Что такое арифметический способ решения. Обобщение опыта

Низкопоклонная Мария, Брянцева Людмила

Работа показывает способы решения текстовых задач.

Скачать:

Предварительный просмотр:

Муниципальное образовательное учреждение средняя общеобразовательная школа № 64 г. Волгограда

Городской конкурс учебно-исследовательских работ

« Я и Земля» им. В.И. Вернадского

(районный этап)

АРИФМЕТИЧЕСКИЙ СПОСОБ РЕШЕНИЯ

ТЕКСТОВЫХ ЗАДАЧ ПО МАТЕМАТИКЕ

Секция « Математика»

Выполнили: Брянцева Людмила,

Обучающаяся 9 А класса МОУ СОШ № 64,

Низкопоклонная Мария,

Обучающаяся 9 А класса МОУ СОШ № 64.

Руководитель: Носкова Ирина Анатольевна,

Учитель математики МОУ СОШ № 64

Волгоград 2014

Введение …………………………………………………………… 3

Глава 1. Нестандартные способы решения задач

  1. Задачи по теме « Натуральные числа» ………………….. 5
  1. . Задачи « на части и проценты» …………………………... 8
  2. Задачи на движение……………………………………...... 11
  3. Задачи на совместную работу…………………………… 14

Заключение ………………………………………………………. 16

Литература ………………………………………………………. 16

Введение.

Известно, что исторически долгое время математические знания передавались из поколения в поколение в виде списка задач практического содержания вместе с их решениями. Первоначально обучение математике велось по образцам. Ученики, подражая учителю, решали задачи на определённое « правило». Таким образом, в давние времена обученным считался тот, кто умел решать задачи определённых типов, встречавшихся в практике (в торговых расчётах и пр.).

Одна из причин этого заключалась в том, что исторически долгое время целью обучения детей арифметике было освоение ими определённого набора вычислительных умений, связанных с практическими расчётами. При этом линия арифметики – линия числа – ещё не была разработана, а обучение вычислениям велось через задачи. В «Арифметике» Л.Ф. Магницкого, например, дроби рассматривались как именованные числа(не просто , а рубля, пуда и т.п.), а действия с дробями изучались в процессе решения задач. Эта традиция сохранялась довольно долго. Даже много позже встречались задачи с неправдоподобными числовыми данными, например: « Продано кг сахара по рубля за килограмм…», которые были вызваны к жизни не потребностями практики, а потребности обучения вычислениям.

Вторая причина повышенного внимания к использованию текстовых задач в России заключается в том, что в России не только переняли и развили старинный способ передачи с помощью текстовых задач математических знаний и приёмов рассуждений. Научились формировать с помощью задач важные общеучебные умения, связанные с анализом текста, выделением условий задачи и главного вопроса, составлением плана решения, поиском условий, из которых можно получить ответ на главный вопрос, проверкой полученного результата. Немаловажную роль играло также приучение школьников переводу текста на язык арифметических действий, уравнений, неравенств, графических образов.

Ещё один момент, который невозможно обойти, когда мы говорим о решении задач. Обучение и развитие во многом напоминает развитие человечества, поэтому использование старинных задач, разнообразных арифметических способов их решения позволяет идти в историческом контексте, что развивает творческий потенциал. Кроме того, разнообразные способы решения будят фантазию детей, позволяют организовать поиск решения каждый раз новым способом, что создаёт благоприятный эмоциональный фон для обучения.

Таким образом, актуальность данной работы можно обобщить в нескольких положениях:

Текстовые задачи являются важным средством обучения математике. С помощью их учащиеся получают опыт работы с величинами, постигают взаимосвязи между ними, получают опыт применения математики к решению практических задач;

Использование арифметических способов решения задач развивает смекалку и сообразительность, умение ставить вопросы, отвечать на них, то есть развивает естественный язык;

Арифметические способы решения текстовых задач позволяют развивать умение анализировать задачные ситуации, строить план решения с учётом взаимосвязей между известными и неизвестными величинами, истолковывать результат каждого действия, проверять правильность решения с помощью составления и решения обратной задачи;

Арифметические способы решения текстовых задач приучают к абстракциям, позволяют воспитывать логическую культуру, могут способствовать созданию благоприятного эмоционального фона обучения, развитию эстетического чувства применительно к решению задачи и изучению математики, вызывая интерес к процессу поиска решения, а затем и к самому предмету;

Использование исторических задач и разнообразных старинных (арифметических) способов их решения не только обогащает опыт мыслительной деятельности, но и позволяет осваивать важный культурно-исторический пласт истории человечества, связанный с поиском решения задач. Это важный внутренний стимул к поиску решений задач и изучению математики.

Из всего вышесказанного, мы делаем следующие выводы:

предметом исследования является блок текстовых задач по математике 5-6 классов;

объектом исследования является арифметический способ решения задач.

целью исследования является рассмотрение достаточного количества текстовых задач школьного курса математики и применение к их решению арифметического способа решения;

задачами для реализации цели исследования являются разбор и решение текстовых задач по основным разделам курса « Натуральные числа», « Рациональные числа», «Пропорции и проценты», « Задачи на движение»;

методом исследования является практико - поисковый.

Глава 1. Нестандартные способы решения задач.

  1. Задачи по теме « Натуральные числа ».

На данном этапе работы с числами арифметические способы решения задач имеют преимущество над алгебраическими уже потому, что результат каждого отдельного шага в решении по действиям имеет совершенно наглядное и конкретное истолкование, не выходящее за рамки жизненного опыта. Поэтому быстрее и лучше усваиваются различные приёмы рассуждений, опирающиеся на воображаемые действия с известными величинами, чем единый для задач с различной арифметической ситуацией способ решения, основанный на применении уравнения.

1. Задумали число, увеличили его на 45 и получили 66. Найдите задуманное число.

Для решения можно использовать схематичный рисунок, помогающий наглядно представить взаимосвязь операций сложения и вычитания. Особенно эффективной помощь рисунка окажется при большем числе действий с неизвестной величиной. Задумали число 21.

2. Летом у меня целые сутки было открыто окно. В первый час влетел 1 комар, во второй – 2 комара, в третий – 3 и т.д. Сколько комаров влетело за сутки?

Здесь используется метод разбивания всех слагаемых на пары (первое с последним; второе с предпоследним и т.д.), найти сумму каждой пары слагаемых и умножить на количество пар.

1 + 2 + 3 + … + 23 + 24 = (1 + 24) + (2 + 23) + …. + (12 + 13) = 25 · 12 = 300.

Влетело 300 комаров.

3. Гости спросили: сколько лет исполнилось каждой из сестёр? Вера ответила, что ей и Наде вместе 28 лет; Наде и Любе вместе 23 года, а всем троим 38 лет. Сколько лет каждой сестре?

1. 38 – 28 = 10 (лет) – Любе;

2. 23 – 10 = 13 (лет) – Наде;

3.28 – 13 = 15 (лет) – Вере.

Любе 10 лет, Наде 13 лет, Вере 15 лет.

4. В нашем классе 30 учащихся. На экскурсию в музей ходили 23 человека, в кино – 21 ,а 5 человек не ходили ни на экскурсию, ни в кино. Сколько человек ходили и на экскурсию, и в кино?

Рассмотрим решение задачи, на рисунке отражены этапы рассуждения.

  1. 30 – 5 = 25(чел.) – ходили в кино, или на

Экскурсию;

  1. 25 – 23 = 2 (чел.) – ходили только в кино;
  2. 21 – 2 = 19 (чел.) – ходили и в кино, и на

Экскурсию.

19 человек ходили и в кино, и на экскурсию.

5. Некто имеет 24 купюры двух видов – по 100 и 500 рублей на сумму 4000 рублей. Сколько у него купюр по 500 рублей?

Поскольку полученная сумма, число «круглое», то следовательно, количество купюр по 100 рублей кратно 1000. Таким образом, количество купюр по 500 рублей тоже кратно 1000. Отсюда имеем – по 100 рублей 20 купюр; по 500 рублей – 4 купюры.

У некто 4 купюры по 500 рублей.

6. Дачник пришёл от своей дачи на станцию через 12 минут после отхода электрички. Если бы он на каждый километр тратил на 3 минуты меньше, то пришёл бы как раз к отходу электрички. Далеко ли от станции живёт дачник?

Тратя на каждый километр на 3 минуты меньше, дачник мог бы сэкономить 12 минут на расстоянии 12: 3 = 4 км.

Дачник живёт в 4 км от станции.

7. Родник в 24 минут даёт бочку воды. Сколько бочек воды даёт родник в сутки?

Поскольку надо обойти дроби, то не надо находить, какую часть бочки наполняют за 1 минуту. Узнаем, за сколько минут наполнится 5 бочек: за 24 · 5 = 120 минут, или 2 часа. Тогда за сутки наполнится в 24: 2 = 12 раз больше бочек, чем за 2 часа, то есть 5· 12 = 60 бочек.

Родник даёт в сутки 60 бочек.

8. На некотором участке меняют старые рельсы длиной 8м на новые длиной 12 м. Сколько потребуется новых рельсов вместо 240 старых?

На участке длиной 24 м вместо 3 старых рельсов положат 2 новых. Рельсы заменят на 240: 3 =80 таких участках, а положат на них 80 · 2 = 160 новых рельсов.

Потребуется 160 новых рельсов.

9. В булочной было 654 кг чёрного и белого хлеба. После того как продали 215 кг чёрного и 287 кг белого хлеба, того и другого сорта хлеба осталось поровну. Сколько килограммов чёрного и белого хлеба в отдельности было в булочной?

1) 215 + 287 = 502 (кг) – продали хлеба;

2) 654 – 502 = 152 (кг) – хлеба осталось продать;

3) 152: 2 = 76 (кг) белого (и чёрного) хлеба осталось продать;

4) 215 + 76 = 291 (кг) – чёрного хлеба было первоначально;

5) 287 + 76 = 363 (кг) – белого хлеба было первоначально.

291 кг чёрного хлеба было первоначально и 363 кг белого хлеба было первоначально.

  1. Задачи « на части и проценты».

В результате работы с задачами данного раздела необходимо принимать подходящую величину за 1 часть, определять сколько таких частей приходится на другую величину, на их сумму (разность), затем получить ответ на вопрос задачи.

10. Первая бригада может выполнить задание за 20ч, а вторая – за 30ч. Сначала бригады выполнили при совместной работе ¾ задания, а остальная часть задания выполнила одна первая бригада. За сколько часов было выполнено задание?

Задачи на производительность труда менее понятны, чем задачи на движение. Поэтому здесь необходим детальный анализ каждого шага.

1)Если первая бригада работает одна, то она выполнит задание за 20ч – это означает, что каждый час она выполняет всего задания.

2)Аналогично рассуждая, получаем производительность труда для второй бригадой - всего задания.

3)Сначала, работая вместе, бригады выполнили всего задания. А сколько же времени они затратили? . То есть, за один час совместной работы обе бригады выполняют двенадцатую часть задания.

4)Тогда задания они выполнят за 9 часов, так как (по основному свойству дроби).

5)Осталось выполнить задания, но уже только первой бригаде, которая за 1 час выполняет всего задания. Стало быть первой бригаде надо работать 5 часов , чтобы довести дело до конца, так как .

6)Окончательно имеем, 5 + 9 = 14 часов.

За 14 часов будет выполнено задание.

11 . Объёмы ежегодной добычи из первой, второй, и третьей скважины относятся как 7: 5: 13. Планируется уменьшить годовую добычу нефти из первой скважины на 5% и из второй – на 6 % . На сколько процентов нужно увеличить годовую добычу нефти из третьей скважины, чтобы суммарный объём добываемой за год нефти не изменился ?

Задачи на части и проценты ещё более трудоёмкая и непонятная область задач. Поэтому конкретнее всего нам их было понять на числовых примерах. Пример 1. Пусть годовая добыча нефти составляет 1000 баррелей. Тогда, зная, что эта добыча разбита на 25 частей (7+5+13=25, т.е. одна часть составляет 40 баррелей) имеем: первая вышка качает 280 баррелей, вторая – 200 баррелей, третья – 520 баррелей в год. При снижении добычи на 5% первая вышка теряет 14 баррелей (280·0,05 = 14), то есть её добыча составит 266 баррелей. При снижении добычи на 6% вторая вышка теряет 12 баррелей (200·0,06 = 12), то есть её добыча составит 188 баррелей.

Всего за год они вместе будут качать 454 баррелей нефти, тогда третьей вышке вместо 520 баррелей необходимо будет добывать 546 баррелей.

Пример 2. Пусть годовая добыча нефти составляет 1500 баррелей. Тогда, зная, что эта добыча разбита на 25 частей (7+5+13=25, т.е. одна часть составляет 60 баррелей) имеем: первая вышка качает 420 баррелей, вторая – 300 баррелей, третья – 780 баррелей в год. При снижении добычи на 5% первая вышка теряет 21 баррелей (420·0,05 = 21), то есть её добыча составит 399 баррелей. При снижении добычи на 6% вторая вышка теряет 18 баррелей (300·0,06 = 18), то есть её добыча составит 282 баррелей.

Всего за год они вместе будут качать 681 баррелей нефти, тогда третьей вышке вместо 780 баррелей необходимо будет добывать 819 баррелей.

Это на 5% больше прежней добычи, так как .

На 5% нужно увеличить годовую добычу нефти из третьей скважины, чтобы суммарный объём добываемой за год нефти не изменился.

Можно рассмотреть и другой вариант подобной задачи. Здесь мы вводим некоторую переменную, которая является лишь «символом» единиц объёма.

12. Объём ежегодной добычи нефти из первой, второй и третьей скважин относятся как 6:7:10. Планируется уменьшить годовую добычу нефти из первой скважины на 10% и из второй на 10%. На сколько процентов нужно увеличить годовую добычу нефти из третьей скважины, чтобы суммарный объём добываемой нефти не изменился?

Пусть объёмы ежегодной добычи нефти из первой, второй и третьей скважин равны соответственно 6х, 7х, 10х некоторых единиц объёма.

1) 0,1 ·6х = 0,6х (единиц) – снижение добычи на первой скважине;

2)0,1 ·7х = 0,7х (единиц) – снижение добычи на второй скважине;

3)0,6х + 0,7х= 1,3х (единиц) – должно составить повышение объёма добычи нефти на третьей скважине;

На столько процентов нужно увеличить годовую добычу нефти из третьей скважины.

Годовую добычу нефти из третьей скважины нужно увеличить на 13%.

13. Купили 60 тетрадей – в клетку было в 2 раза больше, чем в линейку. Сколько частей приходится на тетради в линейку; на тетради в клетку; на все тетради? Сколько купили тетрадей в линейку? Сколько в клетку?

При решении задачи лучше опираться на схематический рисунок, легко воспроизводимый в тетради и дополняемый по ходу решения нужными записями. Пусть тетради в линейку составляют 1 часть, тогда тетради в клетку составляют 2 части.

1) 1 + 2 = 3(части) – приходится на все тетради;

2) 60: 3 = 20 (тетрадей) – приходится на 1 часть;

3) 20 · 2 = 40 (тетрадей) – тетради в клетку;

4) 60 – 40 = 20 (тетрадей) – в линейку.

Купили 20 тетрадей в линейку и 40 тетрадей в клетку.

14. В 1892 году некто думает провести в Петербурге столько минут, сколько часов проведёт в деревне. Сколько времени некто проведёт в Петербурге?

Так как 1час равен 60 минутам и число минут равно числу часов, то некто в деревне проведёт в 60 раз больше времени, чем в Петербурге (время на переезд здесь не учитывается). Если число дней, проведённых в Петербурге, составляет 1 часть, то число дней, проведённых в деревне, составляет 60 частей. Так как речь идёт о високосном годе, то на 1 часть приходится 366: (60 + 1) = 6 (дней).

Некто проведёт в Петербурге 6 дней.

15. Яблоки содержат 78% воды. Их немного подсушили, и теперь они содержат 45% воды. Сколько процентов своей массы яблоки потеряли при сушке?

Пусть х кг – масса яблок, тогда в ней содержится 0,78х кг воды и х – 0,78х = 0, 22х (кг) сухого вещества. После подсушки сухое вещество составляет 100 – 45 = 55(%) массы сухих яблок, поэтому масса сухих яблок равна 0,22х: 0,55 = 0,46х(кг).

Итак, яблоки при сушке потеряли х – 0,46х = 0,54х, то есть 54%.

При сушке яблоки потеряли 54% своей массы.

16. Трава содержит 82% воды. Её немного подсушили, и теперь она содержит 55% воды. Сколько своей массы трава потеряла при сушке?

При начальных условиях живая масса травы составляла 100% - 82% = 18%.

После сушке эта величина увеличилась до 45%, но при этом общая масса травы уменьшилась на 40 % (45: 18 ·10% = 40%).

40% своей массы трава потеряла при сушке.

  1. Задачи на движение.

Эти задачи считаются традиционно трудными. Поэтому есть необходимость более детально разобрать арифметический способ решения такого типа задач.

17. Из пункта А в пункт В одновременно выезжают два велосипедиста. Скорость одного из них на 2 км/ч меньше другого. Велосипедист, который первый прибыл в В, сразу же повернул обратно и встретил другого велосипедиста через 1ч 30 мин. после выезда из А. На каком расстоянии от пункта В произошла встреча?

Эта задача также решается на примере предметных образов и ассоциаций.

После того как рассмотрен ряд примеров, и число - расстояние 1,5 км ни у кого не вызывает сомнений, необходимо обосновать его нахождение из данных представленной задачи. А, именно, 1.5 км – это разность в отставании 2 от 1велосипедиста пополам: за 1,5 ч второй отстанет от первого на 3 км, поскольку 1 возвращается, то оба велосипедиста сближаются друг с другом на половину разницы пройденного пути, то есть на 1,5 км. Отсюда вытекает ответ задачи и метод решения такого рода текстовых задач.

Встреча произошла на расстоянии 1,5 км от пункта В.

18. Из Москвы в Тверь вышли одновременно два поезда. Первый проходил в час 39 верст и прибыл в Тверь двумя часами раньше второго, который проходил в час 26 вёрст. Сколько вёрст от Москвы до Твери?

1) 26 · 2 = 52 (версты) – на сколько второй поезд отстал от первого;

2) 39 – 26 = 13 (вёрст) – столько второй поезд отставал от первого за 1 час;

3) 52: 13 = 4 (ч) – столько времени был в пути первый поезд;

4) 39 · 4 = 156 (вёрст) – расстояние от Москвы до Твери.

От Москвы до Твери 156 вёрст.

  1. Задачи на совместную работу.

19. Одна бригада может выполнить задание за 9 дней, а вторая – за 12 дней. Первая бригада работала над выполнением этого задания 3 дня, потом вторая бригада закончила работу. За сколько дней было выполнено задание?

1) 1: 9 = (задания) – выполнит первая бригада за один день;

2 ) · 3 = (задания) - выполнила первая бригада за три дня;

3) 1 - = (задания) – выполнила вторая бригада;

4) 1: 12 = (задания) – выполнит вторая бригада за один день;

5) 8 (дней) – работала вторая бригада;

6) 3 + 8 = 11 (дней) – затрачено на выполнение задания.

Задание было выполнено за 11 дней.

20. Лошадь съедает воз сена за месяц, коза – за два месяца, овца – за три месяца. За какое время лошадь, коза и овца вместе съедят такой же воз сена?

Пусть лошадь, коза и овца едят сено 6 месяцев. Тогда лошадь съест 6 возов, коза – 3 воза, овца – 2 воза. Всего 11 возов, значит, в месяц они воза, а один воз съедят за 1: = (месяца).

Лошадь, коза, овца съедят воз сена за месяца.

21. Четыре плотника хотят построить дом. Первый плотник может построить дом за 1 год, второй – за 2 года, третий – за 3 года, четвёртый - за 4 года. За сколько времени они построят дом при совместной работе?

За 12 лет каждый в отдельности плотник может построить: первый – 12 домов; второй – 6 домов; третий – 4 дома; четвёртый – 3 дома. Таким образом, за 12 лет они могут построить 25 домов. Следовательно, один двор, работая вместе, они сумеют построить за 175,2 дней.

Плотники смогут построить дом, работая вместе за 175, 2 дня.

Заключение.

В заключении следует сказать, что представленные в исследовании задачи лишь небольшой пример применения арифметических способов при решении текстовых задач. Надо сказать об одном важном моменте – выборе фабулы задач. Дело в том, что невозможно предусмотреть всех трудностей при решении задач. Но тем не менее, в момент первоначального усвоения приёма решения какого-либо типа задач их фабула должна быть как можно проще.

Приведённые образцы представляют особый случай, но они отражают направление – приближение школы к жизни.

Литература

1.Вилейтнер Г. Хрестоматия по истории математики. – Вып.I.Арифметика и алгебра/ перев. с нем. П.С. Юшкевича. – М.-Л.:1932.

2.Тоом А.Л. Текстовые задачи: приложения или умственные манипулятивы //Математика,2004.

3.Шевкин А.В. Текстовые задачи в школьном курсе математики.М, 2006.

Решение задач алгебраическим способом (с помощью уравнений) По учебнику И.И. Зубаревой, А.Г. Мордковича

учитель математики МОУ «ЛСОШ №2»

г. Лихославль Тверской области


Цели: - показать правило решения задач алгебраическим способом; - формировать умение решать задачи арифметическим и алгебраическим способами.


Способы

решения задач

Арифметический (решение задачи по действиям)

Алгебраический (решение задачи с помощью уравнения)


Задача №509

Прочитайте задачу.

Постарайтесь найти разные способы решения.

В двух коробках 16 кг печенья. Найдите массу печенья в каждой коробке, если в одной из них печенья на 4 кг больше, чем в другой.

1 способ решения

(смотреть)

3 способ решения

(смотреть)

2 способ решения

4 способ решения


1 способ (арифметический)

  • 16 – 4 = 12 (кг) – печенья останется в двух коробках, если из первой коробки достать 4 кг печенья.
  • 12: 2 = 6 (кг) – печенья было во второй коробке.
  • 6 + 4 = 10 (кг) – печенья было в первой коробке.

Ответ

В решении использован способ уравнивания .

Вопрос : почему он получил такое название?

Назад )


2 способ (арифметический)

  • 16 + 4 = 20 (кг) – печенья станет в двух коробках, если во вторую коробку добавить 4 кг печенья.
  • 20: 2 = 10 (кг) – печенья было в первой коробке.
  • 10 - 4 = 6 (кг) – печенья было во второй коробке.

Ответ : масса печенья в первой коробке – 10 кг, а во второй 6 кг.

В решении использован способ уравнивания .

Назад )


3 способ (алгебраический)

Обозначим массу печенья во второй коробке буквой х кг. Тогда масса печенья в первой коробке будет равна (х +4) кг, а масса печенья в двух коробках – ((х +4)+ х ) кг.

(х +4)+ х =16

х +4+ х =16

2 х +4=16

2 х =16-4

2 х =12

х =12:2

Во второй коробке было 6 кг печенья.

6+4=10 (кг) – печенья было в первой коробке.

В решении использован алгебраический способ.

Задание : Объясните, в чем отличие арифметического способа от алгебраического?

Назад )


4 способ (алгебраический)

Обозначим массу печенья в первой коробке буквой х кг. Тогда масса печенья во второй коробке будет равна (х -4) кг, а масса печенья в двух коробках – (х +(х -4)) кг.

По условию задачи, в двух коробках было 16 кг печенья. Получаем уравнение:

х +(х -4)=16

х + х -4=16

2 х -4=16

2 х =16+4

2 х =20

х =20:2

В первой коробке было 10 кг печенья.

10-4=6 (кг) – печенья было во второй коробке.

В решении использован алгебраический способ.

Назад )


  • Какие два способа решения задачи были использованы?
  • Что собой представляет способ уравнивания?
  • Чем первый способ уравнивания отличается от второго?
  • В одном кармане на 10 рублей больше, чем в другом. Как можно уравнять количество денег в обоих карманах?
  • В чем заключается алгебраический способ решения задачи?
  • Чем отличается 3 способ решения задачи от 4-го?
  • В одном кармане на 10 рублей больше, чем в другом. Известно, что меньшее количество денег обозначили переменной х . Как будет выражаться через х
  • Если за х обозначить большее количество денег в кармане, тогда как будет выражаться через х количество денег в другом кармане?
  • В магазине шампунь стоит на 25 руб дороже, чем в супермаркете. Обозначьте одну переменную буквой у и выразите другую стоимость через эту переменную.

Задача №510

Решите задачу арифметическим и алгебраическим способами.

С трех участков земли собрали 156 ц картофеля. С первого и второго участков картофеля собрали поровну, а с третьего – на 12 ц больше, чем с каждого из двух первых. Сколько картофеля собрали с каждого участка.

Алгебраический способ

(смотреть)

Арифметический способ

(смотреть)

выход )


Арифметический способ

  • 156 - 12 = 144 (ц) – картофеля собрали бы с трех участков, если бы урожайность всех участков была бы одинаковой.
  • 144: 3 = 48 (ц) – картофеля собрали с первого и собрали со второго участков.
  • 48 + 12 = 60 (ц) – картофеля собрали с третьего участка.

Ответ

Назад )


Алгебраический способ

Пусть с первого участка собрали х ц картофеля. Тогда со второго участка собрали тоже х ц картофеля, а с третьего участка собрали (х +12) ц картофеля.

По условию со всех трех участков собрали 156 ц картофеля.

Получаем уравнение:

х + х + (х +12) =156

х + х + х + 12 = 156

3 х +12 = 156

3 х = 156 – 12

3 х = 144

х = 144: 3

С первого и второго участков собрали по 48 ц картофеля.

48 +12 = 60 (ц) – картофеля собрали с третьего участка.

Ответ : с первого и второго участков собрали по 48 ц картофеля, а с третьего участка собрали 60 ц картофеля.

Назад


Решить математическую задачу - это значит найти такую последовательность общих положений математики, применяя которые к условиям задачи получаем то, что требуется найти - ответ.


Основными методами решения текстовых задач являются арифметический и алгебраический метод, а так же комбинированный.


Решить задачу арифметическим методом - значит найти ответ на требование задачи посредством выполнения арифметических действий над данными в задаче числами. Одну и туже задачу можно решить различными арифметическими способами. Они отличаются друг от друга логикой рассуждений в процессе решения задачи.


Решить задачу алгебраическим методом - значит найти ответ на требование задачи путем составления и решения уравнения или системы уравнений.


Алгебраическим методом решают по следующей схеме:


1) выделяют величины, о которых идет речь в тексте задачи, и устанавливают зависимость между ними;


2) вводят переменные (обозначают буквами неизвестные величины);


3) с помощью введенных переменных и данных задачи составляют уравнение или систему уравнений;


4) решают полученное уравнение или систему;


5) проверяют найденные значения по условию задачи и записывают ответ.


Комбинированный метод решения включает как арифметический, так и алгебраический способы решения.


В начальной школе задачи делят по количеству действий при решении на простые и составные. Задачи, в которых для ответа на вопрос нужно выполнить только одно действие, называют простыми. Если для ответа на вопрос задачи нужно выполнить два и более действий, то такие задачи называют составными.


Составную задачу, тек же как и простую, можно решить, используя различные способы.


Задача. Рыбак поймал 10 рыб. Из них 3 леща, 4 окуня, остальные - щуки. Сколько щук поймал рыбак?


Практический способ .


Обозначим каждую рыбу кругом. Нарисуем 10 кругов и обозначим пойманных рыб.


Л Л Л О О О О


Для ответа на вопрос задачи можно не выполнять арифметические действия, так как количество пойманных щук соответствует не обозначенным кругам - их три.


Арифметический способ.


1) 3+4=7(р) - пойманные рыбы;


2) 10 - 7 = 3(р) - пойманные щуки.


Алгебраический способ.


Пусть х - пойманные щуки. Тогда количество всех рыб можно записать выражением: 3 + 4 + х. По условию задачи известно, что рыбак поймал всего 10 рыб. Значит: 3 + 4 + х = 10. Решив это уравнение, получим х = 3 и тем самым ответим на вопрос задачи.


Графический способ .


лещи окуни щуки



Этот способ, так же как и практический, позволят ответить на вопрос задачи, не выполняя арифметических действий.


В математике общепринято следующее деление процесса решения задач :


1) анализ текста задачи, схематическая запись задачи, исследование задачи;


2) поиск способа решения задачи и составление плана решения;


3) осуществление найденного плана;


4) анализ найденного решения задачи, проверка.


Методы поиска решения задачи можно назвать следующие:


1) Анализ: а) когда в рассуждениях двигаются от искомых к данным задачи; б) когда целое расчленяют на части;


2) Синтез: а) когда двигаются от данных задачи к искомым;
б) когда элементы объединяют в целое;


3) Переформулировка задачи (четко формулировать промежуточные задания, возникающие по ходу поиска решения);


4) Индуктивный метод решения задачи: на основе точного чертежа усмотреть свойства фигуры, сделать выводы и доказать их;


5) Применение аналогии (вспомнить аналогичную задачу);


6) Прогнозирование - предвидение тех результатов, к которым может привести поиск.


Рассмотрим более подробно процесс решения задачи :


Задача на движение. Лодка прошла по течению реки расстояние между двумя пристанями за 6 ч, а обратно - за 8ч. За сколько времени пройдет расстояние между пристанями плот, пущенный по течению реки?


Анализ задачи. В задаче речь идет о двух объектах: лодка и плот. Лодка имеет собственную скорость, а плот и река, по которой плывут лодка и плот, имеет определенную скорость течения. Именно поэтому лодка совершает путь по течению реки за меньшее время (6ч) , чем против течения (8ч). Но эти скорости в задаче не даны, так же как неизвестно и расстояние между пристанями. Однако требуется найти не эти неизвестные, а время, за которое плот проплывет это расстояние.


Схематическая запись:


Лодка 6 ч



плот лодка


8


Поиск способа решения задачи. Нужно найти время, за которое плот проплывет расстояние между пристанями А и В. Для того, чтобы найти это время, надо знать расстояние АВ и скорость течения реки. Оба они неизвестны, поэтому обозначим расстояние АВ буквой S (км), а скорость течения а км/ч. Чтобы связать эти неизвестные с данными задачи, нужно знать собственную скорость лодки. Она тоже неизвестна, положим, она равна V км/ч. Отсюда возникает план решения, заключающийся в том, чтобы составить систему уравнений относительно введенных неизвестных.


Осуществление решения задачи. Пусть расстояние равно S (км), скорость течения реки а км/ч, собственная скорость лодки V км/ч , а искомое время движения плота равно х ч.


Тогда скорость лодки по течению реки равна (V+а) км/ч. За лодка, идя с этой скоростью, прошла расстояние в S (км). Следовательно, 6(V + а ) = S (1). Против течения эта лодка идет со скоростью (V - а ) км/ч и данный путь она проходит за 8 ч , поэтому 8(V - а ) = S (2). Плот, плывя со скоростью течения реки а км/ч, проплыл расстояние S (км) за х ч, следовательно, ах = S (3).


Полученные уравнения образуют систему уравнений относительно неизвестных а, х, S, V. Так как требуется найти лишь х , то остальные неизвестные постараемся исключить.


Для этого из уравнений (1) и (2) найдем: V + а = , V - а = . Вычитая из первого уравнения второе, получим: 2а = - . Отсюда а = . Подставим найденное выражение в уравнение (3): х = . Откуда х= 48 .


Проверка решения. Мы нашли, что плот проплывет расстояние между пристанями за 48 ч. Следовательно, его скорость, равная скорости течения реки, равна . Скорость же лодки по течению реки равна км/ч, а против течения км/ч. Для того, чтобы убедиться в правильности решения, достаточно проверить, будут ли равны собственные скорости лодки, найденные двумя способами: + и
- . Произведя вычисления, получим верное равенство: = . Значит, задача решена правильно.


Ответ: плот проплывет расстояние между пристанями за 48 часов.


Анализ решения . Мы свели решение этой задачи к решению системы трех уравнений с четырьмя неизвестными. Однако найти надо было одно неизвестное. Поэтому возникает мысль, что данное решение не самое удачное, хотя и простое. Можно предложить другое решение.


Зная, что лодка проплыла расстояние АВ по течению реки за 6ч, а против - за 8ч, найдем, что в 1ч лодка, идя по течению реки проходит часть этого расстояния, а против течения . Тогда разность между ними - = есть удвоенная часть расстояния АВ, проплываемая плотом за 1ч. Значит. Плот за 1ч проплывет часть расстояния АВ, следовательно, все расстояние АВ он проплывет за 48 ч.


При таком решении нам не понадобилось составлять систему уравнений. Однако это решение сложнее приведенного выше (не всякий догадается найти разность скоростей лодки по течению и против течения реки).


Упражнения для самостоятельной работы


1. Турист, проплыв по течению реки на плоту 12 км, обратно возвратился на лодке, скорость которой в стоячей воде равна 5 км/ч, затратив на все путешествие 10 ч. Найдите скорость течения реки.


2. Одна мастерская должна сшить 810 костюмов, другая за этот же срок - 900 костюмов. Первая закончила выполнение заказов за 3 дня, а вторая за 6 дней до срока. Сколько костюмов в день шила каждая мастерская, если вторая шила в день на 4 костюма больше первой?


3. Два поезда выехали навстречу друг другу с двух станций, расстояние между которыми равно 400 км. Через 4 часа расстояние между ними сократилось до 40 км. Если бы один из поездов вышел на 1 час раньше другого, то их встреча произошла бы на середине пути. Определите скорости поездов.


4. На одном складе 500 т угля, а на другом - 600 т. Первый склад ежедневно отпускает 9 т, а второй - 11 т угля. Через сколько дней угля на складах станет поровну?


5. Вкладчик взял из сбербанка 25 % своих денег, а потом 64 000рублей. После чего осталось на счету 35 % всех денег. Какой был вклад?


6. Произведение двузначного числа и его суммы цифр равно 144. Найдите это число, если в нем вторая цифра больше первой на 2.


7. Решите следующие задачи арифметическим методом:


а) На путь по течению реки моторная лодка затратила 6 ч, а на обратный путь - 10 ч. Скорость лодки в стоячей воде 16 км/ч. Какова скорость течения реки?


в) Длина прямоугольного поля 1536 м, а ширина 625 м. Один тракторист может вспахать это поле за 16 дней, а другой за 12 дней. Какую площадь вспашут оба тракториста, работая в течении 5 дней?

Несмотря на то, что вычислительная деятельность вызывает интерес у детей, а самой проблеме отводится значительное место в программе обучения в детском саду, многие старшие дошкольники и даже младшие школьники (учащиеся 1--3-х классов) испытывают значительные трудности именно в решении арифметических задач. Около 20 % детей седьмого года жизни испытывают трудности в выборе арифметического действия, аргументации его. Эти дети, решая арифметические задачи, в выборе арифметического действия ориентируются в основном на внешние несущественные «псевдоматематические» связи и отношения между числовыми данными в условии задачи, а также между условием и вопросом задачи. Это проявляется прежде всего в непонимании ими обобщенного содержания понятий: «условие», «вопрос», «действие», а также знаков (+,-,=), в неумении правильно выбрать необходимый знак, арифметическое действие в том случае, когда заданное в условии конкретное отображение не соответствует арифметическому действию (прилетели, добавили, дороже -- сложение; улетели, взяли, дешевле -- вычитание). Более того, иногда отдельные воспитатели ориентируют детей именно на эти псевдоматематические связи. В таких ситуациях вычислительная деятельность формируется недостаточно осознанно (М. А. Бантова, Н. И. Моро, А. М. Пышкало, Е. А. Тарханова и др.).

Очевидно, основная причина невысокого уровня знаний детей заключается в самой сути того, что отличает вычислительную деятельность от счетной. Во время счета ребенок имеет дело с конкретными множествами (предметы, звуки, движения). Он видит, слышит, чувствует эти множества, имеет возможность практически действовать с ним (накладывать, прикладывать, непосредственно сравнивать). Что же касается вычислительной деятельности, то она связана с числами. А числа -- это абстрактные понятия. Вычислительная деятельность опирается на разные арифметические действия, которые также являются обобщенными, абстрагированными операциями с множествами.

Понимание самой простой арифметической задачи требует анализа ее содержания, выделения ее числовых данных, понимания отношений между ними и, конечно, самих действий, которые ребенок должен выполнить.

Дошкольникам особенно трудно понимать вопрос задачи, который отражает математическую сущность действий, хотя именно вопрос задачи направляет внимание ребенка на отношения между числовыми данными.

Обучение дошкольников решению арифметических задач подводит их к пониманию содержания арифметических действий (добавили -- сложили, уменьшили -- вычли). Это также возможно на определенном уровне развития аналитико-синтетической деятельности ребенка. Для того чтобы дети усвоили элементарные приемы вычислительной деятельности, необходима предварительная работа, направленная на овладение знаниями об отношениях между смежными числами натурального ряда, о составе числа, счете группами и т. д.

Особое значение в формировании вычислительной деятельности приобретают четкая системность и поэтапность в работе.

Решить сложением (к трем прибавить один)». Дети делают вывод: «К кормушке прилетело четыре птички».

«В магазине было пять телевизоров, один из них продали. Сколько телевизоров осталось в магазине?» Решая эту задачу, воспитатель учит аргументировать свои действия так: было пять телевизоров, один продали, следовательно, их осталось на один меньше. Чтобы узнать, сколько телевизоров осталось, нужно от пяти отнять один и получится четыре.

Воспитатель формирует у детей представления о действиях сложения и вычитания, одновременно знакомит их со знаками «+» (прибавить, сложить), «-» (отнять, вычесть) и «=» (равно, получится).

Таким образом, ребенок постепенно от действий с конкретными множествами переходит к действиям с числами, т. е. решает арифметическую задачу.

Уже на втором-третьем занятии наряду с задачами-драматизапиями и задачами-иллюстрациями можно предлагать детям решать устные (текстовые) задачи. Этот этап работы тесно связан с использованием карточек с цифрами и знаками. Особенно полезны упражнения детей в самостоятельном составлении ими аналогичных задач. При этом воспитатель должен помнить, что основное заключается в нахождении не столько ответа (названия числа), сколько пути к нему. Так, дети решают задачу: «На участке детского сада в первый день посадили четыре дерева, а на следующий -- еще одно дерево. Сколько деревьев посадили за два дня?» Воспитатель учит ребенка мыслить во время решения задачи. Он спрашивает детей: «О чем идет речь в задаче?» -- «О том, что на площадке детского сада посадили деревья». -- «Сколько деревьев посадили в первый день?» -- «Четыре». -- «Сколько деревьев посадили во второй день?» -- «Одно дерево». -- «А что спрашивается в задаче?» -- «Сколько всего деревьев посадили на участке за два дня?» -- «Как можно узнать, сколько деревьев посадили на участке?» -- «К четырем прибавить один».

Воспитатель подводит детей к такому обобщению: чтобы к числу прибавить один (единицу), не надо пересчитывать все предметы, надо просто назвать следующее число. Когда к четырем прибавляем один, мы просто называем следующее за числом «четыре» число «пять». А когда надо вычесть, отнять один, следует назвать предыдущее число, стоящее перед ним. Таким образом, опираясь на имеющиеся у детей знания, воспитатель вооружает их приемами присчитывания (прибавления) к числу единицы и вычитания единицы. Ниже предлагаются несколько задач первого типа.

  • 1. На ветке сидело пять воробьев. К ним прилетел еще один воробей. Сколько птичек стало на ветке?
  • 2. Таня и Вова помогали маме. Таня почистила три картофелины, а Вова -- одну морковку. Сколько овощей почистили дети?
  • 3. На одной клумбе расцвело пять тюльпанов, на другой -- один пион. Сколько цветов расцвело на обеих клумбах вместе?

Если с первых шагов обучения дети осознают необходимость, значение анализа простых задач, то позднее это поможет им в решении сложных математических задач. Активность умственной деятельности ребенка во многом зависит от умения воспитателя ставить вопросы, побуждать его мыслить. Так, воспитатель спрашивает у детей: «О чем следует узнать в задаче? Как можно ответить на вопрос? Почему ты считаешь, что надо сложить? Как ты прибавишь к четырем единицу?»

Следующий этап в работе связан с ознакомлением детей с новыми задачами (задачами второго типа) на отношения «больше -- меньше на несколько единиц». В этих задачах арифметические действия подсказаны в самом условии задачи. Отношение «больше на единицу» требует от ребенка увеличения, присчитывания, сложения. Выражение «больше (меньше) на единицу» дети уже усвоили в группах пятого-шестого годов жизни, сравнивая смежные числа. При этом акцентировать внимание детей на отдельных словах «больше», «меньше» и тем более ориентировать их на выбор арифметического действия только в зависимости от этих слов не рекомендуется. Позднее, при решении «непрямых, косвенных» задач возникает потребность переучивать детей, а это намного сложнее, чем научить правильно делать выбор арифметического действия. Ниже даются примерные задачи второго типа.

  • 1. В Машину чашку с чаем мама положила две ложки сахара, а в большую чашку папы -- на одну ложку больше. Сколько сахара положила мама в чашку папы?
  • 2. На станции стояли четыре пассажирских поезда, а товарных -- на один меньше. Сколько товарных поездов было на станции?
  • 3. Дети собрали на огороде три ящика помидоров, а огурцов -- на один меньше. Сколько ящиков огурцов собрали дети?

В начале обучения дошкольникам предлагаются только. прямые задачи, в них и условие, и вопрос словно подсказывают, какое действие следует выполнить: сложение или вычитание.

Шестилетним детям необходимо предлагать сравнивать задачи разных типов, хотя это для них является сложным делом, поскольку дети не видят текста, а обе задачи необходимо удерживать в памяти. Основным критерием сравнения является вопрос. В вопросе подчеркивается, что нужно определить только количество второго множества, которое больше (меньше) на один, или общее количество (остаток, разницу). Арифметические действия одинаковые, а цель разная. Именно это и способствует развитию мышления детей. Воспитатель постепенно подводит их к этому пониманию.

Еще более важным и ответственным этапом в обучении детей решению арифметических задач является ознакомление их с третьим типом задач -- на разностное сравнение чисел. Задачи этого типа решаются только вычитанием. При ознакомлении детей с этим типом задач их внимание обращается на основное -- вопрос в задаче. Вопрос начинается со слов «на сколько?», т. е. всегда необходимо определить разницу, разностные отношения между числовыми данными. Воспитатель учит детей понимать отношения зависимости между числовыми данными. Анализ задачи должен быть более детальным. Во время анализа дети должны идти от вопроса к условию задачи. Следует объяснить, что в выборе арифметического действия основным всегда является вопрос задачи, от его содержания и формулировки зависит решение. Поэтому следует начинать с анализа вопроса. Сначала детям предлагают задачу без вопроса. Например: «На прогулку дети взяли четыре больших мяча и один маленький. Что это такое? Можно ли это назвать арифметической задачей?» -- обращается воспитатель к детям. «Нет, это только условие задачи», -- отвечают дети. «А теперь поставьте сами вопрос к этой задаче».

Следует подвести детей к тому, что к этому условию задачи можно поставить два вопроса:

  • 1. Сколько всего мячей взяли на прогулку?
  • 2. На сколько больше взяли больших мячей, чем маленьких?

В соответствии с первым вопросом следует выполнить сложение, а в соответствии со вторым -- вычитание. Это убеждает детей в том, что анализ задачи следует начинать с вопроса. Ход рассуждений может быть таким: чтобы узнать, сколько всего мячей взяли дети на прогулку, надо знать, сколько взяли больших и маленьких отдельно и найти их общее количество. Во втором случае надо найти, на сколько больше одних мячей, чем других, т. е. определить разницу. Разницу всегда находят вычитанием: от большего числа вычитают меньшее.

Итак, задачи третьего типа помогают воспитателю закрепить знания о структуре задачи и способствуют развитию у детей умения различать и находить соответствующее арифметическое действие.

На этих занятиях не механически, а более или менее осознанно дети выполняют действия, аргументируют выбор арифметического действия. Задачи этого типа также следует сравнивать с задачами первого и второго типов.

Вычислительная деятельность в дошкольном возрасте предполагает овладение детьми арифметическими действиями сложения и вычитания, относящимися к операционной системе математики и подчиняющимися особым закономерностям операционных действий.

Чтобы дети лучше запоминали числовые данные, используются карточки с цифрами, а несколько позже и знаками.

Вначале числовые данные в задачах лучше ограничить первыми пятью числами натурального ряда. Дети в таких случаях, как правило, легко находят ответ. Основная цель этих занятий -- научить анализировать задачу, ее структуру, понимать математическую сущность. Дети учатся выделять структурные компоненты задачи, числовые данные, аргументировать арифметические действия и т. д.

Особое внимание в этот период следует уделить обучению детей составлению и решению задач по иллюстрациям и числовым примерам.

Так, воспитатель обращается к детям: «Сейчас мы с вами будем составлять и решать задачи по картине». При этом привлекается внимание детей к картине, на которой изображена речка, на берегу играют пять детей, а двое детей в лодках плывут к берегу. Предлагается рассмотреть картину и ответить на вопрос: «Что нарисовано на картине? О чем хотел рассказать художник? Где играют дети? Сколько детей на берегу? Что делают эти дети? (Показывает на детей в лодке.) Сколько их? Когда они выйдут на берег, их станет больше или меньше на берегу? Составьте задачу по этой картинке».

Воспитатель вызывает двух-трех детей и выслушивает составленные ими задачи. Потом выбирает наиболее удачную задачу, и все вместе решают ее. «О чем идет речь в задаче? Сколько детей играло на берегу? Сколько детей приплыло в лодке? Что надо сделать, чтобы решить задачу? Как к числу "пять" можно прибавить число "два"?» -- 5+1 + 1=7.

Воспитатель следит за тем, чтобы дети правильно формулировали арифметическое действие и объясняли прием присчитывания по единице.

Аналогично составляют и решают другие задачи. В конце занятия воспитатель спрашивает, чем занимались дети, уточняет их ответы: «Правильно, мы учились составлять и решать задачи, выбирать соответствующее действие, прибавлять и вычитать число 2 путем присчитывания и отсчитывания по единице».

Примерно так же дети составляют и решают задачи по числовому примеру. Составление и решение арифметических задач по числовому примеру требует еще более сложной умственной деятельности, поскольку содержание задачи не может быть произвольным, а опирается на числовой пример как на схему. В начале обращается внимание детей на само действие. В соответствии с действием (сложение или вычитание) составляется условие и вопрос в задаче. Можно усложнить цель -- не по каждому числовому примеру составляется новая задача, а иногда по одному и тому же примеру составляется несколько задач разных типов. Это, естественно, значительно сложнее, зато наиболее эффективно для умственного развития ребенка.

Так, по числовому примеру 4 + 2 дети составляют и решают две задачи: первую -- на нахождение суммы (сколько всего), вторую -- на отношение «больше на несколько единиц» (на 2). При этом ребенок должен осознавать отношения и зависимости между числовыми данными.

На основе примера 4 -- 2 дети должны составить три задачи: первого, второго и третьего типа. Сначала воспитатель помогает детям вопросами, предложениями: «Сейчас мы составим задачу, где будут слова "на 2 меньше", а потом по этому самому примеру составим задачу, где не будет таких слов, и нужно будет определить разницу в количестве (сколько осталось)». А потом воспитатель спрашивает: «А можно ли на основе этого примера составить новую, совсем другую задачу?» Если дети сами не могут сориентироваться, то воспитатель подсказывает им: «Составьте задачу, где вопрос начинался бы со слов "на сколько больше (меньше)"».

Такие занятия с детьми помогают им понять основное: арифметические задачи по своему содержанию могут быть разными, а математическое выражение (решение) -- одинаковым. В этот период обучения большое значение имеет «развернутый» способ вычисления, активизирующий умственную деятельность ребенка. Накануне воспитатель повторяет с детьми количественный состав числа из единиц и предлагает прибавлять число 2 не сразу, а присчитывать сначала 1, потом еще 1. Включение развернутого способа в вычислительную деятельность обеспечивает развитие логического мышления, способствуя при этом усвоению сущности этой деятельности.

После того как у детей сформируются представления и некоторые понятия об арифметической задаче, отношениях между числовыми данными, между условием и вопросом задачи, можно переходить к следующему этапу в обучении -- ознакомлению их с преобразованием прямых задач в обратные. Это даст возможность еще глубже усвоить математическую формулу задачи, специфику каждого типа задач. Воспитатель объясняет детям, что каждую простую арифметическую задачу можно преобразовать в новую, если искомое задачи взять за одно из данных новой задачи, а одно из данных преобразованной задачи считать искомым в новой задаче.

Такие задачи, где одно из данных первой является искомым во второй, а искомое второй задачи входит в данные первой, называются взаимно-обратными задачами.

Итак, из каждой прямой арифметической задачи путем преобразования можно сделать 2 обратные задачи.

Если дети при решении задач с первых шагов будут ориентироваться на существенные связи и отношения, то слова «стало», осталось» и другие не дезориентируют их. Независимо от этих слов дети правильно выбирают арифметическое действие. Более того, именно на этом этапе педагог должен обратить внимание детей на независимость выбора решения задачи от отдельных слов и выражений.

Ознакомление с прямыми и обратными задачами повышает познавательную активность детей, развивает у них способность логически мыслить. При решении любых задач дети должны исходить из вопроса задачи. Взрослый учит ребенка аргументировать свои действия, в данном случае аргументировать выбор арифметического действия. Ход мыслей при этом может идти по схеме: «Чтобы узнать... нам необходимо... потому что...» и т. д.

В группе седьмого года жизни детей можно будет ознакомить с новыми приемами вычислений -- на основе счета группами. Дети, научившись считать парами, тройками, могут сразу прибавлять число 2, а потом и 3. Однако спешить с этим не следует. Важно, чтобы у детей сформировались прочные, достаточно осознанные умения и навыки присчитывания и отсчитывания по единице.

В современных исследованиях по методике математического развития есть некоторые рекомендации к формированию у детей обобщенных способов решения арифметических задач. Одним из таких способов является решение задач по схеме-формуле. Это положение обосновано и экспериментально проверено в исследованиях Н. И. Непомнящей, Л. П. Клюевой, Е. А. Тархановой, Р. Л. Непомнящей. Предложенная авторами формула является схематическим изображением отношения части и целого. Работой, предшествующей этому этапу, является практическое деление предмета (круга, квадрата, полоски бумаги) на части. То, что дети делают практически, воспитатель потом изображает в схеме-формуле (рис. 29). При этом он рассуждает так: «Если круг поделить пополам, то получится две половины. Если эти половины сложить, то образуется снова целый круг. Если от целого круга отнять одну часть, то получим другую часть этого круга. А теперь попробуем, прежде чем решать некоторые задачи (подчеркивается слово «некоторые»), определить, на что ориентирует нас вопрос в задаче: на нахождение части или целого. Неизвестное целое всегда находится сложением частей, а часть целого -- вычитанием».

Например: «Для составления узора девочка взяла 4 синих и 3 красных кружочка. Из скольких кружочков девочка составила узор?» Дети рассуждают так: «По условию задачи рисунок составлен из синих и красных кружочков. Это части. Надо узнать, из скольких кружочков составлен узор. Это целое. Целое всегда находится сложением частей (4 + 3 =)».

Для детей высокого уровня интеллектуального развития можно предлагать проблемные (косвенные) задачи. Ознакомление детей седьмого года жизни с задачами такого типа возможно и имеет большое значение для их умственного развития. На этой основе в дальнейшем будут формироваться умения осуществлять анализ арифметической задачи, объяснять ход решения, выбор арифметического действия. Косвенные задачи отличаются тем, что в них оба числа характеризуют один и тот же объект, а вопрос направлен на определение количества другого объекта. Трудности в решении таких задач определяются самой структурой и содержанием задачи. Как правило, в этих задачах есть слова, которые дезориентируют ребенка при выборе арифметического действия. Несмотря на то, что в условии задачи есть слова «больше», «прилетели», «старше» и др., следует выполнять обратное этому действие -- вычитание. Для того чтобы ребенок правильно сориентировался, воспитатель учит его более тщательно анализировать задачу. Чтобы выбрать арифметическое действие, ребенок должен уметь рассуждать, логически мыслить. Пример косвенной задачи: «В корзине лежало 5 грибков, что на 2 грибочка больше, чем их лежит на столе. Сколько грибочков лежит на столе?» Часто дети, ориентируясь на несущественные признаки, а именно на отдельные слова (в данном случае слово «больше»), спешат выполнить действие сложения, допуская грубую математическую ошибку.

Воспитатель подчеркивает особенности таких задач, предлагая вместе порассуждать так: «В условии задачи оба числа характеризуют один объект -- количество грибочков в корзине. В ней 5 грибочков и в ней же на 2 больше, чем на столе. Необходимо узнать, сколько грибочков на столе. Если в корзине на 2 больше, то на столе лежит на 2 грибочка меньше. Чтобы узнать, сколько их на столе, следует из 5 вычесть 2 (5-2 = ?)».

При составлении задач воспитатель должен помнить о том, что важно разнообразить формулировки в условии и вопросе задачи: насколько выше, тяжелее, дороже и т. д.

Наряду с решением арифметических задач детям предлагаются арифметические примеры, которые способствуют закреплению навыков вычислительной деятельности. При этом детей знакомят с некоторыми законами сложения.

Известно, что всегда легче выполнить сложение, если второе слагаемое меньше первого. Однако не всегда именно так предлагается в примере, может быть и наоборот -- первое слагаемое меньше, а второе больше (например, 2 + 1 = 1). В таком случае есть необходимость познакомить детей с переместительным законом сложения: 2 + 7 = 7 + 2. Сначала воспитатель показывает это на конкретных примерах, например на брусках. При этом он актуализирует знания детей о составе числа из двух меньших. Дети хорошо усвоили, что число 9 можно образовать (составить) из двух меньших чисел: 2 и 7 или, что тоже самое, 7 и 2. На основе многочисленных примеров с наглядным материалом дети делают вывод-обобщение: действие сложения выполнять легче, если к большему числу прибавить меньшее, а результат не изменится, если переставить эти числа, поменять их местами.

На протяжении учебного года достаточно провести 10--12 занятий по обучению детей решению арифметических задач и примеров (табл. 1).

Ниже представляем программное содержание этих занятий.

  • 1. Ознакомить с понятием «задача». Условие и вопрос в задаче. Задачи-драматизации, задачи-иллюстрации первого типа. Числа в пределах 5, одно из чисел -- 1.
  • 2. Закрепить понятие о структуре задачи. Решение задач с помощью картинок. Задачи второго типа. Знаки «+», «--», «=». Устные задачи. Числа в пределах 5, одно из чисел -- 1. Обучение приемам вычисления на основе понимания отношений между смежными числами.
  • 3. Сравнение задач первого и второго типа. Самостоятельное составление задач по картинке, по числовым данным и по условию.
  • 4. Задачи на сложение и вычитание чисел более 1 (2 = 1 + 1; 3=1 + 1 + 1). Задачи третьего типа -- на отношения между числами. Сравнение задач всех трех типов.
  • 5. Взаимно-обратные задачи. Преобразование арифметических задач. Составление задач по числовому примеру 4 + 2; 4 - 2 всех трех типов.
  • 6. Ознакомление с арифметическими примерами. Формирование навыков вычислительной деятельности. Составление задач по числовому примеру.
  • 7. Решение задач в пределах 10 на основании состава числа из двух меньших чисел. Умение аргументировать свои действия. Алгоритм рассуждения при решении задачи -- от вопроса к условию.
  • 8. Решение задач по формуле. Логика рассуждения от вопроса к условию задачи.
  • 9. Косвенные задачи. Проблемные задачи. Решение арифметических примеров.
  • 10. Нестандартные задачистихотворной форме, шутки и др.). Связь с измерением и временными отношениями.
  • 11. Решение задач на сложение с опорой на переместительный закон сложения. Решение задач по формуле.
  • 12. Решение задач первого, второго и третьего типа. Логика рассуждения при решении задач. Графическое изображение содержания задачи. псевдоматематический арифметический числовой дитя

Итак, программа воспитания в детском саду и методика математического развития большое внимание уделяют проблеме обучения вычислительной деятельности. Однако только в результате целенаправленной систематической работы у детей формируются достаточно прочные и осознанные знания и навыки в вычислительной деятельности, а это является важной предпосылкой в овладении математикой в школе.

Вопросы и задания

  • 1. Раскройте специфику счетной и вычислительной деятельностей, обоснуйте связь счета и вычисления.
  • 2. Проанализируйте несколько альтернативных программ (или программ разных лет издания) с точки зрения их ориентировки на уровень интеллектуального развития каждого ребенка.
  • 3. Составьте перспективный план на один квартал по ознакомлению старших дошкольников с вычислительной деятельностью. На его примере докажите развивающий характер обучения.
  • 4. Каково ваше отношение к методике поэтапного развития вычислительной деятельности у детей дошкольного возраста?

§ 1 Способы решения текстовых задач

Существует несколько способов решения текстовых задач:

· арифметический способ - это способ решения текстовой задачи с помощью чисели знаков арифметических действий сложения, вычитания, умножения и деления, то есть с помощью нескольких действий над числами, связанных между собой;

· алгебраический способ - это способ решения текстовой задачи с помощьювведения переменных и составления соответствующего уравнения или неравенства, или системы уравнений или неравенств;

· геометрический способ - это способ решения текстовой задачи с помощью применения геометрических знаний;

· схематический способ - это способ решения текстовой задачи с помощью схем;

· графический способ - это способ решения текстовой задачи с помощью графиков в прямоугольной системе координат.

Каждый из этих способов предполагает перевод условий задачи на язык математики. Это действие математики называют математическим моделированием. Результат этого действия называют математической моделью. При применении различных способов решения получаются различные математические модели. В арифметическом способе математической моделью является числовое выражение, то есть числовой пример с несколькими действиями, а конечный результат вычислений будет решением задачи. В алгебраическом способе математической моделью чаще всего является уравнение, а решение уравнения даёт решение задачи. В геометрическом способе математической моделью может выступать геометрическая фигура, а решение задачи - например, один из найденных элементов этой фигуры. В схематическом способе математической моделью является схема, с помощью которой находят решение задачи. В графическом способе математической моделью является график, построенный по условию задачи. При этом способе решением задачи могут быть координаты определённых точек графиков.

§ 2 Пример решения текстовой задачи арифметическим способом

В этом уроке более подробно рассмотрим арифметический способ решения задачи.

Решить задачу арифметическим способом - это значит найти ответ на главный вопрос задачи посредством выполнения арифметических действий над числовыми данными из условия задачи. Одну и ту же задачу можно решить различными арифметическими способами. Они отличаются друг от друга количеством действий и последовательностью выполнения этих действий в процессе решения задачи.

Например. Рассмотрим следующую задачу. Три друга Саша, Коля и Витя собирали в лесу грибы. Коля собрал в 2 раза меньше грибов, чем Саша, Витя - на 6 грибов больше, чем Коля. Сколько грибов собрали три друга вместе, если Саша собрал 22 гриба?

Помогает определить правильный ход логических рассуждений краткая запись условий задачи в форме таблицы.

Решим эту задачу по действиям или так называемым способом решения задач по вопросам. Для начала ответим на первый вопрос «Сколько грибов собрал Коля?».

По условию задачи «Коля собрал в 2 раза меньше грибов, чем Саша», значит, чтобы ответить на вопрос, надо 22 разделить на 2. В результате получилось, что Коля собрал 11 грибов. (22:2=11(грибов) - собрал Коля).

Следующим действием ответим на второй вопрос задачи «Сколько грибов собрал Витя?». По условию задачи «Витя собрал на 6 грибов больше, чем Коля», значит, для ответа на вопрос надо к 11-ти прибавить 6. В результате получилось, что Витя собрал 17 грибов.

22+22:2+(22:2+6)=50 грибов собрали три друга вместе.

Умение решать задачи арифметическим способом с помощью числовых выражений говорит о более высоком уровне математической подготовки по сравнению с умением решать текстовые задачи по действиям.

Список использованной литературы:

  1. Г.Н. Тимофеев Математика для поступающих в вузы. Учебное пособие. Текстовые задачи.– Йошкар-Ола: Мар. гос. ун-т, 2006г.
  2. В. Булынин Применение графических методов при решении текстовых задач. – Еженедельная учебно-методическая газета «Математика», №14, 2005г.
  3. Н.И. Попов, А.Н. Марасанов Задачи на составление уравнений. Учебное пособие. Йошкар-Ола: Мар. гос. ун-т, 2003г.
  4. Н.А. Зарипова Программа элективного курса "Текстовые задачи". http://festival.1september.ru/articles/310281/
  5. Н.А. Зарипова Методика решения задач группы vts. Материалы к проведению элективного курса "Решение текстовых задач" http://festival.1september.ru/articles/415044/

Использованные изображения: