Использование критерия хи квадрат. Функции MS EXCEL, использующие ХИ2-распределение

Хи-квадрат критерий – универсальный метод проверки согласия результатов эксперимента и используемой статистической модели.

Расстояние Пирсона X 2

Пятницкий А.М.

Российский Государственный Медицинский Университет

В 1900 году Карл Пирсон предложил простой, универсальный и эффективный способ проверки согласия между предсказаниями модели и опытными данными. Предложенный им “хи-квадрат критерий” – это самый важный и наиболее часто используемыйстатистический критерий. Большинство задач, связанных с оценкой неизвестных параметров модели и проверки согласия модели и опытных данных, можно решить с его помощью.

Пусть имеется априорная (“до опытная”) модельизучаемого объекта или процесса (в статистике говорят о “нулевой гипотезе” H 0), и результаты опыта с этим объектом. Следует решить, адекватна ли модель (соответствует ли она реальности)? Не противоречат ли результаты опыта нашим представлениям о том, как устроена реальность, или иными словами - следует ли отвергнуть H 0 ? Часто эту задачу можно свести к сравнению наблюдаемых (O i = Observed )и ожидаемых согласно модели (E i =Expected ) средних частот появления неких событий. Считается, что наблюдаемые частоты получены в серии N независимых (!) наблюдений, производимых в постоянных (!) условиях. В результате каждого наблюдения регистрируется одно из M событий. Эти события не могут происходить одновременно (попарно несовместны) и одно из них обязательно происходит (их объединение образует достоверное событие). Совокупность всех наблюдений сводится к таблице (вектору) частот {O i }=(O 1 ,… O M ), которая полностью описывает результаты опыта. Значение O 2 =4 означает, что событие номер 2 произошло 4 раза. Сумма частот O 1 +… O M =N . Важно различать два случая: N – фиксировано, неслучайно, N – случайная величина. При фиксированном общем числе опытов N частоты имеют полиномиальное распределение. Поясним эту общую схему простым примером.

Применение хи-квадрат критерия для проверки простых гипотез.

Пусть модель (нулевая гипотеза H 0) заключается в том, что игральная кость является правильной - все грани выпадают одинаково часто с вероятностью p i =1/6, i =, M=6. Проведен опыт, который состоял в том, что кость бросили 60 раз (провели N =60 независимых испытаний). Согласно модели мы ожидаем, что все наблюдаемые частоты O i появления 1,2,... 6 очков должны быть близки к своим средним значениям E i =Np i =60∙(1/6)=10. Согласно H 0 вектор средних частот {E i }={Np i }=(10, 10, 10, 10, 10, 10). (Гипотезы, в которых средние частоты полностью известны до начала опыта, называются простыми.) Если бы наблюдаемый вектор {O i } был равен (34,0,0,0,0,26) , то сразу ясно, что модель неверна – кость не может быть правильной, так как60 раз выпадали только 1 и 6. Вероятность такого события для правильной игральной кости ничтожна: P = (2/6) 60 =2.4*10 -29 . Однако появление столь явных расхождений между моделью и опытом исключение. Пусть вектор наблюдаемых частот {O i } равен (5, 15, 6, 14, 4, 16). Согласуется ли это с H 0 ? Итак, нам надо сравнить два вектора частот {E i } и {O i }. При этом вектор ожидаемых частот {E i } не случаен, а вектор наблюдаемых {O i } случаен – при следующем опыте (в новой серии из 60 бросков) он окажется другим. Полезно ввести геометрическую интерпретацию задачи и считать, что в пространстве частот (в данном случае 6 мерном) даны две точки с координатами(5, 15, 6, 14, 4, 16) и (10, 10, 10, 10, 10, 10). Достаточно ли далеко они удалены друг от друга, чтобы счесть это несовместным сH 0 ? Иными словами нам надо:

  1. научиться измерять расстояния между частотами (точками пространства частот),
  2. иметь критерий того, какое расстояние следует считать слишком (“неправдоподобно”) большим, то есть несовместным с H 0 .

Квадрат обычного евклидова расстояниябыл бы равен:

X 2 Euclid = S (O i -E i) 2 = (5-10) 2 +(15-10) 2 + (6-10) 2 +(14-10) 2 +(4-10) 2 +(16-10) 2

При этом поверхности X 2 Euclid = const всегда являются сферами, если мы фиксируем значения E i и меняем O i . Карл Пирсон заметил, что использовать евклидово расстояние в пространстве частот не следует. Так, неправильно считать, что точки (O =1030 и E =1000) и (O =40 и E =10) находятся на равном расстоянии друг от друга, хотя в обоих случаях разность O -E =30. Ведь чем больше ожидаемая частота, тем большие отклонения от нее следует считать возможными. Поэтому точки (O =1030 и E =1000) должны считаться “близкими”, а точки (O =40 и E =10) “далекими” друг от друга. Можно показать, что если верна гипотеза H 0 , то флуктуации частоты O i относительно E i имеют величину порядка квадратного корня(!) из E i . Поэтому Пирсон предложил при вычислении расстояния возводить в квадраты не разности (O i -E i ), а нормированные разности (O i -E i )/E i 1/2 . Итак, вот формула, по которой вычисляется расстояние Пирсона (фактически это квадрат расстояния):

X 2 Pearson = S ((O i -E i )/E i 1/2) 2 =S (O i -E i ) 2 /E i

В нашем примере:

X 2 Pearson = (5-10) 2 /10+(15-10) 2 /10 +(6-10) 2 /10+(14-10) 2 /10+(4-10) 2 /10+(16-10) 2 /10=15.4

Для правильной игральной кости все ожидаемые частоты E i одинаковы, но обычно они различны, поэтому поверхности, на которых расстояние Пирсона постоянно (X 2 Pearson =const) оказываются уже эллипсоидами, а не сферами.

Теперь после того, как выбрана формула для подсчета расстояний, необходимо выяснить, какие расстояния следует считать “не слишком большими” (согласующимися с H 0).Так, например, что можно сказать по поводу вычисленного нами расстояния 15.4? В каком проценте случаев (или с какой вероятностью), проводя опыты с правильной игральной костью, мы получали бы расстояние большее, чем 15.4? Если этот процент будет мал (<0.05), то H 0 надо отвергнуть. Иными словами требуется найти распределение длярасстояния Пирсона. Если все ожидаемые частоты E i не слишком малы (≥5), и верна H 0 , то нормированные разности (O i - E i )/E i 1/2 приближенно эквивалентны стандартным гауссовским случайным величинам: (O i - E i )/E i 1/2 ≈N (0,1). Это, например, означает, что в 95% случаев| (O i - E i )/E i 1/2 | < 1.96 ≈ 2 (правило “двух сигм”).

Пояснение . Число измерений O i , попадающих в ячейку таблицы с номером i , имеет биномиальное распределение с параметрами: m =Np i =E i ,σ =(Np i (1-p i )) 1/2 , где N - число измерений (N »1), p i – вероятность для одного измерения попасть в данную ячейку (напомним, что измерения независимы и производятся в постоянных условиях). Если p i мало, то: σ≈(Np i ) 1/2 =E i и биномиальное распределение близко к пуассоновскому, в котором среднее число наблюдений E i =λ, а среднее квадратичное отклонение σ=λ 1/2 = E i 1/2 . Для λ≥5пуассоновскоераспределение близко к нормальному N (m =E i =λ, σ=E i 1/2 =λ 1/2), а нормированная величина (O i - E i )/E i 1/2 ≈ N (0,1).

Пирсон определил случайную величину χ 2 n – “хи-квадрат с n степенями свободы”, как сумму квадратов n независимых стандартных нормальных с.в.:

χ 2 n = T 1 2 + T 2 2 + …+ T n 2 , гдевсе T i = N(0,1) - н. о. р. с. в.

Попытаемся наглядно понять смысл этой важнейшей в статистике случайной величины. Для этого на плоскости (при n =2) или в пространстве (при n =3) представим облако точек, координаты которых независимы и имеют стандартное нормальное распределениеf T (x ) ~exp (-x 2 /2). На плоскости согласно правилу “двух сигм”, которое независимо применяется к обеим координатам, 90% (0.95*0.95≈0.90) точек заключены внутри квадрата(-2

f χ 2 2 (a) = Сexp(-a/2) = 0.5exp(-a/2).

При достаточно большом числе степеней свободы n (n >30) хи-квадрат распределение приближается к нормальному: N (m = n ; σ = (2n ) ½). Это следствие “центральной предельной теоремы”: сумма одинаково распределенных величин имеющих конечную дисперсию приближается к нормальному закону с ростом числа слагаемых.

Практически надо запомнить, что средний квадрат расстояния равен m (χ 2 n )=n , а его дисперсия σ 2 (χ 2 n )=2n . Отсюда легко заключить какие значения хи-квадрат следует считать слишком малыми и слишком большими:большая часть распределения заключена в пределахот n -2∙(2n ) ½ до n +2∙(2n ) ½ .

Итак, расстояния Пирсона существенно превышающие n +2∙ (2n ) ½ , следует считать неправдоподобно большими (не согласующимися с H 0) . Если результат близок к n +2∙(2n ) ½ , то следует воспользоваться таблицами, в которых можно точно узнать в какой доле случаев могут появляться такие и большие значения хи-квадрат.

Важно знать, как правильно выбирать значение числа степеней свободы (number degrees of freedom , сокращенно n .d .f .). Казалось естественным считать, что n просто равно числу разрядов: n =M . В своей статье Пирсон так и предположил. В примере с игральной костью это означало бы, что n =6. Однако спустя несколько лет было показано, что Пирсон ошибся. Число степеней свободы всегда меньше числа разрядов, если между случайными величинами O i есть связи. Для примера с игральной костью сумма O i равна 60, и независимо менять можно лишь 5 частот, так что правильное значение n =6-1=5. Для этого значения n получаем n +2∙(2n ) ½ =5+2∙(10) ½ =11.3. Так как15.4>11.3, то гипотезу H 0 - игральная кость правильная, следует отвергнуть.

После выяснения ошибки, существовавшие таблицы χ 2 пришлось дополнить, так как исходно в них не было случая n =1, так как наименьшее число разрядов =2. Теперь же оказалось, что могут быть случаи, когда расстояние Пирсона имеет распределение χ 2 n =1 .

Пример . При 100 бросаниях монеты число гербов равно O 1 = 65, а решек O 2 = 35. Число разрядов M =2. Если монета симметрична, то ожидаемые частотыE 1 =50, E 2 =50.

X 2 Pearson = S (O i -E i) 2 /E i = (65-50) 2 /50 + (35-50) 2 /50 = 2*225/50 = 9.

Полученное значение следует сравнивать с теми, которые может принимать случайная величина χ 2 n =1 , определенная как квадрат стандартной нормальной величины χ 2 n =1 =T 1 2 ≥ 9 ó T 1 ≥3 или T 1 ≤-3. Вероятность такого события весьма мала P (χ 2 n =1 ≥9) = 0.006. Поэтому монету нельзя считать симметричной: H 0 следует отвергнуть. То, что число степеней свободы не может быть равно числу разрядов видно из того, что сумма наблюдаемых частот всегда равна сумме ожидаемых, например O 1 +O 2 =65+35 = E 1 +E 2 =50+50=100. Поэтому случайные точки с координатами O 1 и O 2 располагаются на прямой: O 1 +O 2 =E 1 +E 2 =100 и расстояние до центра оказывается меньше, чем, если бы этого ограничения не было, и они располагались на всей плоскости. Действительно для двух независимые случайных величин с математическими ожиданиями E 1 =50, E 2 =50, сумма их реализаций не должна быть всегда равной 100 – допустимыми были бы, например, значения O 1 =60, O 2 =55.

Пояснение . Сравним результат, критерия Пирсона при M =2 с тем, что дает формула Муавра Лапласа при оценке случайных колебаний частоты появления события ν =K /N имеющего вероятность p в серии N независимых испытаний Бернулли (K -число успехов):

χ 2 n =1 =S (O i -E i ) 2 /E i = (O 1 -E 1) 2 /E 1 + (O 2 -E 2) 2 /E 2 = (Nν -Np ) 2 /(Np ) + (N (1-ν )-N (1-p )) 2 /(N (1-p ))=

=(Nν-Np) 2 (1/p + 1/(1-p))/N=(Nν-Np) 2 /(Np(1-p))=((K-Np)/(Npq) ½) 2 = T 2

Величина T =(K -Np )/(Npq ) ½ = (K -m (K ))/σ(K ) ≈N (0,1) при σ(K )=(Npq ) ½ ≥3. Мы видим, что в этом случае результат Пирсона в точности совпадает с тем, что дает применение нормальной аппроксимации для биномиального распределения.

До сих пор мы рассматривали простые гипотезы, для которых ожидаемые средние частоты E i полностью известны заранее. О том, как правильно выбирать число степеней свободы для сложных гипотез см. ниже.

Применение хи-квадрат критерия для проверки сложных гипотез

В примерах с правильной игральной костью и монетой ожидаемые частоты можно было определить до(!) проведения опыта. Подобные гипотезы называются “простыми”. На практике чаще встречаются “сложные гипотезы”. При этом для того, чтобы найти ожидаемые частоты E i надо предварительно оценить одну или несколько величин (параметры модели), и сделать это можно только, воспользовавшись данными опыта. В результате для “сложных гипотез” ожидаемые частоты E i оказываются зависящими от наблюдаемых частот O i и потому сами становятся случайными величинами, меняющимися в зависимости от результатов опыта. В процессе подбора параметров расстояние Пирсона уменьшается – параметры подбираются так, чтобы улучшить согласие модели и опыта. Поэтому число степеней свободы должно уменьшаться.

Как оценить параметры модели? Есть много разных способов оценки – “метод максимального правдоподобия”, “метод моментов”, “метод подстановки”. Однако можно не привлекать никаких дополнительных средств и найти оценки параметров минимизируя расстояние Пирсона. В докомпьютерную эпоху такой подход использовался редко: приручных расчетах он неудобен и, как правило, не поддается аналитическому решению. При расчетах на компьютере численная минимизация обычно легко осуществляется, а преимуществом такого способа является его универсальность. Итак, согласно “методу минимизации хи-квадрат”, мы подбираем значения неизвестных параметров так, чтобы расстояние Пирсона стало наименьшим. (Кстати, изучая изменения этого расстояния при небольших смещениях относительно найденного минимума можно оценить меру точности оценки: построить доверительные интервалы.) После того как параметры и само это минимальное расстояние найдено опять требуется ответить на вопрос достаточно ли оно мало.

Общая последовательность действий такова:

  1. Выбор модели (гипотезы H 0).
  2. Выбор разрядов и определение вектора наблюдаемых частот O i .
  3. Оценка неизвестных параметров модели и построение для них доверительных интервалов (например, через поиск минимума расстояния Пирсона).
  4. Вычисление ожидаемых частот E i .
  5. Сравнение найденной величины расстояния Пирсона X 2 с критическим значением хи-квадрат χ 2 крит - наибольшим, которое еще рассматривается как правдоподобное, совместимое с H 0 . Величину, χ 2 крит мы находим из таблиц, решая уравнение

P (χ 2 n > χ 2 крит)=1-α,

где α – “уровень значимости” или ”размер критерия” или “величина ошибки первого рода” (типичное значение α=0.05).

Обычно число степеней свободы n вычисляют по формуле

n = (число разрядов) – 1 – (число оцениваемых параметров)

Если X 2 > χ 2 крит, то гипотеза H 0 отвергается, в противном случае принимается. В α∙100% случаев (то есть достаточно редко) такой способ проверки H 0 приведет к “ошибке первого рода”: гипотеза H 0 будет отвергнута ошибочно.

Пример. При исследовании 10 серий из 100 семян подсчитывалось число зараженных мухой-зеленоглазкой. Получены данные: O i =(16, 18, 11, 18, 21, 10, 20, 18, 17, 21);

Здесь неизвестен заранее вектор ожидаемых частот. Если данные однородны и получены для биномиального распределения, то неизвестен один параметр доля p зараженных семян. Заметим, что в исходной таблице фактически имеется не 10 а 20 частот, удовлетворяющих 10 связям: 16+84=100, … 21+79=100.

X 2 = (16-100p) 2 /100p +(84-100(1-p)) 2 /(100(1-p))+…+

(21-100p) 2 /100p +(79-100(1-p)) 2 /(100(1-p))

Объединяя слагаемые в пары (как в примере с монетой), получаем ту форму записи критерия Пирсона, которую обычно пишут сразу:

X 2 = (16-100p) 2 /(100p(1-p))+…+ (21-100p) 2 /(100p(1-p)).

Теперь если в качестве метода оценки р использовать минимум расстояния Пирсона, то необходимо найти такое p , при котором X 2 =min . (Модель старается по возможности “подстроиться” под данные эксперимента.)

Критерий Пирсона - это наиболее универсальный из всех используемых в статистике. Его можно применять к одномерным и многомерным данным, количественным и качественным признакам. Однако именно в силу универсальности следует быть осторожным, чтобы не совершить ошибки.

Важные моменты

1.Выбор разрядов.

  • Если распределение дискретно, то произвола в выборе разрядов обычно нет.
  • Если распределение непрерывно, то произвол неизбежен. Можно использовать статистически эквивалентные блоки (все O одинаковы, например =10). При этом длины интервалов разные. При ручных вычислениях стремились делать интервалы одинаковыми. Должны ли интервалы при изучении распределения одномерного признака быть равными? Нет.
  • Объединять разряды нужно так, чтобы не слишком малыми (≥5) оказывались именно ожидаемые (а не наблюдаемые!) частоты. Напомним, что именно они {E i } стоят в знаменателях при вычислении X 2 ! При анализе одномерных признаков допускается нарушать это правило в двух крайних разрядах E 1 =E max =1. Если число разрядов велико, и ожидаемые частоты близки, то X 2 хорошо приближается χ 2 даже для E i =2.

Оценка параметров . Использование “самодельных”, неэффективных методов оценки может привести к завышенным значениям расстояния Пирсона.

Выбор правильного числа степеней свободы . Если оценки параметров делаются не по частотам, а непосредственно по данным (например, в качестве оценки среднего берется среднее арифметическое), то точное число степеней свободы n неизвестно. Известно лишь, что оно удовлетворяет неравенству:

(число разрядов – 1 – число оцениваемых параметров) < n < (число разрядов – 1)

Поэтому необходимо сравнить X 2 с критическими значениями χ 2 крит вычисленными во всем этом диапазоне n .

Как интерпретировать неправдоподобно малые значения хи-квадрат? Следует ли считать монету симметричной, если при 10000 бросаний, она 5000 раз выпала гербом? Ранее многие статистики считали, что H 0 при этом также следует отвергнуть. Теперь предлагается другой подход: принять H 0 , но подвергнуть данные и методику их анализа дополнительной проверке. Есть две возможности: либо слишком малое расстояние Пирсона означает, что увеличение числа параметров модели не сопровождалось должным уменьшением числа степеней свободы, или сами данные были сфальсифицированы (возможно ненамеренно подогнаны под ожидаемый результат).

Пример. Два исследователя А и B подсчитывали долю рецессивных гомозигот aa во втором поколении при моногибридном скрещивании AA * aa . Согласно законам Менделя эта доля равна 0.25. Каждый исследователь провел по 5 опытов, и в каждом опыте изучалось 100 организмов.

Результаты А: 25, 24, 26, 25, 24. Вывод исследователя: закон Менделя справедлив(?).

Результаты B : 29, 21, 23, 30, 19. Вывод исследователя: закон Менделя не справедлив(?).

Однако закон Менделя имеет статистическую природу, и количественный анализ результатов меняет выводы на обратные! Объединив пять опытов в один, мы приходим к хи-квадрат распределению с 5 степенями свободы (проверяется простая гипотеза):

X 2 A = ((25-25) 2 +(24-25) 2 +(26-25) 2 +(25-25) 2 +(24-25) 2)/(100∙0.25∙0.75)=0.16

X 2 B = ((29-25) 2 +(21-25) 2 +(23-25) 2 +(30-25) 2 +(19-25) 2)/(100∙0.25∙0.75)=5.17

Среднее значение m [χ 2 n =5 ]=5, среднеквадратичное отклонение σ[χ 2 n =5 ]=(2∙5) 1/2 =3.2.

Поэтому без обращения к таблицам ясно, что значение X 2 B типично, а значение X 2 A неправдоподобно мало. Согласно таблицам P (χ 2 n =5 <0.16)<0.0001.

Этот пример – адаптированный вариант реального случая, произошедшего в 1930-е годы (см. работу Колмогорова “Об еще одном доказательстве законов Менделя”). Любопытно, что исследователь A был сторонником генетики, а исследователь B – ее противником.

Путаница в обозначениях. Следует различать расстояние Пирсона, которое при своем вычислении требует дополнительных соглашений,от математического понятия случайной величины хи-квадрат. Расстояние Пирсона при определенных условиях имеет распределение близкое к хи-квадрат с n степенями свободы. Поэтому желательно НЕ обозначать расстояние Пирсона символом χ 2 n , а использовать похожее, но другое обозначение X 2. .

Критерий Пирсона не всесилен. Существует бесконечное множество альтернатив для H 0 , которые он не в состоянии учесть. Пусть вы проверяете гипотезу о том, что признак имел равномерное распределение, у вас имеется 10 разрядов и вектор наблюдаемых частот равен (130,125,121,118,116,115,114,113,111,110). Критерий Пирсона не c может “заметить” того, что частоты монотонно уменьшаются и H 0 не будет отклонена. Если бы его дополнить критерием серий то да!

Использование этого критерия основано на применении такой меры (статистики) расхождения между теоретическим F(x) и эмпирическим распределением F* п (x) , которая приближенно подчиняется закону распределения χ 2 . Гипотеза Н 0 о согласованности распределений проверяется путем анализа распределения этой статистики. Применение критерия требует построения статистического ряда.

Итак, пусть выборка представлена статистическим рядом с количеством разрядов M . Наблюдаемая частота попаданий в i- й разряд n i . В соответствии с теоретическим законом распределения ожидаемая частота попаданий в i -й разряд составляет F i . Разность между наблюдаемой и ожидаемой частотой составит величину (n i F i ). Для нахождения общей степени расхождения между F(x ) и F* п (x ) необходимо подсчитать взвешенную сумму квадратов разностей по всем разрядам статистического ряда

Величина χ 2 при неограниченном увеличении n имеет χ 2 -распределение (асимптотически распределена как χ 2). Это распределение зависит от числа степеней свободы k , т.е. количества независимых значений слагаемых в выражении (3.7). Число степеней свободы равно числу y минус число линейных связей, наложенных на выборку. Одна связь существует в силу того, что любая частота может быть вычислена по совокупности частот в оставшихся M –1 разрядах. Кроме того, если параметры распределения неизвестны заранее, то имеется еще одно ограничение, обусловленное подгонкой распределения к выборке. Если по выборке определяются S параметров распределения, то число степеней свободы составит k=M –S–1.

Область принятия гипотезы Н 0 определяется условием χ 2 < χ 2 (k;a) , где χ 2 (k;a) – критическая точка χ2-распределения с уровнем значимости a . Вероятность ошибки первого рода равна a , вероятность ошибки второго рода четко определить нельзя, потому что существует бесконечно большое множество различных способов несовпадения распределений. Мощность критерия зависит от количества разрядов и объема выборки. Критерий рекомендуется применять при n >200, допускается применение при n >40, именно при таких условиях критерий состоятелен (как правило, отвергает неверную нулевую гипотезу).

Алгоритм проверки по критерию

1. Построить гистограмму равновероятностным способом.

2. По виду гистограммы выдвинуть гипотезу

H 0: f (x ) = f 0(x ),

H 1: f (x ) f 0(x ),

где f 0(x ) - плотность вероятности гипотетического закона распределения (например, равномерного, экспоненциального, нормального).

Замечание . Гипотезу об экспоненциальном законе распределения можно выдвигать в том случае, если все числа в выборке положительные.


3. Вычислить значение критерия по формуле

,

где частота попадания в i -тый интервал;

pi - теоретическая вероятность попадания случайной величины в i - тый интервал при условии, что гипотеза H 0верна.

Формулы для расчета pi в случае экспоненциального, равномерного и нормального законов соответственно равны.

Экспоненциальный закон

. (3.8)

При этом A 1 = 0, Bm = +.

Равномерный закон

Нормальный закон

. (3.10)

При этом A 1 = -, B M = +.

Замечания . После вычисления всех вероятностей pi проверить, выполня­ется ли контрольное соотношение

Функция Ф(х )- нечетная. Ф(+) = 1.

4. Из таблицы " Хи-квадрат" Приложения выбирается значение , где - заданный уровень значимости (= 0,05 или = 0,01), а k - число степеней свободы, определяемое по формуле

k = M - 1 - S .

Здесь S - число параметров, от которых зависит выбранный гипотезой H 0закон распределения. Значения S для равномерного закона равно 2, для экспоненциального - 1, для нормального - 2.

5. Если , то гипотеза H 0отклоняется. В противном случае нет оснований ее отклонить: с вероятностью 1 - она верна, а с вероятностью - неверна, но величина неизвестна.

Пример3 . 1. С помощью критерия 2выдвинуть и проверить гипотезу о законе распределения случайной величины X , вариационный ряд, интерваль­ные таблицы и гистограммы распределения которой приведены в примере 1.2. Уровень значимости равен 0,05.

Решение . По виду гистограмм выдви­гаем гипотезу о том, что случайная величина X распределена по нормальному закону:

H 0: f (x ) = N (m ,);

H 1: f (x ) N (m ,).

Значение критерия вычисляем по формуле.

Описание критерия

Назначения критерия

Критерий «хи-квадрат» Пирсона

Материалы лекции

Тема 6. Выявление различий в распределении признака

Критерий Пирсона: назначение критерия, его описание, область применения, алгоритм расчета.

Критерий Колмогорова–Смирнова для сравнения результатов количественного измерения: назначение критерия, его описание, область применения, алгоритм расчета.

При изучении данной темы необходимо учесть то, что оба критерия непараметрические, они оперируют частотами. Обратите особое внимание на правила принятия решения для рассмотренных критериев: эти правила могут быть противоположны. Внимательно изучите ограничения в применении критериев.

После изучения материала лекции ответьте на контрольные вопросы, ответы занесите в конспект.

Критерий «хи-квадрат» Пирсона может решать несколько задач, в том числе и сравнение распределений.

Критерий χ 2 применяется в двух целях;

1) для сопоставления эмпирического распределения признака с теоре­тическим - равномерным, нормальным или каким-то иным;

2) для сопоставления двух, трех или более эмпирических распределе­ний одного и того же признака, то есть для проверки их однородности;

3) для оценки стохастической (вероятностной) независимости в системе случайных событий и т.д.

Критерий χ 2 отвечает на вопрос о том, с одинаковой ли частотой встречаются разные значения признака в эмпирическом и теоретическом распределениях или в двух и более эмпирических распределениях.

Преимущество метода состоит в том, что он позволяет сопостав­лять распределения признаков, представленных в любой шкале, начиная от шкалы наименований. В самом простом случае альтерна­тивного распределения ("да - нет", "допустил брак - не допустил бра­ка", "решил задачу - не решил задачу" и т. п.) мы уже можем приме­нить критерий χ 2 .

1. Объем выборки должен быть достаточно большим: N>30. При N<30 критерий χ 2 дает весьма приближенные значения. Точность крите­рия повышается при больших N.

2. Теоретическая частота для каждой ячейки таблицы не должна быть меньше 5: f ≥ 5. Это означает, что если число разрядов задано зара­нее и не может быть изменено, то мы не можем применять метод χ 2 , не накопив определенного минимального числа наблюдений. Ес­ли, например, мы хотим проверить наши предположения о том, что частота обращений в телефонную службу Доверия неравномерно распределяются по 7 дням недели, то нам потребуется 5-7=35 обра­щений. Таким образом, если количество разрядов (k) задано зара­нее, как в данном случае, минимальное число наблюдений (N min) оп­ределяется по формуле: .



3. Выбранные разряды должны "вычерпывать" все распределение, то есть охватывать весь диапазон вариативности признаков. При этом группировка на разряды должна быть одинаковой во всех сопостав­ляемых распределениях.

4. Необходимо вносить "поправку на непрерывность" при сопоставле­нии распределений признаков, которые принимают всего 2 значения. При внесении поправки значение χ 2 , уменьшается (см. пример с по­правкой на непрерывность).

5. Разряды должны быть неперекрещивающимися: если наблюдение отнесено к одному разряду, то оно уже не может быть отнесено ни к какому другому разряду. Сумма наблюдений по разрядам всегда должна быть равна общему количеству наблюдений.

Алгоритм расчета критерия χ 2

1. Составить таблицу взаимной сопряженности значений признаков следующего вида (по сути это двумерный вариационный ряд, в котором указываются частоты появления совместных значений признака) - таблица 19. В таблице располагаются условные частоты, которые мы обозначим в общем виде как f ij . Например, число градаций признака х равно 3 (k=3), число градаций признака у равно 4 (m=4); тогда i меняется от 1 до k, а j меняется от 1 до m.

Таблица 19

х i у j х 1 х 2 х 3
у 1 f 11 f 21 f 31 f –1
у 2 f 12 f 22 f 32 f –2
у 3 f 13 f 23 f 33 f –3
у 4 f 14 f 24 f 34 f –4
f 1– f 2– f 3– N

2. Далее для удобства расчетов преобразуем исходную таблицу взаимной сопряженности в таблицу следующего вида (таблица 20), располагая столбики с условными частотами один под другим: Занести в таблицу наименования разрядов (столбцы 1 и 2) и соответствующие им эмпирические частоты (3-й столбец).

Таблица 20

х i у j f ij f ij * f ij – f ij * (f ij – f ij *) 2 (f ij – f ij *) 2 / f ij *
1 2 3 4 5 6 7
х 1 у 1 f 11 f 11 *
х 1 у 2 f 12 f 12 *
х 1 у 3 f 13 f 13 *
х 1 у 4 f 14 f 14 *
х 2 у 1 f 21 f 21 *
х 2 у 2 f 22 f 22 *
х 2 у 3 f 23 f 23 *
х 2 у 4 f 24 f 24 *
х 3 у 1 f 31 f 31 *
х 3 у 2 f 32 f 32 *
х 3 у 3 f 33 f 33 *
х 3 у 4 f 34 f 34 *
∑=………….

3. Рядом с каждой эмпирической частотой записать теоретическую частоту (4-й столбец), которая вычисляется по следующей формуле (итоговая частоты по соответствующей строчке умножается на итоговую частоту по соответствующему столбику и делится на общее количество наблюдений):

5. Определить число степеней свободы по формуле: ν=(k-1)(m-1) , где k - количество разрядов признака х , m - количество разрядов признака у .

Если ν=1, внести поправку на "непрерывность" и записать её в столбце 5а.

Поправка на непрерывность состоит в том, что от разности между условной и теоретической частотой отнимается еще 0,5. Тогда заголовки столбиков в нашей таблице будет выглядеть следующим образом (таблица 21):

Таблица 21

х у f ij f ij * f ij – f ij * f ij – f ij * – 0,5 (f ij – f ij * – 0,5) 2 (f ij – f ij * – 0,5) 2 / f ij *
1 2 3 4 5 6 7

6. Возвести в квадрат полученные разности и занести их в 6-й столбец.

7. Разделить полученные квадраты разностей на теоретическую часто­ту и записать результаты в 7-й столбец.

8. Просуммировать значения 7-го столбца. Полученную сумму обо­значить как χ 2 эмп.

9. Правило принятия решения:

Расчетное значение критерия необходимо сравнить с критическим (или табличным) значением. Критическое значение находится в зависимости от числа степеней свободы по таблице критических значений критерия χ 2 Пирсона (см. Приложение 1.6).

Если χ 2 расч ≥ χ 2 табл, то рас­хождения между распределениями статистически достоверны, или признаки изменяются согласованно, или связь между признаками статистически значима.

Если χ 2 расч < χ 2 табл, то расхождения между рас­пределениями статистически недостоверны, или признаки изменяются несогласованно, или связи между признаками нет.

В том случае, если полученное значение критерия χ 2 больше критического, делаем вывод о наличии статистической взаимосвязи между изучаемым фактором риска и исходом при соответствующем уровне значимости.

Пример расчета критерия хи-квадрат Пирсона

Определим статистическую значимость влияния фактора курения на частоту случаев артериальной гипертонии по рассмотренной выше таблице:

1. Рассчитываем ожидаемые значения для каждой ячейки:

2. Находим значение критерия хи-квадрат Пирсона:

χ 2 = (40-33.6) 2 /33.6 + (30-36.4) 2 /36.4 + (32-38.4) 2 /38.4 + (48-41.6) 2 /41.6 = 4.396.

3. Число степеней свободы f = (2-1)*(2-1) = 1. Находим по таблице критическое значение критерия хи-квадрат Пирсона, которое при уровне значимости p=0.05 и числе степеней свободы 1 составляет 3.841.

4. Сравниваем полученное значение критерия хи-квадрат с критическим: 4.396 > 3.841, следовательно зависимость частоты случаев артериальной гипертонии от наличия курения - статистически значима. Уровень значимости данной взаимосвязи соответствует p<0.05.

Также критерий хи-квадрат Пирсона вычисляется по формуле

Но для таблицы 2х2 более точные результаты дает критерий с поправкой Йетса

Если то Н(0) принимается,

В случае принимается Н(1)

Когда число наблюдений невелико и в клетках таблицы встречается частота меньше 5, критерий хи-квадрат неприменим и для проверки гипотез используется точный критерий Фишера . Процедура вычисления этого критерия достаточно трудоемка и в этом случае лучше воспользоваться компьютерными программами статанализа.

По таблице сопряженности можно вычислить меру связи между двумя качественными признаками – ею является коэффициент ассоциации Юла Q (аналог коэффициента корреляции)

Q лежит в пределах от 0 до 1. Близкий к единице коэффициент свидетельствует о сильной связи между признаками. При равенстве его нулю – связь отсутствует.

Аналогично используется коэффициент фи-квадрат (φ 2)

ЗАДАЧА-ЭТАЛОН

В таблице описывается связь между частотой мутации у групп дрозофил с подкормкой и без подкормки



Анализ таблицы сопряженности

Для анализа таблицы сопряженности выдвигается Н 0 - гипотеза.т.е.отсуствие влияния изучаемого признака на результат исследования.Для этого рассчитывается ожидаемая частота,и строится таблица ожидания.

Таблица ожидания

группы Чило культур Всего
Давшие мутации Не давшие мутации
Фактическая частота Ожидаемая частота Фактическая частота Ожидаемая частота
С подкормкой
Без подкормкой
всего

Метод №1

Определяем частоту ожидания:

2756 – Х ;

2. 3561 – 3124

Если число наблюдении в группах мало, при применении Х 2, в случае сопоставления фактических и ожидаемых частот при дискретных распределениях сопряжено с некоторой неточностью.Для уменьшения неточности применяют поправку Йейтса.

Критерий хи-квадрат.

Критерий хи-квадрат в отличие от критерия z применяется для сравнения любого количества групп.

Исходные данные: таблица сопряжённости.

Пример таблицы сопряженности минимальной размерности 2*2, приведен ниже. A,B,C,D – так называемые, реальные частоты.

Признак 1 Признак 2 Всего
Группа 1 A B A+B
Группа 2 C D C+D
Всего A+C B+D A+B+C+D

Расчёт критерия основан на сравнении реальных частот и ожидаемых частот, которые вычисляются в предположении отсутствия взаимного влияния сравниваемых признаков друг на друга. Таким образом, если реальные и ожидаемые частоты достаточно близки друг к другу, то влияния нет и значит признаки будут распределены примерно одинаково по группам.

Исходные данные для применения этого метода должны быть занесены в таблицу сопряженности, по столбцам и по строчкам которой указываются варианты значений изучаемых признаков. Числа в этой таблице будут называться реальными или экспериментальными частотами. Далее необходимо рассчитать ожидаемые частоты исходя из предположения, что сравниваемые группы абсолютно равны по распределению признаков. В этом случае пропорции по итоговой строчке или столбцу «всего» должны сохраняться в любой строчке и столбце. Исходя из этого, определяются ожидаемые частоты (см. пример).

Затем рассчитывают значение критерия как сумму по всем ячейкам таблицы сопряженности отношения квадрата разности между реальной частотой и ожидаемой частотой к ожидаемой частоте:

где - реальная частота в ячейке; - ожидаемая частота в ячейке.

, где N = A+ B + C + D .

При расчёте по основной формуле для таблицы 2*2 (только для такой таблицы ), также необходимо применить поправку Йейтса на непрерывность:

.

Критическое значение критерия определяется по таблице (см. приложение) с учетом числа степеней свободы и уровня значимости. Уровень значимости принимают стандартным: 0,05; 0,01 или 0,001. Число степеней свободы определяется как произведение числа строк и столбцов таблицы сопряженности уменьшенных каждое на единицу:

,

где r – число строк (число градаций одного признака), с – число столбцов (число градаций другого признака). Это критическое значение можно определить в электронной таблице Microsoft Excel используя функцию =хи2обр(a, f ), где вместо a надо ввести уровень значимости, а вместо f – число степеней свободы.

Если значение критерия хи-квадрат больше критического, то гипотезу о независимости признаков отвергают и их можно считать зависимыми на выбранном уровне значимости.

У этого метода есть ограничение по применимости: ожидаемые частоты должны быть 5 или более (для таблицы 2*2). Для произвольной таблицы это ограничение менее строгое: все ожидаемые частоты должны быть 1 или больше, а доля ячеек с ожидаемыми частотами меньше 5 не должна превышать 20%.

Из таблицы сопряженности большой размерности можно «вычленить» таблицы меньшей размерности и для них рассчитать значение критерия c 2 . Это фактически будут множественные сравнения, аналогичные описанным для критерия Стьюдента. В этом случае также надо применять поправку на множественные сравнения в зависимости от их количества.

Для проверки гипотезы с помощью критерия c 2 в электронных таблицах Microsoft Excel можно применить следующую функцию:

ХИ2ТЕСТ(фактический_интервал; ожидаемый_интервал).

Здесь фактический_интервал – исходная таблица сопряженности с реальными частотами (указываются только ячейки с самими частотами без заголовков и «всего»); ожидаемый_интервал – массив ожидаемых частот. Следовательно, ожидаемые частоты должны быть вычислены самостоятельно.

Пример:

В некотором городе произошла вспышка инфекционного заболевания. Есть предположение, что источником заражения явилась питьевая вода. Проверить это предположение решили с помощью выборочного опроса городского населения, по которому необходимо установить влияет ли количество выпиваемой воды на количество заболевших.

Исходные данные приведены в следующей таблице:

Рассчитаем ожидаемые частоты. Пропорция по всего должна сохраниться и внутри таблицы. Поэтому вычислим, например, какую долю составляют всего по строчкам в общей численности, получим для каждой строчки коэффициент. Такая же доля должна оказаться в каждой ячейке соответствующей строчки, поэтому для вычисления ожидаемой частоты в ячейке умножаем коэффициент на всего по соответствующему столбцу.

Число степеней свободы равно (3-1)*(2-1)=2. Критическое значение критерия .

Экспериментальное значение больше критического (61,5>13,816), т.е. гипотеза об отсутствия влияния количества выпиваемой воды на заболеваемость отвергается с вероятностью ошибки менее 0,001. Таким образом, можно утверждать, что именно вода стала источником заболевания.

У обоих описанных критериев существуют ограничения, которые обычно не выполняются, если число наблюдений невелико или отдельные градации признаков редко встречаются. В этом случае используют точный критерий Фишера . Он основан на переборе всех возможных вариантов заполнения таблицы сопряженности при данной численности групп. Поэтому ручной расчет его довольно сложен. Для его расчёта можно воспользоваться статистическими пакетами прикладных программ.

Критерий z является аналогом критерия Стьюдента, но применяется для сравнения качественных признаков. Экспериментальное значение критерия рассчитывается как отношение разности долей к средней ошибке разности долей.

Критические значение критерия z равны соответствующим точкам нормированного нормального распределения: , , .



Критерий хи-квадрат применяется для сравнения любого количества групп по значениям качественных признаков. Исходные данные должны быть представлены в виде таблицы сопряжённости. Экспериментальное значение критерия рассчитывают как сумму по всем ячейкам таблицы сопряженности отношения квадрата разности между реальной частотой и ожидаемой частотой к ожидаемой частоте. Ожидаемые частоты вычисляются в предположении равенства сравниваемых признаков во всех группах. Критические значения определяются по таблицам распределения хи-квадрат.

ЛИТЕРАТУРА.

Гланц С. – Глава 5.

Реброва О.Ю. – Глава 10,11.

Лакин Г.Ф. – с. 120-123

Вопросы для самопроверки студентов.

1. В каких случаях можно применять критерий z?

2. На чём основано вычисление экспериментального значения критерия z?

3. Как найти критическое значение критерия z?

4. В каких случаях можно применять критерий c 2 ?

5. На чём основано вычисление экспериментального значения критерия c 2 ?

6. Как найти критическое значение критерия c 2 ?

7. Что ещё можно применить для сравнения качественных признаков, если нельзя применить по ограничениям критерии z и c 2 ?

Задачи.