.1 Контроль техники перемещений приставным шагом

15.4.2 Контроль техники перемещения Т-образным скольжением

15.4.3 Контроль техники перемещения поперечным скольжением на щитках

15.4.4 Оценка техники контроля отскока шайбы

15.4.5 Контроль специальных координационных способностей вратарей в их комплексном проявлении

ГЛАВА 16. Взаимосвязь в проявлении различных видов физических способностей на льду и вне льда

16.1 Взаимосвязь скоростных, силовых и скоростно-силовых способностей хоккеистов на льду и вне льда

16.1.1 Организация исследования

16.1.2 Анализ взаимосвязи скоростных, силовых и скоростно-силовых способностей хоккеистов на льду и вне льда

16.2 Взаимосвязь между различными показателями координационных способностей

16.2.1 Организация исследования

16.2.2 Анализ взаимосвязи между различными показателями координационных способностей

17.1 Оптимальная комплексная батарея тестирования ОФП и СФП

17.2 Анализ данных

17.2.1 Планирование подготовки исходя из особенностей календаря

17.2.2 Составление протокола тестирования

17.2.3 Индивидуализация

17.2.4 Мониторинг прогресса и оценка эффективности тренировочной программы

Введение в предмет спортивной метрологии

Спортивная метрология - это наука об измерениях в физическом воспитании и спорте, её задача - обеспечение единства и точности измерений . Предметом спортивной метрологии является комплексный контроль в спорте и физическом воспитании, а также дальнейшее использование полученных данных в подготовке спортсменов .

Основы метрологии комплексного контроля

Подготовка спортсмена представляет собой управляемый процесс. Важнейшим ее атрибутом является обратная связь. Основу её содержания составляет комплексный контроль, который даёт тренерам возможность получать объективную информацию о проделанной работе и тех функциональных сдвигах, которые она вызвала. Это позволяет вносить необходимые коррективы в тренировочный процесс.

Комплексный контроль включает педагогический, медико-биологический и психологический разделы. Эффективный процесс подготовки возможен лишь при комплексном использовании всех разделов контроля.

Управление процессом подготовки спортсменов

Управление процессом подготовки спортсменов включает пять этапов :

  1. сбор информации о спортсмене;
  2. анализ полученных данных;
  3. разработка стратегии и составление планов подготовки и тренировочных программ;
  4. их реализация;
  5. контроль за эффективностью реализации программ и планов, своевременное внесение корректировок.

Специалисты в области хоккея получают большой объём субъективной информации о подготовленности игроков в ходе тренировочной и соревновательной деятельности. Несомненно, тренерский штаб нуждается и в объективной информации об отдельных сторонах подготовленности, которую можно получить только в специально созданных стандартных условиях.

Эта задача может быть решена применением программы тестирования, состоящей из минимально возможного количества тестов, позволяющих получить максимум полезной и всесторонней информации.

Виды контроля

Основными видами педагогического контроля являются :

  • Этапный контроль - оценивает устойчивые состояния хоккеистов и проводится, как правило, в конце определённого этапа подготовки;
  • Текущий контроль - отслеживает скорость и характер протекания восстановительных процессов, а также состояние спортсменов в целом по итогам учебно-тренировочного занятия или их серии;
  • Оперативный контроль - даёт экспресс-оценку состояния игрока на данный конкретный момент: между заданиями или по завершении тренировочного занятия, между выходами на лёд в ходе матча, а также в перерыве между периодами.

Основными методами контроля в хоккее являются педагогические наблюдения и тестирование .

Основы теории измерений

«Измерением какой-либо физической величины называется операция в результате которой определяется, во сколько раз эта величина больше (или меньше) другой величины, принятой за эталон» .

Шкалы измерений

Существует четыре основные шкалы измерений:

Таблица 1. Характеристики и примеры шкал измерений

Характеристики

Математические методы

Наименований

Объекты сгруппированы, а группы обозначены номерами. То, что номер одной группы больше или меньше другой, еще ничего не говорит об их свойствах, за исключением того, что они различаются

Число случаев

Тетрахорические и полихорические коэффициенты корреляции

Номер спортсмена Амплуа и т.д.

Числа, присвоенные объектам, отражают количество свойства, принадлежащего им. Возможно установление соотношения «больше» или «меньше»

Ранговая корреляция Ранговые критерии Проверка гипотез непараметрической статистики

Результаты ранжирования спортсменов в тесте

Интервалов

Существует единица измерений, при помощи которой объекты можно не только упорядочить, но и приписать им числа так, чтобы разные разности отражали разные различия в количестве измеряемого свойства. Нулевая точка произвольна и не указывает на отсутствие свойства

Все методы статистики кроме определения отношений

Температура тела, суставные углы и т.д.

Отношений

Числа, присвоенные предметам, обладают всеми свойствами интервальной шкалы. На шкале существует абсолютный нуль, который указывает на полное отсутствие данного свойства у объекта. Отношение чисел, присвоенных объектам после измерений, отражают количественные отношения измеряемого свойства.

Все методы статистики

Длина и масса тела Сила движений Ускорение и т.п.

Точность измерений

В спорте наиболее часто применяются два типа измерений: прямое (искомое значение находится из опытных данных) и косвенное (искомое выводится на основании зависимости одной величины от других, подвергаемых измерению). К примеру, в тесте Купера дистанцию измеряют (прямой метод), а МПК получают методом расчёта (косвенный метод).

Согласно законам метрологии, любые измерения имеют погрешность. Задача свести её к минимуму. От точности измерения зависит объективность оценки; исходя из этого, знание точности измерений является обязательным условием.

Систематические и случайные ошибки измерений

Согласно теории ошибок, их подразделяют на систематические и случайные.

Величина первых всегда одинакова, если измерения проводятся одним и тем же методом с использованием одних и тех же приборов. Выделяют следующие группы систематических ошибок :

  • причина их возникновения известна и довольно точно определяется. Сюда можно отнести изменение длины рулетки ввиду изменений температуры воздуха при прыжке в длину;
  • причина известна, а величина нет. Данные ошибки зависят от класса точности измерительных устройств;
  • причина и величина неизвестны. Данный случай можно наблюдать при сложных измерениях, когда попросту невозможно учесть все возможные источники погрешностей;
  • ошибки, связанные со свойствами объекта измерения. Сюда можно отнести уровень стабильности спортсмена, степень его утомлённости или возбуждения и т.п.

Для устранения систематической погрешности измерительные устройства предварительно проверяют и сравнивают с показателями эталонов либо калибруют (определяется погрешность и величина поправок).

Случайными называются такие ошибки, которые предсказать заранее попросту невозможно. Их выявляют и учитывают с помощью теории вероятностей и математического аппарата.

Абсолютные и относительные ошибки измерений

Различие, равное разности между показателями измерительного устройства и истинным значением, является абсолютной погрешностью измерения (выражается в тех же единицах, что и измеряемая величина) :

х = х ист -х изм, (1.1)

где х - абсолютная погрешность.

При проведении тестирования часто возникает необходимость в определении не абсолютной, а относительной погрешности:

X отн =х/х отн * 100% (1.2)

Основные требования к тестам

Тестом называется испытание или измерение, проводимое с целью определения состояния спортсмена либо его способностей . Испытания, удовлетворяющие следующим требованиям, могут быть использованы в качестве тестов :

  • наличие цели;
  • стандартизированы процедура и методика тестирования;
  • определена степень их надёжности и информативности;
  • имеется система оценки результатов;
  • указан вид контроля (оперативный, текущий или этапный).

Все тесты подразделяются на группы в зависимости от цели:

1) показатели, измеряемые в покое (длина и масса тела, ЧСС и т.д.);

2) стандартные тесты с использованием немаксимальной нагрузки (например, бег на тредбане 6 м/с в течение 10 минут). Отличительной чертой данных тестов является отсутствие мотивации на достижение максимально возможного результата. Результат зависит от способа задания нагрузки: к примеру, если она задаётся по величине сдвигов медико-биологических показателей (например, бег при ЧСС 160 уд/мин), то измеряются физические величины нагрузки (расстояние, время и т.п.) и наоборот.

3) максимальные тесты с высоким психологическим настроем на достижение предельно возможного результата. В данном случае измеряются значения различных функциональных систем (МПК, ЧСС и т.п.). Фактор мотивации является главным недостатком данных тестов. Крайне сложно мотивировать игрока, имеющего на руках подписанный контракт, на максимальный результат в контрольном упражнении .

Стандартизация измерительных процедур

Тестирования могут быть эффективными и полезными тренеру только при условии их систематического использования. Это даёт возможность проанализировать степень прогресса хоккеистов, оценить эффективность тренировочной программы, а также нормировать нагрузку в зависимости от динамики показателей спортсменов

е) общая выносливость (аэробный механизм энергообеспечения);

6) интервалы отдыха между попытками и испытаниями обязаны быть до полного восстановления испытуемого:

а) между повторениями упражнений, не требующих максимальных усилий - не менее 2-3 минут;

б) между повторениями упражнений с максимальными усилиями - не менее 3-5 минут;

7) мотивация на достижение максимального результата. Достижение данного условия бывает достаточно затруднительным, особенно когда речь идёт о профессиональных спортсменах. Здесь всё во многом зависит от харизмы, лидерских качеств

ISBN 5900871517 Цикл лекций предназначен для студентов очного и заочного отделений факультетов физической культуры педагогических университетов и институтов. И термин измерение в спортивной метрологии трактуется в самом широком смысле и понимается как установление соответствия между изучаемыми явлениями и числами В современной теории и практике спорта широко используются измерения для решения самых разнообразных задач управления подготовкой спортсменов. Многомерность большое число переменных которые нужно...


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


PAGE 2

УДК 796

Полевщиков М.М. Спортивная метрология. Лекция 3: Измерения в физической культуре и спорте. / Марийский государственный университет. – Йошкар-Ола: МарГУ, 2008. - 34с.

ISBN 5-900871-51-7

Цикл лекций предназначен для студентов очного и заочного отделений факультетов физической культуры педагогических университетов и институтов. В сборниках содержится теоретический материал по основам метрологии, стандартизации, раскрывается содержание управления и контроля в процессе физического воспитания и спорте.

Предлагаемое пособие будет полезно не только студентам при изучении учебной дисциплины «Спортивная метрология», но и преподавателям вузов, аспирантам, занимающихся научно-исследовательской работой.

Марийский государственный

Университет, 2008.

ИЗМЕРЕНИЯ В ФИЗИЧЕСКОЙ КУЛЬТУРЕ И СПОРТЕ

Тестирование – косвенное измерение

Оценка – унифицированный измеритель

Спортивных результатов и тестов

Особенности измерений в спорте

Предметами спортивной метрологии, как части общей метрологии, являются измерения и контроль в спорте. И термин «измерение» в спортивной метрологии трактуется в самом широком смысле и понимается как установление соответствия между изучаемыми явлениями и числами

В современной теории и практике спорта широко используются измерения для решения самых разнообразных задач управления подготовкой спортсменов. Эти задачи касаются непосредственного изучения педагогических и биомеханических параметров спортивного мастерства, диагностики энерго-функциональных параметров спортивной работоспособности, учета анатомо-морфологических параметров физиологического развития, контроля психических состояний.

Основными измеряемыми и контролируемыми параметрами в спортивной медицине, тренировочном процессе и в научных исследованиях по спорту являются: физиологические («внутренние»), физические («внешние») и психологические параметры тренировочной нагрузки и восстановления; параметры качеств силы, быстроты, выносливости, гибкости и ловкости; функциональные параметры сердечно-сосудистой и дыхательной систем; биомеханические параметры спортивной техники; линейные и дуговые параметры размеров тела.

Как и всякая живая система, спортсмен является сложным, нетривиальным объектом измерения. От привычных, классических объектов измерения спортсмен имеет ряд отличий: изменчивость, многомерность, квалитативность, адаптивность и подвижность. Изменчивость – непостоянство переменных величин, характеризующих состояние спортсмена и его деятельность. Непрерывно изменяются все показатели спортсмена: физиологические (потребление кислорода, частота пульса и др.), морфо-анатомические (рост, вес, пропорции тела и т.п.), биомеханические (кинематические, динамические и энергетические характеристики движений), психо-физиологические и т.д. Изменчивость делает необходимыми многократные измерения и обработку их результатов методами математической статистики.

Многомерность - большое число переменных, которые нужно одновременно измерять для того, чтобы точно охарактеризовать состояние и деятельность спортсмена. Наряду с переменными, характеризующими спортсмена, «выходными переменными», следует контролировать и «входные переменные», характеризующие влияние внешней среды на спортсмена. Роль входных переменных могут играть: интенсивность физических и эмоциональных нагрузок, концентрация кислорода во вдыхаемом воздухе, температура окружающей среды и т.д. Стремление снизить число измеряемых переменных – характерная особенность спортивной метрологии. Оно обусловлено не только организационными трудностями, возникающими при попытках одновременно зарегистрировать много переменных, но с тем, что с ростом числа переменных резко возрастает трудоемкость их анализа.

Квалитативность – качественный характер (от латинского qualitas – качество), т.е. отсутствие точной, количественной меры. Физические качества спортсмена, свойства личности и коллектива, качество инвентаря и многие другие факторы спортивного результата еще не поддаются точному измерению, но тем не менее должны быть оценены как можно точнее. Без такой оценки затруднен дальнейший прогресс как в спорте высших достижений, так и в массовой физкультуре, остро нуждающейся в контроле за состоянием здоровья и нагрузками занимающихся.

Адаптивность – свойство человека приспосабливаться (адаптироваться) к окружающим условиям. Адаптивность лежит в основе обучаемости и дает спортсмену возможность осваивать новые элементы движений и выполнять их в обычных и в усложненных условиях (на жаре и холоде, при эмоциональном напряжении, утомлении, гипоксии и т.д.). Но одновременно адаптивность усложняет задачу спортивных измерений. При многократных исследованиях спортсмен привыкает к процедуре исследования («учится быть исследуемым») и по мере такого обучения начинает показывать иные результаты, хотя его функциональное состояние при этом может оставаться неизменным.

Подвижность - особенность спортсмена, основанная на том, что в подавляющем большинстве видов спорта деятельность спортсмена связана с непрерывными перемещениями. По сравнению с исследованиями, проводимыми с неподвижным человеком, измерения в условиях спортивной деятельности сопровождаются дополнительными искажениями регистрируемых кривых и ошибками в измерениях.

Тестирование – косвенное измерение.

Тестированием заменяют измерение всякий раз, когда изучаемый объект недоступен прямому измерению. Например, практически невозможно точно определить производительность сердца спортсмена во время напряженной мышечной работы. Поэтому применяют косвенное измерение: измеряют частоту сердечных сокращений и другие кардиологические показатели, характеризующие сердечную производительность. Тесты используют и в тех случаях, когда изучаемое явление не вполне конкретно. Например, правильнее говорить о тестировании ловкости, гибкости и т.п., чем об их измерении. Однако гибкость (подвижность) в определенном суставе и в определенных условиях можно измерить.

Тестом (от английского test – проба, испытание) в спортивной практике называется измерение или испытание, проводимое с целью определения состояния или способностей человека.

Различных измерений и испытаний может быть произведено очень много, но не всякие измерения могут быть использованы как тесты. Тестом в спортивной практике может быть названо только то измерение или испытание, которое отвечает следующим метрологическим требованиям :

  • должна быть определена цель применения теста; стандартность (методика, процедура и условия тестирования должны быть одинаковыми во всех случаях применения теста);
  • следует определить надежность и информативность теста;
  • для теста необходима система оценок;
  • необходимо указать вид контроля (оперативный, текущий или этапный).

Тесты, удовлетворяющие требованиям надежности и информативности, называют добротными или аутентичными .

Процесс испытаний называется тестированием , а полученное в итоге измерения или испытания числовое значение является результатом тестирования (или результатом теста). Например, бег на 100 метров – это тест, процедура проведения забегов и хронометража – тестирование, время бега – результат теста.

Что касается классификации тестов, то анализ зарубежной и отечественной литературы показывает, что существуют различные подходы к этой проблеме. В зависимости от области применения существуют тесты: педагогические, психологические, достижений, индивидуально-ориентированные, интеллекта, специальных способностей и т.д. По методологии интерпретации результатов тестирования тесты классифицируются на нормативно-ориентированные и критериально-ориентированные.

Нормативно-ориентированный тест (по-английски norm - referenced test ) позволяет сравнивать достижения (уровень подготовки) отдельных испытуемых друг с другом. Нормативно-ориентированные тесты используются для того, чтобы получить надежные и нормально распределенные баллы для сравнения тестируемых.

Балл (индивидуальный балл, тестовый балл) – количественный показатель выраженности измеряемого свойства у данного испытуемого, полученный при помощи данного теста.

Критериально-ориентированный тест (по-английски criterion - referenced test ) позволяет оценивать, в какой степени испытуемые овладели необходимым заданием (двигательным качеством, техникой движений и т.д.).

Тесты, в основе которых лежат двигательные задания, называют двигательными или моторными . Результатами их могут быть либо двигательные достижения (время прохождения дистанции, число повторений, пройденное расстояние и т.п.), либо физиологические и биохимические показатели. В зависимости от этого, а также от целей двигательные тесты подразделяются на три группы.

Таблица 1. Разновидности двигательных тестов

Название теста Задание спортсмену Результат теста Пример

Контрольные Показать максимальный Двигательные Бег 1500 м,

упражнения результат достижения время бега

Стандартные Одинаковое для всех, Физиологические или Регистрация ЧСС

При

Функциональные дозируется: а)по величи- биохимические показате- стандартной работе

Пробы не выполненной работы ли при стандартной рабо- 1000 кГм/мин

Либо те.

Б) по величине физиоло- Двигательные показатели Скорость бега при

Гических сдвигов. при стандартной величи- ЧСС 160 уд/мин

Не физиологических

Сдвигов.

Максимальные Показать максимальный Физиологические или Определение максимального

Функциональные результат биохимические показа- кислородного

Долга или мак-

Пробы тели симального

Потребления

Кислорода

Тесты, результаты которых зависят от двух и более факторов, называются гетерогенными , а если преимущественного от одного фактора, то - гомогенными тестами. Чаще в спортивной практике используется не один, а несколько тестов, имеющих общую конечную цель. Такую группу тестов принято называть комплексом или батареей тестов .

Правильное определение цели тестирования содействует правильному подбору тестов. Измерения различных сторон подготовленности спортсменов должны проводиться систематически . Это дает возможность сравнивать значения показателей на разных этапах тренировки и в зависимости от динамики приростов в тестах нормировать нагрузку.

Эффективность нормирования зависит от точности результатов контроля, которая в свою очередь зависит от стандартности проведения тестов и измерения в них результатов. Для стандартизации проведения тестирования в спортивной практике следует соблюдать следующие требования:

1) режим дня, предшествующего тестированию должен строиться по одной схеме. В нем исключаются средние и большие нагрузки, но могут проводиться занятия восстановительного характера. Это обеспечит равенство текущих состояний спортсменов, и исходный уровень перед тестированием будет одинаковым;

2) разминка перед тестированием должна быть стандартной (по длительности, подбору упражнений, последовательности их выполнения);

3) тестирование по возможности должны проводить одни и те же, умеющие это делать люди;

4) схема выполнения теста не изменяется и остается постоянной от тестирования к тестированию;

5) интервалы между повторениями одного и того же теста должны ликвидировать утомление, возникшее после первой попытки;

6) спортсмен должен стремиться показать в тесте максимально возможный результат. Такая мотивация реальна, если в ходе тестирования создается соревновательная обстановка. Однако этот фактор хорошо действует при контроле подготовленности детей. У взрослых спортсменов высокое качество тестирования возможно лишь в том случае, если комплексный контроль будет систематическим и по его результатам будет корректироваться содержание тренировочного процесса.

Описание методики выполнения любого теста должно учитывать все эти требования.

Точность тестирования оценивается иначе, чем точность измерения. При оценке точности измерения результат измерения сопоставляют с результатом, полученным более точным методом. При тестировании возможность сравнения полученных результатов с более точными чаще всего отсутствует. И поэтому нужно проверять не качество получаемых при тестировании результатов, а качество самого измерительного инструмента – теста. Качество теста определяется его информативностью, надежностью и объективностью.

Надежность тестов.

Надежностью тестов называется степень совпадения результатов при повторном тестировании одних и тех же людей в одинаковых условиях. Вполне понятно, что полное совпадение результатов при повторных измерениях практически невозможно.

Вариацию результатов при повторных измерениях называют внутрииндивидуальной или внутригрупповой , либо внутриклассовой . Основными причинами такой вариации результатов тестирования, которая искажает оценку истинного состояния подготовленности спортсмена, т.е. вносит определенную ошибку или погрешность в эту оценку, являются следующие обстоятельства:

1) случайные изменения состояния испытуемых в процессе тестирования (психологический стресс, привыкание, утомление, изменение мотивации к выполнению теста, изменение концентрации внимания, нестабильность исходной позы и других условий процедуры измерений при тестировании);

2) неконтролируемые изменения внешних условий ( температура, влажность , ветер, солнечная радиация , присутствие посторонних лиц и т.п.);

3) нестабильность метрологических характеристик технических средств измерения (ТСИ) , используемых при тестировании. Нестабильность может быть вызвана несколькими причинами, обусловленными несовершенством применяемых ТСИ: погрешностью результатов измерения из-за изменений напряжения сети, нестабильностью характеристик электронных измерительных приборов и датчиков при изменениях температуры, влажности, наличием электромагнитных помех и т.п. Следует отметить , что по этой причине погрешности измерений могут составлять значительные величины;

  1. изменения состояния экспериментатора (оператора, тренера, педагога, судьи) , осуществляющего или оценивающего результаты тестирования

И замена одного экспериментатора другим;

  1. несовершенство теста для оценки данного качества или конкретного показателя подготовленности.

Существуют специальные математические формулы для определения коэффициента надежности теста.

В таблице 2 приведена градация уровней надежности тестов.

Тесты, надежность которых меньше указанных в таблице значений, использовать не рекомендуется.

Говоря о надежности тестов, различают их стабильность (воспроизводимость), согласованность, эквивалентность.

Под стабильностью теста понимают вопроизводимостъ результатов при его повторении через определенное время в одинаковых условиях. Повторное тестирование обычно называют ретестом . Стабильность теста зависит от:

Вида теста;

Контингента испытуемых;

Временного интервала между тестом и ретестом.

Для количественной оценки стабильности используется дисперсионный анализ, по той же схеме, что и в случае расчета обычной надежности.

Согласованность теста характеризуется независимостью результатов тестирования от личных качеств лица, проводящего или оценивающего тест. Если результаты спортсменов в тесте, который проводят разные специалисты (эксперты, судьи), совпадают, то это свидетельствует о

высокой степени согласованности теста. Это свойство зависит от совпадения методик тестирования у разных специалистов.

Когда создается новый тест, нужно обязательно проверить его на согласованность. Делается это так: разрабатывается унифицированная методика проведения теста, а потом два или более специалиста по очереди в стандартных условиях тестируют одних и тех же спортсменов.

Эквивалентность тестов. Одно и то же двигательное качество (способность, сторону подготовленности) можно измерить с помощью нескольких тестов. Например, максимальную скорость — по результатам пробегания с ходу отрезков в 10, 20 или 30 м. Силовую выносливость - по числу подтягивании на перекладине, отжиманий в упоре, количеству подъемов штанги в положении лежа на спине и т. д. Такие тесты называют эквивалентными .

Эквивалентность тестов определяется следующим образом: спортсмены выполняют одну разновидность теста и затем, после небольшого отдыха, вторую и т. д.

Если результаты оценок совпадают (например, лучшие в подтягивании оказываются лучшими и в отжимании), то это свидетельствует об эквивалентности тестов. Коэффициент эквивалентности определяется с помощью корреляционного или дисперсионного анализа.

Применение эквивалентных тестов повышает надежность оценки контролируемых свойств моторики спортсменов. Поэтому если нужно провести углубленное обследование, то лучше применить несколько эквивалентных тестов, Такой комплекс называется гомогенным . Во всех остальных случаях лучше использовать гетерогенные комплексы: они состоят из неэквивалентных тестов.

Не существует универсальных гомогенных или гетерогенных комплексов. Так, например, для слабо подготовленных людей такой комплекс, как бег на 100 и 800 м, прыжок и длину с места, подтягивание на перекладине, будет гомогенным. Для спортсменов высокой квалификации он может оказаться гетерогенным.

До определенной степени надежность тестов может быть повышена путем:

Более строгой стандартизации тестирования,

Увеличения числа попыток,

Увеличения числа оценщиков (судей, экспертов) и повышения согласованности их мнений,

Увеличения числа эквивалентных тестов,

  • лучшей мотивации испытуемых,
  • метрологически обоснованный выбор технических средств ихмерений, обеспечивающий заданную точность измерений в процессе тестирования.

Информативность тестов.

Информативность теста - это степень точности, с которой он измеряет свойство (качество, способность, характеристику и т.п.), для оценки которого используется. В литературе до 1980 г. вместо термина "информативность" применялся адекватный ему термин “валидность”.

В настоящее время информативность подразделяют, классифицируют на несколько видов. Структура видов информации показана на рисунке 1.

Рис. 1. Структура видов информации.

Так, в частности, если тест используется для определения состояния спортсмена в момент обследования, то говорят о диагностической информативности. Если же на основе результатов тестирования хотят сделать вывод о возможных будущих показателях спортсмена, тест должен обладать прогностической информативностью. Тест может быть диагностически информативен, а прогностически нет и наоборот.

Степень информативности может характеризоваться количественно – на основе опытных данных (так называемая эмпирическая информативность) и качественная – на основе содержательного анализа ситуации (содержательная или логическая информативность). В этом случае тест называют содержательно или логически информативным на основе мнений экспертов-специалистов.

Факторная информативность – одна из очень частых моделей теоретической информативности. Информативность тестов по отношению к скрытому критерию, который искусственно составляется из их результатов, определяется на основе показателей батареи тестов при помощи факторного анализа.

Факторная информативность связана с понятием размерности тестов в том смысле, что число факторов вынужденно определяет и число скрытых критериев. При этом размерность тестов зависит не только от числа оцениваемых двигательных способностей, но и от остальных свойств моторного теста. Когда это влияние можно частично исключить, то факторная информативность остается подвижным модельным приближением теоретической или конструктивной информативности, т.е. валидности моторных тестов к двигательным способностям.

Простую или сложную информативность различают по числу тестов, для которых выбран критерий, т.е. для одного или двух и более тестов. С вопросами взаимного отношения простой и сложной информативности тесно связаны следующие три вида информативности. Чистая информативность выражает степень повышения сложной информативности батареи тестов, когда данный тест включают в батарею тестов более высокого порядка. Параморфная информативность выражает внутреннюю информативность теста в рамках прогноза одаренности к определенной деятельности. Она определяется специалистами-экспертами с учетом профессиональной оценки одаренности. Ее можно определить как скрытую (для специалистов «интуитивную») информативность отдельных тестов.

Очевидная информативность в значительной степени связана с содержательной и показывает насколько очевидно содержание тестов для тестируемых лиц. Она связана с мотивацией испытуемых. Информативность внутренняя или внешняя возникает в зависимости от того, определяется ли информативность теста на основе сравнения с результатами других тестов или на основе критерия, который по отношению к данной батарее тестов является внешним.

Абсолютная информативность касается определения одного критерия в абсолютном понимании, без привлечения каких-либо других критериев.

Дифференциальная информативность характеризует взаимные различия между двумя или более критериями. Например, при выборе спортивных талантов может встретиться ситуация, когда тестируемый проявляет способности к двум разным спортивным дисциплинам. При этом нужно решить вопрос, к какой из этих двух дисциплин он наиболее способен.

В соответствии с временным интервалом между измерением (тестированием) и определением результатов критерия различают два вида информативности - синхронную и диахронную . Диахронная информативность, или информативность к неодновременным критериям, может иметь две формы. Одной из них является случай, когда критерий измерялся бы раньше, чем тест – ретроспективная информативность.

Если говорить об оценке подготовленности спортсменов, то наиболее информативным показателем является результат в соревновательном упражнении. Однако он зависит от большого количества факторов, и один и тот же результат в соревновательном упражнении могут показывать люди, заметно отличающиеся друг от друга по структуре подготовленности. Например, спортсмен с отличной техникой плавания и относительно невысокой физической работоспособностью и спортсмен со средней техникой, но с высокой работоспособностью будут соревноваться одинаково успешно (при прочих равных условиях).

Для выявления ведущих факторов, от которых зависит результат в соревновательном упражнении, и используются информативные тесты. Но как узнать меру информативности каждого из них? Например, какие из перечисленных тестов информативны при оценке подготовленности теннисистов: время простой реакции, время реакция выбора, прыжок вверх с места, бег на 60 м? Для ответа на этот вопрос необходимо знать методы определения информативности. Их два: логический (содержательный) и эмпирический.

Логический метод определения информативности тестов. Суть этого метода определения информативности заключается в логическом (качественном) сопоставлении биомеханических, физиологических, психологических и других характеристик критерия и тестов.

Предположим, что мы хотим подобрать тесты для оценки подготовленности высококвалифицированных бегунов на 400 м. Расчеты показывают, что в этом упражнении при результате 45,0 с примерно 72% энергии поставляется за счет анаэробных механизмов энергопродукции и 28%—за счет аэробных. Следовательно, наиболее информативными будут тесты, позволяющие выявить уровень и структуру анаэробных возможностей бегуна: бег на отрезках 200— 300 м с максимальной скоростью, прыжки с ноги на ногу в максимальном темпе на дистанции 100—200 м, повторный бег на отрезках до 50 м с очень короткими интервалами отдыха. Как показывают клинико-биохимические исследования, по результатам этих заданий можно судить о мощности и емкости анаэробных источников энергии и, следовательно, их можно использовать в качестве информативных тестов.

Приведенный выше простой пример имеет ограниченное значение, так как в циклических видах спорта логическая информативность может быть проверена экспериментально. Чаще всего логический метод определения информативности используется в видах спорта, где нет четкого количественного критерия. Например, в спортивных играх логический анализ фрагментов игры позволяет вначале сконструировать специфический тест, а затем проверить его информативность.

Эмпирический метод определения информативности тестов при наличии измеряемого критерия. Ранее говорилось о важности использования единичного логического анализа для предварительной оценки информативности тестов. Эта процедура позволяет отсеять заведомо неинформативные тесты, структура которых мало соответствует структуре основной деятельности спортсменов или физкультурников. Остальные тесты, содержательная информативность которых признана высокой, должны пройти дополнительную эмпирическую проверку, Для этого результаты теста сопоставляют с критерием. В качестве критерия обычно используют:

1) результат в соревновательном упражнении;

2) наиболее значимые элементы соревновательных упражнений;

3) результаты тестов, информативность которых для спортсменов данной квалификации была установлена ранее;

4) сумму очков, набранную спортсменом при выполнении комплекса тестов;

5) квалификацию спортсменов.

При использовании первых четырех критериев общая схема определения информативности теста такова:

1) измеряются количественные значения критериев. Для этого не обязательно проводить специальные соревнования. Можно, например, использовать результаты соревнований прошедших ранее. Важно только, чтобы соревнование и тестирование не были разделены длительным временным промежутком.

Если в качестве критерия предполагается использовать какой-либо элемент соревновательного упражнения, необходимо, чтобы он был наиболее информативным.

Рассмотрим методику определения информативности показателей соревновательного упражнения на следующем примере.

На чемпионате страны по лыжным гонкам на дистанции 15 км на подъеме с крутизной 7° регистрировали длину шагов и скорость бега. Полученные значения сравнили с местом, занятым спортсменом на соревнованиях (см. таблицу).

Соотношение между результатами в лыжной гонке на 15 км, длиной шагов и скоростью на подъеме

Уже визуальная оценка ранжированных рядов указывает, что высоких результатов на соревнованиях добились спортсмены с большей скоростью на подъеме и с большей длиной шага. Расчет ранговых коэффициентов корреляции подтверждает это: между местом на соревнованиях и длиной шага r tt = 0,88; между местом на соревнованиях и скоростью на подъеме - 0,86. Следовательно, оба эти показателя обладают высокой информативностью.

Необходимо отметить, что их значения также взаимосвязаны: r = 0,86.

Значит, длинна шага и скорость бега на подъеме - эквивалентные тесты и для контроля соревновательной деятельности лыжников можно использовать любой из них.

2) следующий шаг - проведение тестирования и оценка его

результатов;

3) последний этап работы - вычисление коэффициентов корреляции между значениями критерия и тестов. Полученные в ходе расчетов наибольшие коэффициенты корреляции будут указывать на высокую информативность тестов.

Эмпирический метод определения информативности тестов при отсутствии единичного критерия . Эта ситуация наиболее типична для массовой физической культуры, где единичного критерия либо нет, либо форма его представления не позволяет использовать описанные выше методы для определения информативности тестов. Предположим, что нам необходимо составить комплекс тестов для контроля физической подготовленности студентов. С учетом того, что студентов в стране несколько миллионов и такой контроль должен быть массовым, к тестам предъявляются определенные требования: они должны быть просты по технике, выполняться в простейших условиях и иметь несложную и объективную систему измерений. Таких тестов сотни, но нужно выбрать наиболее информативные.

Сделать это можно следующим способом: 1) отобрать несколько десятков тестов, содержательная информативность которых кажется бесспорной; 2) с их помощью оценить уровень развития физических качеств у группы студентов; 3) обработать полученные результаты на ЭВМ, используя для этого факторный анализ.

В основе этого метода лежит положение о том, что результаты множества тестов зависят от сравнительно небольшого количества причин, которые для удобства названы факторами . Например, результаты в прыжке в длину с места, метании гранаты, подтягивании, жиме штанги предельного веса, в беге на 100 и 5000 м зависят от выносливости, силовых и скоростных качеств. Однако вклад этих качеств в результат каждого из упражнений не одинаков. Так, результат в беге на 100 м сильно зависит от скоростно-силовых качеств и немного - от выносливости, жим штанги - от максимальной силы, подтягивание - от силовой выносливости и т, д.

Кроме того, результаты некоторых из этих тестов взаимосвязаны, так как в их основе лежит проявление одних и тех же качеств. Факторный анализ же позволяет, во-первых, сгруппировать тесты, имеющие общую качественную основу, и, во-вторых (и это самое главное), определить их удельный вес в этой группе. Тесты с наибольшим факторным весом считаются наиболее информативными.

Наилучший пример использования такого подхода в отечественной практике представлен в работе В. М. Зациорского и Н. В. Аверковича (1982 г.). Было обследовано 108 студентов по 15 тестам. С помощью факторного анализа удалось выявить три наиболее важных для этой группы испытуемых фактора: 1) сила мышц верхних конечностей; 2) сила мышц нижних конечностей; 3) сила мышц брюшного пресса и сгибателей бедра. По первому фактору наибольший вес имел тест - отжимание в упоре, по второму - прыжок в длину с места, по третьему - поднимание прямых ног в висе и переходы в сед из положения лежа на спине в течение одной минуты. Эти четыре теста из 15 обследованных и были наиболее информативными.

Величина (степень) информативности одного и того же теста изменяется в зависимости от ряда влияющих на его проведение факторов. Основные из таких факторов приведены на рисунке.

Рис. 2. Структура факторов, влияющих на степень

Информативности теста.

При оценке информативности конкретного теста необходимо учитывать факторы, влияющие в значительной степени на величину коэффициента информативности.

Оценка – унифицированный измеритель спортивных результатов и тестов.

Как правило, любая программа комплексного контроля предполагает использование не одного, а нескольких тестов. Так, комплекс для контроля подготовленности спортсменов включает следующие тесты: время бега на тредбане, частота сердечных сокращений, максимальное потребление кислорода, максимальная сила и т.д. Если для контроля используется один тест, то оценивать его результаты с помощью специальных методов нет необходимости: и так видно, кто сильнее и насколько. Если же тестов много и они измеряются в разных единицах (например, сила в кг или Н; время в с; МПК - в мл/кг мин; ЧСС- в уд/мин и т.д.), то сравнить достижения по абсолютным значениям показателей невозможно. Решить эту проблему можно лишь в том случае, если результаты тестирования представить в виде оценок (очков, баллов, отметок, разрядов и т.п.). На итоговую оценку квалификации спортсменов оказывают влияние возраст, состояние здоровья, экологические и другие особенности условий проведения контроля. С получением результатов измерения или тестирования контрольное испытание спортсмена не заканчивается. Необходимо дать оценку полученным результатам.

Оценкой (или педагогической оценкой) называется унифицированная мера успеха в каком-либо задании, в частном случае – в тесте.

Различают учебные оценки, которые выставляет преподаватель ученикам по ходу учебного процесса, и квалификационные, под которыми понимаются все прочие виды оценок (в частности, результаты официальных соревнований, тестирования и др.).

Процесс определения (выведения, расчета) оценок называется оцениванием . Он состоит из следующих стадий:

1) подбирается шкала, с помощью которой возможен перевод результатов теста в оценки;

2) в соответствии с выбранной шкалой результаты теста преобразовываются в очки (баллы);

3) полученные очки сравниваются с нормами, и выводится итоговая оценка. Она и характеризует уровень подготовленности спортсмена относительно других членов группы (команды, коллектива).

Название действия Используются

Тестирование

Измерение Шкала измерений

Результат теста

Промежуточное оценивание Шкала оценок

Очки

(промежуточная оценка)

Итоговое оценивание Нормы

Итоговая оценка

Рис. 3. Схема оценивания спортивных результатов и результатов тестов

Не во всех случаях оценивание происходит по такой развернутой схеме. Иногда промежуточное и итоговое оценивания сливаются.

Задачи, которые решаются в ходе оценивания, многообразны. Среди них можно выделить основные:

1) по результатам оценивания необходимо сопоставить разные достижения в соревновательных упражнениях. На основании этого можно создать научно обоснованные разрядные нормы в видах спорта. Следствием заниженных норм является увеличение числа разрядников, не достойных этого звания. Завышенные же нормы становятся для многих недостижимыми и вынуждают людей прекращать занятия спортом;

2) сопоставление достижений в разных видах спорта позволяет решить задачу равенства и них разрядных норм (несправедлива ситуация, если предположим, в волейболе легко выполнить норму I разряда, а в легкой атлетике—трудно);

3) необходимо классифицировать множество тестов по результатам, которые показывает в них конкретный спортсмен;

4) следует установить структуру тренированности каждого из спортсменов, подвергшихся тестированию.

Перевести результаты тестирования в баллы можно разными способами. На практике для этого часто используют ранжирование, или упорядочение зарегистрированного ряда измерений.

Пример такого ранжирования приведен в таблице.

Таблица. Ранжирование результатов тестов.

Из таблицы видно, что лучший результат оценивается в 1 балл, а каждый последующий — на балл больше. При всей простоте и удобстве такого подхода несправедливость его очевидна. Если взять бег на 30 м, то различия между 1-м и 2-м местом (0,4 с) и между 2-м и 3-м (0,1 с) оценивается одинаково, в 1 балл. Точно так же и в оценке подтягивания: разница в одно повторение и в семь оценивается одинаково.

Оценка проводится для того, чтобы стимулировать спортсмена на достижение максимальных результатов. Но при описанном выше подходе спортсмен А, подтянувшись на 6 раз больше, получит столько же баллов, как и за прибавку в одно повторение.

С учетом всего сказанного преобразование результатов тестирования и оценки нужно проводить не с помощью ранжирования, а использовать для этого специальные шкалы. Закон преобразования спортивных результатов в очки называется шкалой оценок. Шкала может быть задана в виде математического выражения (формулы), таблицы или графика. На рисунке представлены четыре типа таких шкал, встречающихся в спорте и физическом воспитании.

Очки Очки

А Б

600 600

Время бега на 100м (сек) Время бега на 100 м (сек)

Очки Очки

В Г

600 600

12,8 12,6 12,4 12,2 12,0 12,8 12,6 12,4 12,2 12,0

Время бега на 100м (сек) Время бега на 100м (сек)

Рис. 4. Типы шкал используемых при оценивании результатов контроля:

А - пропорциональная шкала; Б - прогрессирующая; В - регрессирующая,

Г - S -образная.

Первая (А) — пропорциональная шкала. При ее использовании равные приросты результатов в тесте поощряются равными приростами в баллах. Так, в этой шкале, как это видно из рисунка, уменьшение времени бега на 0,1 с оценивается в 20 очков. Их получит спортсмен, бегавший 100 м за 12,8 с и пробежавший эту дистанцию за 12,7 с, и спортсмен, улучшивший свой результат с 12,1 до 12 с. Пропорциональные шкалы приняты в современном пятиборье, конькобежном спорте, гонках на лыжах, лыжном двоеборье, биатлоне и других видах спорта.

Второй тип— прогрессирующая шкала (Б). Здесь, как это видно из рисунка, равные приросты результатов оцениваются по-разному. Чем выше абсолютные приросты, тем больше прибавка в оценке. Так, за улучшение результата в беге на 100 м с 12,8 до 12,7 с дается 20 очков, с 12,7 до 12,6 с— 30 очков. Прогрессирующие шкалы применяются в плавании, отдельных видах легкой атлетики, тяжелой атлетике.

Третий тип - регрессирующая шкала (В). В этой шкале, как и в предыдущей, равные приросты результатов в тестах также оцениваются по-разному, но чем выше абсолютные приросты, тем меньше прибавка в оценке. Так, за улучшение результата в беге на 100 м с 12,8 до 12,7 с дается 20 очков, с 12,7 до 12,6 с- 18 очков... с 12,1 до 12,0 с-4 очка. Шкалы такого типа приняты в некоторых видах легкоатлетических прыжков и метаний.

Четвертый тип — сигмовидная (или S-образная ) шкала (Г). Видно, что здесь выше всего оцениваются приросты в средней зоне, а улучшение очень низких или очень высоких результатов поощряется слабо. Так, за улучшение результата с 12,8 до 12,7 с и с 12,1 до 12,0 с начисляется по 10 очков, а с 12,5 до 12,4 с — 30 очков. В спорте такие шкалы не используются, но они применяются при оценке физической подготовленности. Например, так выглядит шкала стандартов физической подготовленности населения США.

Каждая из этих шкал имеет как свои достоинства, так и недостатки. Устранить последние и усилить первые можно, правильно применяя ту или иную шкалу.

Оценка, как унифицированный измеритель спортивных результатов, может быть эффективной, если она справедлива и с пользой применяется в практике. А это зависит от критериев, на основе которых оцениваются результаты. При выборе критериев следует иметь в виду вопросы: 1) какие результаты должны быть положены в нулевую точку шкалы? И 2) как оценивать промежуточные и максимальные достижения?

Целесообразно использование следующих критериев:

1. Равенство временных интервалов, необходимых для достижения результатов, соответствующих одинаковым разрядам в разных видах спорта. Естественно, что это возможно лишь в том случае, если содержание и организация тренировочного процесса в этих видах спорта не будут резко отличаться.

2. Равенство объемов нагрузок, которые необходимо затратить на достижение одинаковых квалификационных норм в разных видах спорта.

3. Равенство мировых рекордов в разных видах спорта.

4. Равные соотношения между числом спортсменов, выполнивших разрядные нормы в разных видах спорта.

В практике для оценок результатов тестирования используется несколько шкал.

Стандартная шкала . В основе ее лежит пропорциональная шкала, а свое название она получила потому, что масштабом в ней служит стандартное (среднеквадратическое) отклонение. Наиболее распространена Т-шкала.

При ее использовании средний результат приравнивается к 50 очкам, а вся формула выглядит следующим образом:

Х i -Х

Т = 50+10  ——— = 50+10  Z

где Т—оценка результата в тесте; Х i —показанный результат;

Х—средний результат;  —стандартное отклонение.

Например , если средняя величина в прыжках в длину с места равнялась 224 см, а стандартное отклонение – 20 см, то за результат 222 см начисляется 49 очков, а за 266 см – 71 очко (проверьте правильность этих вычислений).

В практике используются и другие стандартные шкалы.

Таблица 3. Некоторые стандартные шкалы

Название шкалы Основная формула Где и для чего используется

С – шкала С=5+2  · Z При массовых обследованиях, когда

Не требуется большой точности

Шкала школьных отметок H =3- Z В ряде стран Европы

Шкала Бине B =100+16  Z При психологических исследо-

Ваниях интеллекта

Экзаменационная шкала E =500+100  Z В США при приеме в высшее

Учебное заведение

Перцентильная шкала . В основе этой шкалы лежит следующая операция: каждый спортсмен из группы получает за свой результат (в соревнованиях или в тесте) столько очков, сколько процентов спортсменов он опередил. Таким образом, оценка победителя - 100 очков оценка последнего - О очков. Перцентильная шкала наиболее пригодна для оценки результатов больших групп спортсменов. В таких группах статистическое распределение результатов нормальное (или почти нормальное). Это значит, что очень высокие и низкие результаты показывают единицы из группы, а средние—большинство.

Главное достоинство этой шкалы—простота, здесь не нужны формулы, а единственное, что нужно вычислить — какое количество результатов спортсменов укладывается в один перцентиль (или сколько перцентилей приходится на одного человека ). Перцентиль —это интервал шкалы. При 100 спортсменах в одном перцентиле один результат; при 50 — один результат укладывается в два перцентиля (т. е. если спортсмен обошел 30 человек он получает 60 очков).

Рис.5. Пример перцентильной шкалы, построенной по результатам тестирования студентов московских вузов в прыжках в длину (п=4000, данные Е. Я. Бондаревского):

по абсциссе—результат в прыжках в длину, по ординате—процент студентов, показавших результат, равный данному или лучше его (например, 50% студентов прыгают в длину на 4 м 30 см и дальше)

Простота обработки результатов и наглядность перцентильной шкалы обусловила их широкое применение в практике.

Шкалы выбранных точек. При разработке таблиц по видам спорта не всегда удается получить статистическое распределение результатов теста. Тогда поступают следующим образом: берут какой-нибудь высокий спортивный результат (например, мировой рекорд или 10-й результат в истории данного вида спорта) и приравнивают его, скажем, к 1000 или 1200 очкам. Затем на основе результатов массовых испытаний определяют среднее достижение группы слабо подготовленных лиц и приравнивают его, скажем, к 100 очкам. После этого, если используется пропорциональная шкала, остается выполнить лишь арифметические вычисления – ведь две точки однозначно определяют прямую линию. Шкала, построенная таким образом, называется шкалой выбранных точек.

Последующие шаги для построения таблиц по видам спорта – выбор шкалы и установление межклассовых интервалов – пока научно не обоснованы, и здесь допускается определенный субъективизм, основанный

на личном мнении специалистов. Поэтому многие спортсмены и тренеры почти во всех видах спорта, где применяются таблицы очков, считают их не вполне справедливыми.

Параметрические шкалы. В видах спорта циклического характера и в тяжелой атлетике результаты зависят от таких параметров, как длина дистанции и вес спортсмена. Эти зависимости называют параметрическими.

Можно найти параметрические зависимости, которые являются геометрическим местом точек эквивалентных достижений. Шкалы, построенные на основе этих зависимостей, называются параметрическими и относятся в числу наиболее точных.

Шкала ГЦОЛИФКа. Рассмотренные выше шкалы используются для оценки результатов группы спортсменов, и цель их применения заключается в определении межиндивидуальных различий (в баллах). В практике спорта тренеры постоянно сталкиваются еще с одной проблемой: оценка результатов периодического тестирования одного и того же спортсмена в разные периоды цикла или этапа подготовки. Для этой цели предложена шкала ГЦОЛИФКа, выраженная а формуле:

Лучший результат – Оцениваемый результат

Оценка в баллах =100 х (1-)

Лучший результат – Худший результат

Смысл такого подхода заключается в том, что результат теста рассматривается не как отвлеченная величина, а во взаимосвязи с лучшим и худшим результатами, показанными в этом тесте спортсменом. Как видно из формулы, лучший результат всегда оценивается в 100 очков, худший - в 0 очков. Эту шкалу целесообразно применять для оценки вариативных показателей.

Пример . Лучший результат в тройном прыжке с места—10 м 26 см, худший—9 м 37 см. Текущий результат—10 м ровно.

10,26 – 10,0

Его оценка=100 х (1- —————-) =71 балл.

10,26 - 9,37

Оценка комплекса тестов . Существует два основных варианта оценки результатов тестирования спортсменов по комплексу тестов. Первый заключается в выведении обобщенной оценки, которая информативно характеризует подготовленность спортсмена в соревнованиях. Это позволяет использовать ее для прогноза: рассчитывается уравнение регрессии, решив которое, можно предсказать результат в соревновании по сумме баллов за тестирование.

Однако просто суммировать результаты конкретного спортсмена по всем тестам не совсем правильно, так как сами тесты неравнозначны. Например, из двух тестов (времени реагирования на сигнал и времени удержания максимальной скорости бега) второй более важен для спринтера, чем первый. Эту важность (весомость) теста можно учитывать тремя способами:

1. Дается экспертная оценка. В этом случае специалисты договариваются, что одному из тестов (например, времени удержания V ma х ) приписывается коэффициент 2. И тогда очки, начисленные по этому тесту, вначале удваиваются, а затем суммируются с очками за время реакции.

2. Коэффициент каждому тесту устанавливается на основе факторного анализа. Он, как известно, позволяет выделить показатели с большим или меньшим факторным весом.

3. Количественной мерой весомости теста может быть значение коэффициента корреляции, рассчитанного между его результатом и достижением в соревнованиях.

Во всех этих случаях полученные оценки называются "взвешенными".

Второй вариант оценки результатов комплексного контроля заключается в построении « профиля » спортсмена – графическую форму представления результатов тестирования. Линии графиков наглядно отражают сильные и слабые стороны подготовленности спортсменов.

Нормы – основы сравнений результатов.

Нормой в спортивной метрологии называется граничная величина результата теста, на основе которой производится классификация спортсменов.

Есть официальные нормы: разрядные в ЕВСК, в прошлом - в комплексе ГТО. Используются и неофициальные нормы: их устанавливают тренеры или специалисты в области спортивной тренировки для классификации спортсменов по каким-либо качествам (свойствам, способностям).

Существует три вида норм: а) сопоставительные; б) индивидуальные; в) должные.

Сопоставительные нормы устанавливаются после сравнения достижений людей, принадлежащих к одной и той же совокупности. Процедура определения сопоставительных норм такова: 1) выбирается совокупность людей (например, студенты гуманитарных вузов Москвы); 2) определяются их достижения в комплексе тестов; 3) определяются средние величины и стандартные (среднеквадратические) отклонения; 4) значение Х±0,5 принимается за среднюю норму, а остальные градации (низкая - высокая, очень низкая - очень высокая) - в зависимости от коэффициента при .Например, значение результата в тесте свыше X+2 считается “очень высокой"" нормой.

Реализация такого подхода приведена в таблице 4.

Таблица 4. Классификация

Мужчин по уровню

Работоспособности

(по К.Куперу )

Индивидуальные нормы основаны на сравнении показателей

одного и того же спортсмена в разных состояниях. Эти нормы имеют исключительно важное значение для индивидуализации тренировки во всех видах спорта. Необходимость их определения возникла вследствие существенных различий в структуре тренированности спортсменов.

Градация индивидуальных норм устанавливается с помощью тех же статистических процедур. За среднюю норму здесь можно принимать показатели тестов, соответствующие среднему результату в соревновательном упражнении. Индивидуальные нормы широко используются в текущем контроле.

Должные нормы устанавливаются на основании требований, которые предъявляют человеку условия жизни, профессия, необходимость подготовки к защите Родины. Поэтому во многих случаях они опережают действительные показатели. В спортивной практике должные нормы устанавливаются так: 1) определяются информативные показатели подготовленности спортсмена;

2) измеряются результаты в соревновательном упражнении и соответствующие им достижения в тестах; 3) рассчитывается уравнение регрессии типа у=кх+в, где х - должный результат в тесте, а у - прогнозируемый результат в соревновательном упражнении. Должные результаты в тесте и являются должной нормой. Ее необходимо достичь, и только тогда можно будет показать запланированный результат в соревнованиях.

Сопоставительные, индивидуальные и должные нормы имеют в своей основе сравнение результатов одного спортсмена с результатами других спортсменов, показателей одного и того же спортсмена в разные периоды и разных состояниях, имеющихся данных с должными величинами.

Возрастные нормы . В практике физического воспитания наибольшее распространение получили возрастные нормы. Типичным примером являются нормы комплексной программы физического воспитания учащихся общеобразовательной школы, нормы комплекса ГТО и т. д. Большинство из этих норм составлялись традиционным способом: результаты тестирования в различных возрастных группах обрабатывались с помощью стандартной шкалы, и на этой основе определялись нормы.

В таком подходе есть один существенный недостаток: ориентация на паспортный возраст человека не учитывает существенного влияния на любые показатели биологического возраста и размеров тела.

Опыт показывает, что среди мальчиков 12 лет велики различия в длине тела: 130 - 170 см (Х=149±9 см). Чем выше рост, тем больше, как правило, и длина ног. Поэтому в беге на 60 м при одной и той же частоте шагов высокие дети будут показывать меньшее время.

Возрастные нормы с учетом биологического возраста и особенностей телосложения . Показатели биологического (двигательного) возраста человека лишены недостатков, свойственных показателям паспортного возраста: их значения соответствуют среднему календарному возрасту людей. В таблице 5 представлен двигательный возраст по результатам в двух тестах.

Таблица 5. Двигательный

Возраст мальчиков

По результатам

Прыжка в длину с

Разбега и метанию

Мяча (80 г)

В соответствии с данными этой таблицы двигательный возраст, равный десяти годам, будет иметь мальчик любого паспортного возраста, прыгающий в длину с разбега на 2 м 76 см и метающий мяч на 29 м. Чаще, однако, бывает так, что по одному тесту (например, прыжку) мальчик опережает свой паспортный возраст на два-три года, а по другому (метания)—на один год. В этом случае определяется средняя по всем тестам, комплексно отражающая двигательный возраст ребенка.

Определение норм может проводиться также с учетом совместного влияния на результаты в тестах паспортного возраста, длины и массы тела. Проводится регрессионный анализ и составляется уравнение:

У=К 1 Х 1 +К 2 Х 2 +К 3 Х 3 + b ,

где У —должный результат в тесте; X 1 - паспортный возраст; X 2 - длина и Х 3 - масса тела.

На основании решений уравнений регрессии составляются номограммы, по которым легко определить должный результат.

Пригодность норм. Нормы составляются для определенной группы людей и пригодны только для этой группы. Например, по данным болгарских специалистов, норма в метании мяча массой 80 г для десятилетних детей, проживающих в Софии,—28,7м, в других городах—30,3 м, в сельской местности—31,60 м. Такая же ситуация и в нашей стране: нормы, разработанные в Прибалтике, не годятся для центра России и тем более для Средней Азии. Пригодность норм только для той совокупности, для которой они разработаны, называется релевантностью норм.

Другая характеристика норм - репрезентативность . Она отражает их пригодность для оценки всех людей из генеральной совокупности (например, для оценки физического состояния всех первоклассников города Москвы). Репрезентативными могут быть только нормы, полученные на типичном материале.

Третья характеристика норм - их современность . Известно, что результаты в соревновательных упражнениях и тестах постоянно растут и пользоваться нормами, разработанными давно, не рекомендуется. Некоторые нормы, установленные много лет назад, воспринимаются сейчас как наивные, хотя в свое время они отражали действительную ситуацию, характеризующую средний уровень физического состояния человека.

Измерение качества.

Качество – это обобщенное понятие, которое может относиться к продукции, услугам, процессам, труду и любой другой деятельности, включая физическую культуру и спорт.

Качественными называются показатели, не имеющие определенных единиц измерения. Таких показателей в физическом воспитании, и особенно в спорте, много: артистичность, выразительность в гимнастике, фигурном катании на коньках, прыжках в воду; зрелищность в спортивных играх и единоборствах и т. д. Для количественной оценки таких показателей используются методы квалиметрии.

Квалиметрия — это раздел метрологии, изучающий вопросы измерения и количественной оценки качественных показателей . Измерение качества - это установление соответствия между характеристиками таких показателей и требованиями к ним. При этом требования («эталон качества») не всегда могут быть выражены в однозначной и унифицированной для всех форме. Специалист, который оценивает выразительность движений спортсмена, мысленно сопоставляет то, что он видит, с тем, что он представляет как выразительность.

На практике, однако, качество оценивается не по одному, а по нескольким признакам. При этом наивысшая обобщенная оценка не обязательно соответствует максимальным значениям по каждому признаку.

В основе квалиметрии лежит несколько исходных положений:

  • любое качество можно измерить; количественные методы издавна применяются в спорте для оценки красоты и выразительности движений, а в настоящее время используются для оценки всех без исключения сторон спортивного мастерства, эффективности тренировочной и соревновательной деятельности, качества спортивного инвентаря и т.д;
  • качество зависит от ряда свойств, образующих « древо качества».

Пример: древо качества исполнения упражнений в фигурном катании на коньках, состоящее из трех уровней – высшего (качество исполнения композиции в целом), среднего (техника исполнения и артистизм) и низшего (измеряемые показатели, характеризующие качество исполнения отдельных элементов);

  • каждое свойство определяется двумя числами: относительным показателем К и весомостью М;
  • сумма весомостей свойств на каждом уровне равна единице (или 100%).

Относительный показатель характеризует выявленный уровень измеряемого свойства (в процентах от его максимально возможного уровня), а весомость - сравнительную важность разных показателей. Например, фигурист получил за технику исполнения оценку К с = 5,6 балла, а за артистизм – оценку К т = 5,4 балла. Весомости техники исполнения и артистизма в фигурном катании на коньках признаны одинаковыми (М с = М т =1,0). Поэтому общая оценка Q = М с К с + М т К т составила 11,0 балла.

Методические приемы квалиметрии делятся на две группы: эвристические (интуитивные) – основанные на экспертных оценках и анкетировании – и инструментальные или аппаратурные.

Проведение экспертизы и анкетирования – это отчасти техническая работа, предполагающая строгое соблюдение определенных правил, а отчасти – искусство, требующее интуиции и опыта.

Метод экспертных оценок. Экспертной называется оценка, получаемая путем выяснения мнений специалистов. Эксперт (от лат. е xpertus – опытный) – сведущее лицо, приглашаемое для решения вопроса, требующего специальных знаний. Этот метод позволяет с помощью специально выбранной шкалы произвести требуемые измерения субъективными оценками специалистов-экспертов. Такие оценки—случайные величины, они могут быть обработаны некоторыми методами многомерного статистического анализа.

Как правило, экспертное оценивание или экспертиза проводится в виде опроса или анкетирования группы экспертов. Анкетой называется опросный лист, содержащий вопросы, на которые нужно ответить письменно. Техника экспертизы и анкетирования – это сбор и обобщение мнений отдельных людей. Девиз экспертизы – «Ум хорошо, а два лучше!». Характерные примеры экспертизы: судейство в гимнастике и фигурном катании на коньках, конкурс на звание лучшего по профессии или лучшую научную работу и т.п.

К мнению специалистов обращаются всякий раз, когда осуществить измерения более точными методами невозможно или очень трудно. Порой лучше получить приблизительное решение немедленно, нежели долго искать пути точного решения. Но субъективная оценка значительно зависит от индивидуальных особенностей эксперта: квалификации, эрудиции, опыта, личных вкусов, состояния здоровья и т.п. Поэтому индивидуальные мнения рассматриваются как случайные величины и обрабатываются статистическими методами. Таким образом, современная экспертиза – это система организационных, логических и математико-статистических процедур, направленных на получение от специалистов информации и анализ ее с целью выработки оптимальных решений. И лучший тренер (педагог, руководитель и т.п.) тот, который опирается одновременно на собственный опыт, и на данные науки, и на знания других людей.

Методика групповой экспертизы включает в себя: 1) формулировку задач; 2) отбор и комплектование группы экспертов; 3) составление плана экспертизы; 4) проведение опроса экспертов; 5) анализ и обработку полученной информации.

Подбор экспертов – важный этап экспертизы, так как достоверные данные можно получить не от всякого специалиста. Экспертом может быть человек: 1) обладающий высоким уровнем профессиональной подготовки; 2) способный к критическому анализу прошлого и настоящего и к прогнозированию будущего; 3) психологически устойчивый, не склонный к соглашательству.

Есть и другие важные качества экспертов, но указанные выше должны быть обязательно. Так, например, профессиональная компетентность эксперта определяется: а) по степени близости его оценки к среднегрупповой; б) по показателям решения тестовых задач.

Для объективной оценки компетентности экспертов могут быть составлены специальные анкеты, отвечая на вопросы которых в течение строго определенного времени, кандидаты в эксперты должны продемонстрировать свои знания. Кроме того, полезно предложить им заполнить анкету самооценки своих знаний. Опыт показывает, что люди с высокой самооценкой ошибаются меньше других.

Другой подход к отбору экспертов основан на определении эффективности их деятельности. Абсолютная эффективность деятельности эксперта определяется отношением числа случаев, когда эксперт верно предсказал дальнейший ход событий, к общему числу экспертиз, проведенных данным специалистом. Например, если эксперт участвовал в 10 экспертизах и 6 раз его точка зрения подтвердилась, то эффективность деятельности такого эксперта равна 0,6. Относительная эффективность деятельности эксперта – это отношение абсолютной эффективности его деятельности к средней абсолютной эффективности деятельности группы экспертов. Объективная оценка пригодности эксперта определяется по формуле:

 М=| M - M ист | ,

Где М ист — истинная оценка; М — оценка эксперта.

Желательно иметь однородную группу экспертов, но если это не удается, то для каждого из них вводится ранг. Очевидно, что эксперт представляет тем большую ценность, чем выше показатели его деятельности. Для повышения качества экспертизы стараются повысить квалификацию экспертов путем специального обучения, тренировок и ознакомления с возможно более обширной объективной информацией по анализируемой проблеме. Судей во многих видах спорта можно рассматривать как своеобразных экспертов, оценивающих мастерство спортсмена (например, в гимнастике) или ход поединка (например, в боксе).

Подготовка и проведение экспертизы . Подготовка экспертизы сводится в основном к составлению плана ее проведения. Наиболее важными его разделами являются подбор экспертов, организация их работы, формулировка вопросов, обработка результатов.

Существует несколько способов проведения экспертизы. Наиболее простой из них— ранжирование , которое состоит в определении относительной значимости объектов экспертизы на основе их упорядочения. Обычно наиболее предпочтительному объекту приписывается наивысший (первый) ранг, наименее предпочтительному — последний ранг.

После оценивания объект, получивший у экспертов наибольшее предпочтение, получает наименьшую сумму рангов. Напомним, что в принятой оценочной шкале ранг определяет только место объекта относительно других объектов, подвергшихся экспертизе. Но оценить, насколько далеко эти объекты отстоят друг от друга, ранжирование не позволяет, В связи с этим метод ранжирования используется сравнительно редко.

Большее распространение получил метод непосредственной оценки объектов по шкале, когда эксперт помещает каждый объект в определенный оценочный интервал. Третий метод экспертизы: последовательное сравнение факторов.

Сравнение объектов экспертизы с помощью этого метода проводится так:

1) вначале они ранжируются в порядке значимости;

2) наиболее важному объекту приписывается оценка, равная единице, а остальным (тоже и порядке: значимости) — оценки меньше единицы — до нуля;

3) эксперты решают, будет ли оценка первого объекта превосходить по значимости все остальные. Если да, то оценка "веса" этого объекта увеличивается еще больше; если нет, то тогда принимается решение уменьшить его оценку;

4) эта процедура повторяется до тех пор, пока не будут оценены все объекты.

И наконец, четвертый метод— метод парного сравнения —основан на попарном сравнении всех факторов. При этом устанавливается в каждой сравниваемой паре объектов наиболее весомый (он оценивается баллом 1). Второй объект этой пары оценивается в 0 баллов.

Широкое распространение в физической культуре и спорте получил такой метод экспертных оценок, как анкетирование . Анкета здесь представлена как последовательный набор вопросов, по ответам на которые судят об относительной важности рассматриваемого свойства или о вероятности свершения каких-либо событий.

При составлении анкет наибольшее внимание уделяется четкой и осмысленной формулировке вопросов. По своему характеру они подразделяются на следующие типы:

1) вопрос, при ответе на который необходимо выбрать одно из заранее сформулированных мнений (в некоторых случаях каждому из этих мнений эксперт должен дать количественную оценку в шкале порядка);

2) вопрос о том, какое решение принял бы эксперт в определенной ситуации (и здесь возможен выбор нескольких решений с количественной оценкой предпочтительности каждого из них);

3) вопрос, требующий оценить численные значения какой-либо величины.

Опрос может проводиться как очно, так и заочно в один или несколько туров.

Развитие вычислительной техники позволяет проводить анкетирование в режиме диалога с ЭВМ. Особенностью диалогового метода является составление математической программы, предусматривающей логическое построение вопросов и очередность их воспроизведения на дисплее в зависимости от типов ответов на них. В память машины закладываются стандартные ситуации, позволяющие контролировать правильность ввода ответов, соответствие численных значений диапазону реальных данных. ЭВМ контролирует возможность ошибок и в случае их появления находит причину и указывает на нее.

В последнее время квалиметрические методы (экспертиза, анкетирование и др.) все чаще используются для решения оптимизационных задач (оптимизация соревновательной деятельности, тренировочного процесса). Современный подход к задачам оптимизации связан с имитационным моделированием соревновательной и тренировочной деятельности. В отличие от других видов моделирования при синтезе имитационной модели наряду с математически точными данными используется квалитативная информация, собираемая методами экспертизы, анкетирования и наблюдения. Например, при моделировании соревновательной деятельности лыжников нельзя точно предсказать коэффициент скольжения. Его вероятную величину можно оценить путем опроса специалистов по смазке лыж, знакомых с климатическими условиями и особенностями трассы, на которой будут проходить соревнования.

ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ

  1. Какие параметры являются основными измеряемыми и контролируемыми в современной теории и практике спорта?
  2. Почему изменчивость является одной из особенностей спортсмена, как объекта измерений?
  3. Почему следует стремиться снизить число измеряемых переменных контролирующих состояние спортсмена?
  4. Что характеризует квалитативность при исследованиях в спорте?
  5. Какую возможность предоставляет спортсмену адаптивность?
  6. Что называется тестом?
  7. Каковы метрологические требования к тестам?
  8. Какие тесты называются добротными?
  9. В чем разница между нормативно-ориентированным и критериально-ориентированным тестом?
  10. Какие существуют разновидности двигательных тестов?
  11. В чем разница гомогенных тестов от гетерогенных?
  12. Какие требования должны соблюдаться для стандартизации проведения тестирования?

13. Что называется надежностью теста?

14. Что вносит погрешность в результаты тестирования?

15. Что понимают под стабильностью теста?

16. От чего зависит стабильность теста?

  1. Чем характеризуется согласованность теста?

18. Какие тесты называются эквивалентными?

  1. Что понимают под информативностью теста?
  2. Какие существуют методы определения информативности тестов?
  3. В чем суть логического метода определения информативности тестов?
  4. Что обычно используют в качестве критерия при определении информативности тестов?
  5. Как поступают при определении информативности тестов, когда отсутствует единичный критерий?
  6. Что называется педагогической оценкой?
  7. По какой схеме происходит оценивание?
  8. Какими способами можно перевести результаты тестирования в баллы?
  9. Что такое шкала оценок?
  10. Каковы особенности пропорциональной шкалы?
  11. В чем отличия прогрессирующей шкалы от регрессирующей?
  12. В каких случаях применяются сигмовидные шкалы оценок?
  13. В чем достоинство перцентильной шкалы?
  14. Для чего могут использоваться шкалы выбранных точек?
  15. Для каких целей используется шкала ГЦОЛИФКа?
  16. Какие существуют варианты оценки результатов тестирования спортсменов по комплексу тестов?
  17. Что называется нормой в спортивной метрологии?
  18. На чем основаны индивидульные нормы?
  19. Как устанавливаются должные нормы в спортивной практике?
  20. Как составляются большинство возрастных норм?
  21. Какие существуют характеристики норм?
  22. Что изучает квалиметрия?
  23. В каком виде проводится экспертное оценивание?
  24. Какими качествами должен обладать эксперт?
  25. Как определяется объективная оценка пригодности эксперта?

Другие похожие работы, которые могут вас заинтересовать.вшм>

6026. МЕНЕДЖМЕНТ В ФИЗИЧЕСКОЙ КУЛЬТУРЕ И СПОРТЕ 84.59 KB
В основе требований предъявляемых Государственным образовательным стандартом к специалистам в области физической культуры и спорта лежат представления о принципах организации трудовых процессов о разработке принятий и реализаций управленческих решений в процессе профессиональной деятельности...
14654. Обеспечение единства и достоверности измерений в физической культуре и спорте 363.94 KB
В зависимости от структурной схемы и конструктивного использования средств измерений (СИ) проявляются их свойства, определяющие качество получаемой измерительной информации: точность, сходимость и воспроизводимость результатов измерений. Характеристики свойств СИ, оказывающие влияние на результаты измерений и их точность, называются метрологическими характеристиками средств измерений. Одним из важнейших условий для реализации единства измерений является обеспечение единообразия СИ
11515. Выявление успеваемости по физической культуре учеников 9-х классов 99.71 KB
Вследствие этого большая часть свободного времени которое должно было бы быть потрачено на нормальное физическое развитие и наносит вред здоровью формируя неправильную осанку доказано что деформированная осанка способствует развитию болезней внутренних органов. Самопознание было девизом в древней Греции: над входом в храм Аполлона в Дельфах было написано: Познай себя. Если не передавать накопленный опыт то вынуждено было бы вновь и вновь изобретать этот опыт каждое новое поколение. У первобытных людей были средства способы и приемы...
4790. Оценка эффективности педагогических воздействий направленных на формирование ценностного отношения к физической культуре младших школьников 95.04 KB
Подходы повышения двигательной активности и самостоятельных занятий физической культурой младших школьников. Необходимость глубокого изучения проблемы отношения младших школьников к физической культуре вызвана тенденцией к ухудшению состояния здоровья в современных социально экономических условиях всех представителей образовательной среды...
7258. Проведение спортивных мероприятий. Допинг в спорте 28.94 KB
Постановлением Министерства спорта и туризма РБ № 10 от 12. Основными задачами ЕСК являются: установление единых оценки уровня мастерства спортсменов и порядка присвоения спортивных званий и разрядов; содействие развитию видов спорта совершенствованию системы спортивных соревнований привлечению граждан к активным занятиям спортом повышению уровня всесторонней физической подготовленности и спортивного мастерства спортсменов. Вид спорта составная часть спорта имеющая специфические особенности и условия соревновательной деятельности...
2659. Материально-техническое обеспечение в велосипедном спорте 395.8 KB
Велосипедный спорт – один из наиболее бурно развивающихся в мире видов спорта, самый популярный и массовый летний олимпийский вид в нашей стране. Необходимость введения курса «Теория и методика велосипедного спорта» обусловлена благоприятными естественными природно-климатическими условиями для занятий велосипедным спортом, простотой в овладении движениями велосипедиста
9199. Естествознание в мировой культуре 17.17 KB
Проблема двух культурНаука и мистицизмВопрос о ценности науки 2. Люди наивные далекие от науки часто полагают что главное в учение Дарвина – это происхождение человека от обезьяны. Таким образом вторжение естественной науки – биологии в духовную жизнь общества заставило говорить о кризисе науки и ее разрушительном действии на человека. В итоге развитие естествознания привело к кризису науки этическое значение которой ранее усматривали в том что она постигает величественную гармонию Природы – образец совершенства как цели человеческого...
17728. РОЛЬ КИНЕМАТОГРАФА В КУЛЬТУРЕ XX ВЕКА 8.65 KB
Человечество на современном этапе развития не мыслит свою жизнь без такого вида искусства как кино что делает данную тему актуальной к изучению. Цель исследования – выявление роли кинематографа в повседневной жизни человека. Задача работы ̶ проследить этапы влияния кинематографа на жизнь человека. Кинематограф увидел свет чуть больше века назад.
10985. ИСТОРИЧЕСКОЕ РАЗВИТИЕ ПРЕДСТАВЛЕНИЙ О КУЛЬТУРЕ 34.48 KB
Возрождения и Нового времени. Следует иметь ввиду, что общетеоретические проблемы культуры долгое время разрабатывались в рамках философии. Философы этого периода исследовали не только само понятие культуры, но и проблемы её происхождения, роли в обществе, закономерностей развития, соотношения культуры и цивилизации. Особый интерес они проявляли к анализу отдельных видов и компонентов культуры
13655. Человек в русской культуре ΧΙΧ века 30.04 KB
Живопись и музыкальная жизнь пореформенного периода отмечены появлением двух крупных созвездий талантов, центрами которых были Товарищество художников – передвижников и “Могучая кучка” композиторов. На новые веяния в искусстве оказали заметное влияние идеи демократического движения 50-60-х годов. В 1863г. группа учеников Академии художеств порвала с академией и организовала “артель передвижников”

Вся тренировочная и организационная деятельность в спорте направлена на то, чтобы обеспечить его состязательность, массовость и зрелищность

Вся тренировочная и организационная деятельность в спорте направлена на то, чтобы обеспечить его состязательность, массовость и зрелищность. Современное мировое спортивное движение насчитывает около 300 различных видов спорта, в каждом из которых имеется настоятельная необходимость различного рода измерений (рис. 1). Здесь мы рассмотрим проблемы измерений только в олимпийских видах спорта.

В первую очередь измерения используются для определения собственно спортивного результата. Главный олимпийский девиз звучит так: Быстрее! Выше! Сильнее! Именно поэтому необходимым условием для включения претендента в семью олимпийских видов спорта всегда была его состязательность, т.е. возможность выявления победителя по очевидным количественным критериям. Таких критериев в спорте всего три (рис. 2).

1-й критерий результат, измеренный в единицах СИ (секунда, метр, килограмм);
2-й количество заработанных, полученных, завоеванных, выбитых очков;
3-й количество начисленных судьями баллов.

Стоит заметить, что по этим трем критериям могут быть оценены результаты спортсменов как в индивидуальных, так и в командных выступлениях.

Чаще других результатом, оцениваемым по 1-му критерию, является время преодоления определенной дистанции. В различных видах спорта в зависимости от скорости передвижения спортсменов используется различная точность измерения времени. Как правило, она находится в пределах 0,001 0,1 с. При этом спортсмен может идти, бежать, ехать на велосипеде, передвигаться на лыжах или коньках, съезжать на санях, плыть, ходить под парусом или на веслах

Само по себе обеспечение необходимой точности измерения временного интервала с технической точки зрения не представляет особой трудности, тем не менее специфика спорта накладывает на этот процесс свои особенности, что связано в первую очередь с проблемами определения момента старта и финиша. Совершенствование измерений этих элементов соревновательного процесса идет по пути использования технических новинок. К ним среди распространенных в настоящее время приборов относятся различные фотодатчики и микрочипы,системы регистрации фальстарта, системы фотофиниша и т.п.

Сегодня технический прогресс позволил соединить в единый комплекс измерительные, демонстрационные и телевизионные системы. Всё это привело к тому, что в спорт стали вторгаться самые последние информационные технологии и приемы шоу-бизнеса. Теперь зрители, находящиеся на стадионах, спортивных площадках и сидящие у экранов телевизоров, почти уравнены: все могут видеть происходящее в реальном и замедленном времени, лицезреть крупный план спортивной борьбы, в том числе с повтором интереснейших и спорных моментов,наблюдать прохождение спортсменами рубежей, контролировать промежуточные и итоговые результаты, быть свидетелями любимого всеми действия Это касается практически всех видов спорта, но особенно важными такие технологии являются для видов спорта с раздельным стартом, таких как горные лыжи, бобслей, конькобежный спорт и др.

Актуальной для спорта также является регистрация скоростей и траекторий в определенный момент времени, в определенных местах и в спорных ситуациях. К таким регистрируемым параметрам относятся, например, скорость лыжника при прыжках с трамплина во время отталкивания или в момент приземления, скорость теннисного или волейбольного мяча при подаче, его траектория при определении касания сетки или аута и т.п. В настоящее время за ходом соревнований высокого уровня наблюдают сотни миллионов зрителей. Важно, чтобывсе судьи, зрители, спортсмены были уверены в объективности определения победителей. Для этой цели даже разрабатываются специальные математические модели и имитаторы.

Кроме контроля времени, в процессе регистрации спортивного результата по 1-му критерию необходимо также измерять расстояния, например в метаниях или различного рода прыжках, и вес штанги в тяжелой атлетике.

Если при прыжках в длину (расстояния 6 9 м) измерения простой рулеткой еще допустимы, т.к. возможные ошибки (несколько миллиметров) весьма незначительны, то в метании копья или молота (расстояние в 10 раз больше) ошибка измерения результата рулеткой будет уже существенной (несколько сантиметров). Разница же между результатами соперников может составлять всего 1 см. Поскольку победа имеет огромную значимость в современном спорте, объективность и точность измерений таких расстояний уже давно обеспечиваются спомощьюспециальных лазерных дальномеров.

Другое дело штанга. Здесь больших проблем нет, т.к. гриф и дополнительные грузы сами являются своеобразными мерами измерений. Поэтому контрольное взвешивание поднятой штанги, как правило, производится только при установлении рекордов, при распределении призовых мест и в спорных моментах.

Особый случай представляет собой 2-й критерий выявление победителей по завоеванным очкам. Многие специалисты эту процедуру определяют не как измерения, а как оценивание. В связи с тем что измерения в общепринятом смысле представляют собой выявление количественной характеристики результатов наблюдений разными способами и методами, представляется целесообразным в спорте объединить эти два понятия или считать их равнозначными. В пользу данного решения свидетельствует и то, что в ряде спортивных дисциплинпобедители выявляются по очкам, вычисленным исходя из достигнутого метрического результата (пятиборье, триатлон, кёрлинг и др.), а в биатлоне наоборот полученные (выбитые) очки при стрельбе могут повлиять на конечный метрический результат спортсмена.

Победителем по очкам может быть и спортсмен-индивидуал, и целая команда. Этот критерий используется, как правило, в игровых видах спорта: футбол, хоккей, баскетбол, волейбол, бадминтон, теннис, водное поло, шахматы и др. В одних из них лимитируется время спортивной борьбы, например футбол, хоккей, баскетбол. В других игра продолжается, пока не будет достигнут определенный результат: волейбол, теннис, бадминтон. Процедура выявления победителя здесь происходит в несколько этапов. Вначале по забитым (завоеванным)голам, шайбам, мячам регистрируется исход конкретного матча и определяется его победитель. Каждый из участников после игр по кругу получает соответствующие очки, которые заносятся в турнирную таблицу. Очки суммируются и выявляются победители на втором этапе. Он может быть окончательным (национальные чемпионаты) или может наступить следующий этап, если турнир является отборочным (чемпионаты Европы, мира, Олимпийские игры).

Конечно, в каждом игровом виде спорта есть своя специфика, но принцип подсчета очков один.

Есть несколько единоборств, например бокс, борьба, фехтование, в которых исход соревнования оценивается тоже по очкам (проведенным приемам, уколам). Но в первых двух видах спорта поединки могут быть закончены до истечения лимита времени: нокаутом или если противник будет положен на лопатки.

По 3-му критерию начисленным баллам победитель выявляется группой специалистов-экспертов. В видах спорта, которые оцениваются таким крайне необъективным способом, наиболее часты претензии, протесты и даже судебные разбирательства достаточно вспомнить последнюю зимнюю Олимпиаду в Лейк-Плесиде. Но так сложилось исторически: в фигурном катании, гимнастике и в других подобных соревнованиях еще несколько лет назад было невозможно оценить выступления спортсменов объективно с помощью технических средств, как,например, в легкой атлетике. Сегодня технический прогресс уже позволяет производить количественные оценки с помощью специальных видео- и измерительных систем. Хочется надеяться, что Олимпийский комитет в самом ближайшем будущем будет использовать и такие способы оценки выступлений спортсменов.

Очень важным является также обеспечение равенства условий, объективности и сопоставимости результатов соревнований (рис. 3).

Здесь наряду с определением качества соревновательных трасс, полей, секторов, треков, лыжни, склонов точному измерению подлежат их физические размеры: длина, ширина, относительная и абсолютная высоты. В этом направлении в современном спорте часто используются самые последние технические достижения. Например, к одному из чемпионатов Европы по легкой атлетике, который должен был проходить в Штутгарте, спонсор соревнования автоконцерн Мерседес для точного измерения длины марафонской дистанции создал специальныйавтомобиль. Ошибка измерения пройденного этой уникальной машиной расстояния составляла менее 1 м на 50 км.

При организации крупных соревнований большое внимание уделяется состоянию и параметрам спортивного инвентаря и оборудования.

Так, например, все снаряды для метаний по правилам соревнований должны строго соответствовать определенным размерам и весу. В зимних видах спорта, где большое значение имеет эффективность скольжения, например в бобслее, имеются ограничения по температуре полозьев, которая тщательно измеряется непосредственно перед стартом. Строго контролируются параметры ворот, разметки полей и площадок, мячей и сеток, щитов, корзин и т.п. В некоторых случаях тщательно проверяется экипировка спортсменов, например в прыжкахналыжах с трамплина, чтобы она не представляла собой своеобразный парус.

Иногда необходимой процедурой является взвешивание спортсменов. Этого требуют, например, правила соревнований в тяжелой атлетике, где имеются весовые категории, или в конном спорте, где спортсмен не должен быть слишком легким.

В ряде спортивных дисциплин важными являются условия погоды. Так, в легкой атлетике производятся измерения скорости ветра, которая может повлиять на результаты бега и прыжков, в парусных регатах, где в условиях безветрия соревнования вообще невозможны, при прыжках на лыжах с трамплина, где боковой ветер может угрожать жизни спортсменов. Контролю подлежит температура снега и льда в зимних видах спорта, температура воды в водных видах спорта. Если соревнования проводятся на открытом воздухе, то в случае осадковопределенной интенсивности они могут быть прерваны (например, теннис, бадминтон, прыжки с шестом).

В спорте особое значение придается допинг-контролю. С этой целью разрабатывается дорогостоящее оборудование, которым оснащаются современные антидопинговые лаборатории. Проблема допинга в спорте сегодня стоит настолько остро, что ни одна великая спортивная держава не может обойтись без своей системы лабораторий, оборудованных в соответствии с последними достижениями в этой области. И это несмотря на то, что антидопинговые лаборатории стоят десятки миллионов долларов. Кроме стационарного лабораторного оборудованияв последние годы в борьбе с так называемым кровяным допингом стали использоваться переносные биохимические экспресс-анализаторы крови.

Это далеко не полный круг вопросов, касающихся метрологического обеспечения спортивных соревнований. Не меньшие потребности в измерениях имеются у спортсменов и тренеров при проведении тренировочного процесса. Здесь кроме измерительных процедур, перечисленных выше, существует настоятельная необходимость контроля физического состояния спортсменов, их подготовленности на данный момент времени.

С этой целью в спорте используется самое современное медицинское оборудование. Среди такого оборудования наиболее значимыми являются различного рода газоанализаторы, системы биохимического контроля и диагностики состояния сердечно-сосудистой системы. Таким оборудованием оснащаются все диагностические спортивные лаборатории. Кроме того, в диагностических лабораториях необходимы стационарные беговые дорожки, велоэргометры и другие современные приборы. Всё это лабораторное оборудование имеет высокоточную измерительнуютехнику и тщательно калибруется. Высококвалифицированные спортсмены два-три раза в год проходят этапное комплексное обследование, целью которого является диагностика состояния различных функциональных систем организма.

Кроме углубленных, но эпизодических лабораторных обследований существует настоятельная необходимость в ежедневном контроле переносимости спортсменами напряженных и регулярных тренировочных нагрузок. Для решения этих задач широко используются различного рода мобильные диагностические системы. На сегодняшний день такие системы включают в себя компьютеры для надежной и быстрой обработки получаемой информации.

Важным элементом тренировочного процесса является анализ техники выполнения соревновательных упражнений. В последние годы это направление получило стремительное развитие: в спорте стали широко внедряться видеоанализаторы приборы с очень высокой точностью и дискретностью отображения частей тела спортсмена или спортивного снаряда. Отличительным принципом работы этих приборов является трехмерное лазерное сканирование движущихся объектов.

Нельзя не упомянуть две индустриальные области, связанные со спортом и измерениями, подчас очень сложными и в отдельных случаях уникальными. Это проектирование и строительство спортивных сооружений, а также разработка и производство спортивного снаряжения. Но эти серьёзные вопросы требуют отдельного освещения.

Таким образом, потребность в измерительных средствах при проведении крупных спортивных форумов, какими являются Олимпийские игры, чемпионаты мира и Европы, огромная. Только для регистрации спортивных достижений необходимы тысячи разных приборов и систем, которые обеспечивают объективность, справедливость и сопоставимость результатов. Все они должны пройти не только национальную сертификацию, но и должны быть допущены к применению соответствующими международными спортивными федерациями.

В статье мы очертили далеко не полный круг проблем, связанных со спортивными измерениями, и смогли отобразить далеко не все виды спорта. Крупным планом охватили только принципиальные моменты спортивной метрологии, её классификации. Надеемся, что специалисты в конкретных областях продолжат обсуждение затронутых проблем.

В.Н. Кулаков, доктор педагогических наук, мастер спорта РГСУ, Москва
А.И. Кириллов, РИА Стандарты и качество, Москва