Развитые математические способности относятся. Математические способности детей

Пупсень и Вупсень 23 октября 2013 в 21:42

Что такое математические способности и как их развить?

Недавно потерпев очередное поражение в математике задался вопросом: что же все таки такое математические способности? О каких именно свойствах человеческого мышления идет речь? И как их развить? Потом решил обобщить этот вопрос и сформулировать его следующим образом: что такое способности к точным наукам? что в них общего и в чем их отличие? чем отличается мышление математика от мышления физика, химика, инженера, программиста итд. В интернете не было найдено практически никаких вразумительных материалов. Единственное, что понравилось - это эта статья про то существуют ли какие-нибудь специфические способности к химии и связаны ли они со способностями к физике и математике.
Хотелось бы спросить мнение читателей. А ниже я изложу свое субъективное виденье проблемы.

Для начала попытаюсь сформулировать в чем, по моему мнению, заключается камень преткновения при освоении математики.
Как мне кажется, проблема кроется именно в доказательствах. Строгие и формальные доказательства по своей сути очень специфичны и встречаются, в основном в математике и философии (поправьте, если я и ошибаюсь). Не случайно многие великие умы были и математиками и философами одновременно: Бертран Рассел, Лейбниц, Уайтхед, Декарт список далеко не полный. В школах доказательствам почти не учат, они там встречаются в основном в геометрии.Я встречал довольно много людей одаренных технически, являющихся специалистами в своих областях, но при этом впадающих в ступор при виде математической теории и, когда нужно провести простейшее доказательство.
Следующий момент тесно связан с предыдущим. У математиков критическое мышление доходит совершенно до каких-то немыслимых высот. и всегда присутствует желание доказать и проверить на первый взгляд очевидные факты. Вспоминаю свой опыт по изучению алгебры и теории групп наверное, это не достойно человека мыслящего, но мне всегда было скучно выводить какие-то общеизвестные факты из линейной алгебры и я не мог заставить себя проделать 20 доказательств о свойствах линейных пространств, и готов поверить на слово, условию теоремы, лишь бы от меня отстали.

В моем понимании для успешного овладения математикой человеку необходимо обладать следующими навыками:
1.Индуктивные способности.
2.Дедуктивные способности.
3. Умение оперировать с большим объемом информации в уме. Хорошим тестом может служить задача Эйнштейна
Можно вспомнить о советском математике Понтрягине, который ослеп в 14 лет.
4. Усидчивость, способность быстро соображать, плюс интерес способны скрасить те усилия, которые придется приложить, но не являются необходимыми условиями и уж тем более достаточными.
5. Любовь к абсолютно отвлеченной игре ума и абстрактным понятиям
Тут можно привести в пример и топологию и теорию чисел. Еще забавную ситуацию можно наблюдать у тех, кто занимается уравнениями в частных производных сугубо с математической точки зрения и практически полностью игнорируют физическую интерпретацию
6. Для геометров желательно иметь пространственное мышление.
Что касается меня, то я определил свои слабые места. Хочу начать с теории доказательств, математической логики и дискретной математики, а также увеличить количество информации, которой я могу оперировать. Особо стоит отметить книги Д.Пойи «Математика и правдоподобные рассуждения », «Как решать задачу»
А что по вашему является ключом к успешному освоению математики и других точных наук? И как развить эти способности?

Теги: Математика, физика

СПЕЦИФИКА РАЗВИТИЯ МАТЕМАТИЧЕСКИХ СПОСОБНОСТЕЙ

В связи с проблемой формирования и развития способностей следует указать, что целый ряд исследований психологов направлен на выявление структуры способностей школьников к различным видам деятельности. При этом под способностями понимается комплекс индивидуально - психологических особенностей человека, отвечающих требованиям данной деятельности и являющиеся условием успешного выполнения. Таким образом, способности - сложное, интегральное, психическое образование, своеобразный синтез свойств, или, как их называют компонентов.

Общий закон образования способностей состоит в том, что они формируются в процессе овладения и выполнения тех видов деятельности, для которых они необходимы.

Способности не есть нечто раз и навсегда предопределённое, они формируются и развиваются в процессе обучения, в процессе упражнения, овладения соответствующей деятельностью, поэтому нужно формировать, развивать, воспитывать, совершенствовать способности детей и нельзя заранее точно предвидеть как далеко может пойти это развитие.

Говоря о математических способностях как особенностях умственной деятельности, следует прежде всего указать на несколько распространенных среди педагогов заблуждений.

Во-первых, многие считают, что математические способности заключаются прежде всего в способности к быстрому и точному вычислению (в частности в уме) . На самом деле вычислительные способности далеко не всегда связаны с формированием подлинно математических (творческих) способностей. Во-вторых, многие думают, что способные к математике школьники отличаются хорошей памятью на формулы, цифры, числа.

Однако, как указывает академик А. Н. Колмогоров, успех в математике меньше всего основан на способности быстро и прочно запоминать большое количество фактов, цифр, формул. Наконец, считают, что одним из показателей математических способностей является быстрота мыслительных процессов.

Особенно быстрый темп работы сам по себе не имеет отношения к математических способностям. Ребенок может работать медленно и неторопливо, но в то же время вдумчиво, творчески, успешно продвигаясь в усвоении математики.

Крутецкий В. А. в книге «Психология математических способностей дошкольников» различает девять способностей (компонентов математических способностей) :

1) Способность к формализации математического материала, к отделению формы от содержания, абстрагированию от конкретных количественных отношений и пространственных форм и оперированию формальными структурами, структурами отношений и связей;

2) Способность обобщать математический материал, вычленять главное, отвлекаясь от несущественного, видеть общее во внешне различном;

3) Способность к оперированию числовой и знаковой символикой;

4) Способность к «последовательному, правильно расчленённому логическому рассуждению», связанному с потребностью в доказательствах, обосновании, выводах;

5) Способность сокращать процесс рассуждения, мыслить свернутыми структурами;

6) Способность к обратимости мыслительного процесса (к переходу с прямого на обратный ход мысли) ;

7) Гибкость мышления, способность к переключению от одной умственной операции к другой, свобода от сковывающего влияния шаблонов и трафаретов;

8) Математическая память. Можно предположить, что её характерные особенности также вытекают из особенностей математической науки, что это память на обобщения, формализованные структуры, логические схемы;

9) Способность к пространственным представлениям, которая прямым образом связана с наличием такой отрасли математики как геометрия.

Многие родители полагают, что главное при подготовке к школе - это познакомить ребенка с цифрами и научить его писать, считать, складывать и вычитать (на деле это обычно выливается в попытку выучить наизусть результаты сложения и вычитания в пределах 10) . Однако при обучении математике по учебникам современных развивающих систем (система Л. В. Занкова, система В. В. Давыдова, система "Гармония", "Школа 2100" и др.) эти умения очень недолго выручают ребенка на уроках математики. Запас заученных знаний кончается очень быстро (через месяц-два) , и несформированность собственного умения продуктивно мыслить (то есть самостоятельно выполнять указанные выше мыслительные действия на математическом содержании) очень быстро приводит к появлению "проблем с математикой».

В то же время ребенок с развитым логическим мышлением всегда имеет больше шансов быть успешным в математике, даже если он не был заранее научен элементам школьной программы (счету, вычислениям и

т. п.) . Не случайно в последние годы во многих школах, работающих по развивающим программам, проводится собеседование с детьми, поступающими в первый класс, основным содержанием которого являются вопросы и задания логического, а не только арифметического, характера. Закономерен ли такой подход к отбору детей для обучения? Да, закономерен, поскольку учебники математики этих систем построены таким образом, что уже на первых уроках ребенок должен использовать умения сравнивать, классифицировать, анализировать и обобщать результаты своей деятельности.

Однако не следует думать, что развитое логическое мышление - это природный дар, с наличием или отсутствием которого следует смириться. Существует большое количество исследований, подтверждающих, что развитием логического мышления можно и нужно заниматься (даже в тех случаях, когда природные задатки ребенка в этой области весьма скромны) . Прежде всего разберемся в том, из чего складывается логическое мышление.

Логические приемы умственных действий - сравнение, обобщение, анализ, синтез, классификация, сериация, аналогия, систематизация, абстрагирование - в литературе также называют логическими приемами мышления. При организации специальной развивающей работы над формированием и развитием логических приемов мышления наблюдается значительное повышение результативности этого процесса независимо от исходного уровня развития ребенка.

Для выработки определенных математических умений и навыков необходимо развивать логическое мышление дошкольников. В школе им понадобятся умения сравнивать, анализировать, конкретизировать, обобщать.

Поэтому необходимо научить ребенка решать проблемные ситуации, делать определенные выводы, приходить к логическому заключению. Решение логических задач развивает способность выделять существенное, самостоятельно подходить к обобщениям (см. Приложение) .

Логические игры математического содержания воспитывают у детей познавательный интерес, способность к творческому поиску, желание и умение учиться. Необычная игровая ситуация с элементами проблемности, характерными для каждой занимательной задачи, всегда вызывает интерес у детей.

Занимательные задачи способствуют развитию у ребенка умения быстро воспринимать познавательные задачи и находить для них верные решения. Дети начинают понимать, что для правильного решения логической задачи необходимо сосредоточиться, они начинают осознавать, что такая занимательная задачка содержит в себе некий "подвох" и для ее решения необходимо понять, в чем тут хитрость.

Логические задачки могут быть следующими:

У двух сестер по одному брату. Сколько детей в семье? (Ответ: 3)

Очевидно, что конструктивная деятельность ребенка в процессе выполнения данных упражнений развивает не только математические способности и логическое мышление ребенка, но и его внимание, воображение, тренирует моторику, глазомер, пространственные представления, точность и т. д.

Каждое из приведенных в Приложении упражнений направлено на формирование логических мыслительных приемов. Например, упражнение 4 учит ребенка сравнивать; упражнение 5 - сравнивать и обобщать, а также анализировать; упражнение 1 учит анализу и сравнению; упражнение 2 - синтезу; упражнение 6 - фактическая классификация по признаку.

Логическое развитие ребенка предполагает также формирование умения понимать и прослеживать причинно-следственные связи явлений и умения выстраивать простейшие умозаключения на основе причинно-следственной связи.

Таким образом, за два года до школы можно оказать значимое влияние на развитие математических способностей дошкольника. Даже если ребенок не станет непременным победителем математических олимпиад, проблем с математикой у него в начальной школе не будет, а если их не будет в начальной школе, то есть все основания рассчитывать на их отсутствие и в дальнейшем.

Исследование математических способностей в зарубежной психологии.

В исследование математических способностей внесли свой вклад и такие яркие представители определенных направлений в психологии, как А. Бинэ, Э. Трондайк и Г. Ревеш, и такие выдающиеся математики, как А. Пуанкаре и Ж. Адамар.

Большое разнообразие направлений определило и большое разнообразие в подходе к исследованию математических способностей, в методических средствах и теоретических обобщениях.

Единственное, в чем сходятся все исследователи, это, пожалуй, мнение о том, что следует различать обычные, «школьные» способности к усвоению математических знаний, к их репродуцированию и самостоятельному применению и творческие математические способности, связанные с самостоятельным созданием оригинального и имеющего общественную ценность продукта.

Большое единство взглядов проявляют зарубежные исследователи по вопросу о врожденности или приобретенности математических способностей. Если и здесь различать два разных аспекта этих способностей - «школьные» и творческие способности, то в отношении вторых существует полное единство - творческие способности ученого-математика являются врожденным образованием, благоприятная среда необходима только для их проявления и развития. В отношении «школьных» (учебных) способностей зарубежные психологи высказываются не столь единодушно. Здесь, пожалуй, доминирует теория параллельного действия двух факторов - биологического потенциала и среды.

Основным вопросом в исследовании математических способностей (как учебных, так и творческих) за рубежом был и остается вопрос о сущности этого сложного психологического образования. В этом плане можно выделить три важные проблемы.

1. Проблема специфичности математических способностей. Существуют ли собственно математические способности как специфическое образование, отличное от категории общего интеллекта? Или математические способности есть качественная специализация общих психических процессов и свойств личности, то есть общие интеллектуальные способности, развитые применительно к математической деятельности? Иначе говоря, можно ли утверждать, что математическая одаренность - это не что иное, как общий интеллект плюс интерес к математике и склонность заниматься ею?

2. Проблема структурности математических способностей. Является ли математическая одаренность унитарным (единым неразложимым) или интегральным (сложным) свойством? В последнем случае можно ставить вопрос о структуре математических способностей, о компонентах этого сложного психического образования.

3. Проблема типологических различий в математических способностях. Существуют ли различные типы математической одаренности или при одной и той же основе имеют место различия только в интересах и склонностях к тем или иным разделам математики?

7. Педагогические способности

Педагогическим способностями называют совокупность индивидуально-психологических особенностей личности учителя, отвечающих требованиям педагогической деятельности и определяющих успех в овладении этой деятельностью. Отличие педагогических способностей от педагогических умений заключается в том, что педагогические способности - это особенности личности, а педагогические умения - это отдельные акты педагогической деятельности, осуществляемые человеком на высоком уровне.

Каждая способность имеет свою структуру, в ней различают ведущие и вспомогательные свойства.

Ведущими свойствами в педагогических способностях являются:

педагогический такт;

наблюдательность;

любовь к детям;

потребность в передаче знаний.

Педагогический такт - это соблюдение педагогом принципа меры в общении с детьми в самых разнообразных сферах деятельности, умение выбрать правильный подход к учащимся.

Педагогический такт предполагает:

· уважение к школьнику и требовательность к нему;

· развитие самостоятельности учащихся во всех видах деятельности и твердое педагогическое руководство их работой;

· внимательность к психическому состоянию школьника и разумность и последовательность требований к нему;

· доверие к учащимся и систематическая проверка их учебной работы;

· педагогически оправданное сочетание делового и эмоционального характера отношений с учениками и др.

Педагогическая наблюдательность - это способность учителя, проявляемая в умении подмечать существенные, характерные, даже малозаметные свойства учащихся. По-другому можно сказать, что педагогическая наблюдательность - это качество личности педагога, заключающееся в высоком уровне развития способности концентрации внимания на том или ином объекте педагогического процесса.

способность математический педагогический

  • Свойства продуктивности психических процессов
  • 3.7. Структура познавательных способностей
  • 3.8. Психология специальных способностей
  • Ощущение
  • 4. Психология общих способностей
  • 4.1. Об учёном-поэте
  • 4.2. Творческая личность и её жизненный путь
  • 4.3. Подход в.Н. Дружинина и н.В. Хазратовой
  • 4.4. Психогенетика креативности и обучаемость
  • 4.5. Обучаемость, креативность и интеллект
  • 5. Метасистемный подход в разработке проблемы способностей (а.В. Карпов)
  • 5.1. Задачи и гипотезы исследования
  • 5.2. О понятии интегральных способностей личности
  • 5.3. Рефлексивность в структуре общих способностей
  • Коэффициенты ранговой корреляции между уровнем развития общих способностей
  • Результаты «косоугольной» факторизации
  • Значения структурных «весов» переменных, входящих в первый фактор1
  • Результаты факторизации по методу «главных компонент»
  • Коэффициенты линейной корреляции между уровнем рефлексивности и баллами по субтестам «Теста умственных способностей»
  • Показатели значимости различий между высоко- и низкорефлексивными испытуемыми при выполнении субтестов «Теста умственных способностей»
  • 5.4. Уровневый статус метакогнитивных способностей
  • 6. Психология многосторонних и специальных способностей
  • 6.3. О психологии музыкальных способностей
  • Анализ некоторых компонентов музыкальных способностей Ощущения
  • Средние частоты формант гласных (в Гц)
  • 6.5. Генезис музыкального восприятия
  • Восприятие музыкального ритма
  • 6.7. Музыкальная память
  • 6.8. Основные причины неуспеха в музыкальной деятельности (е.Ф. Ященко)
  • 6.9. Психология литературных способностей
  • Личность
  • 6.11. Краткий обзор исследований математических способностей
  • 6.12. Педагогические способности
  • 6.13. Метаиндивидуальные характеристики учителя
  • Устойчивость к психическому стрессу
  • 6.14. Художественно-творческие способности
  • Основные профессиональные требования к индивидуальным особенностям артиста балета
  • 7. Исследование самоактуализации как способности у студентов разной профессиональной подготовки
  • 7.1. Возможности творческого саморазвития личности студентов (на материале изучения типа личности, акцентуаций характера и их сопряженности)
  • Ценностные ориентации типов темперамента
  • 7.2. Модели перцептивной и социальной направленности личности студентов разной профессиональной подготовки
  • 7.3. Профессионально-личностные качества и ценностные ориентации студентов факультета сервиса и лёгкой промышленности
  • Методика исследования
  • Результаты исследования и их обсуждение
  • Ранги профессиональных карьер по Дж. Холланду
  • 7. 4. Особенности самоактуализации студентов экономического и технических факультетов
  • Материал и методики
  • Результаты и их обсуждение
  • 7.5. Различия между симптомокомплексами личностных черт у студентов экономического и технических факультетов с высоким и низким уровнями развития самоактуализации
  • Факторное отображение структуры личности студентов экономического и технических факультетов, имеющих высокий и низкий уровни развития самоактуализации, после варимакс-вращения
  • 7.6. Половые и профессиональные различия в самоактуализации
  • Методика
  • Результаты
  • Средние значения показателей тестов р. Кеттелла и сат у студентов экономического и технических факультетов (дисперсионный анализ)
  • Данные, используемые для дисперсионного анализа выборки студентов экономического и технических факультетов разного пола и уровня самоактуализации
  • Данные дисперсионного анализа и уровней значимости различий индивидуально-психологических свойств студентов экономического и технических факультетов разного пола и уровня самоактуализации
  • Обсуждение результатов
  • 7.7. Ценностно-смысловая концепция самоактуализации
  • Симптомокомплексы различий личностных черт и смысложизненных ориентаций студентов разных факультетов
  • Симптомокомплексы различий личностных черт и смысложизненных ориентаций студентов разных факультетов с высоким и низким уровнями самоактуализации (са)
  • 3 Этап. Сравнительный анализ взаимосвязей личностных черт и смысложизненных ориентаций у студентов с высоким и низким уровнями са.
  • Заключение и выводы
  • Заключение
  • Общий список литературы
  • 6.11. Краткий обзор исследований математических способностей

    В исследованиях под руководством В.А. Крутецкого отражены разные уровни изучения проблемы математических, литературных и конструктивно-технических способностей. Однако все исследования были организованы и проводились по общей схеме:

    1-й этап – исследование сущности, структуры конкретных способностей;

    2-й этап – исследование возрастных и индивидуальных различий в структуре конкретных способностей, возрастной динамики развития структуры;

    3-й этап – изучение психологических основ формирования и развития способностей.

    Работы В. А. Крутецкого, И. В. Дубровиной, С. И. Шапиро дают общую картину возрастного развития математических способностей школьников на всём протяжении школьного обучения.

    Специальное исследование математических способностей школьников провёл В.А. Крутецкий (1968) . Под способностью к изучению математики он понимает индивидуально-психологические особенности (прежде всего особенности умственной деятельности), отвечающие требованиям учебной математической деятельности и обусловливающие при прочих равных условиях успешность творческого овладения математикой как учебным предметом, в частности, относительно быстрое, лёгкое и глубокое овладение знаниями, умениями и навыками в области математики. В структуре математических способностей им выделены следующие основные компоненты:

    1) способность к формализованному восприятию математического материала, схватыванию формальной структуры задачи;

    2) способность к быстрому и широкому обобщению математических объектов, отношений и действий;

    3) способность к свёртыванию процесса математического рассуждения и системы соответствующих действий – способность мыслить свёрнутыми структурами;

    4) гибкость мыслительных процессов в математической деятельности;

    5) способность к быстрой и свободной перестройке направленности мыслительного процесса, переключению с прямого на обратный ход мысли;

    6) стремление к ясности, простоте, экономности и рациональности решений;

    7) математическая память (обобщённая память на математические отношения, схемы рассуждений и доказательств, методы решения задач и принципы подхода к ним). Методика исследования способностей к математике принадлежит В.А. Крутецкому (1968).

    Дубровиной И.В. разработана модификация этой методики применительно к учащимся 2 – 4 классов .

    Анализ материалов, изложенных в этой работе, позволяет сделать следующие выводы.

    1. У способных к математике учащихся младшего школьного возраста довольно чётко обнаруживаются такие компоненты математических способностей, как способность к аналитико-синтетическому восприятию условий задач, способность к обобщению математического материала, гибкость мыслительных процессов. Менее ясно выражены в этом возрасте такие компоненты математических способностей, как способность к свёртыванию рассуждений и системы соответствующих действий, стремление к поиску наиболее рационального, экономного (изящного) способа решения задач.

    Указанные компоненты наиболее отчётливо представлены лишь у учащихся группы «Очень способные» (ОС). Это же относится и к особенностям математической памяти младших школьников. Только у учащихся группы ОС можно обнаружить признаки обобщённой математической памяти.

    2. Проявляются все указанные выше компоненты математических способностей на доступном для учащихся младшего школьного возраста математическом материале, поэтому в более или менее элементарном виде.

    3. Заметно развитие всех указанных выше компонентов у способных к математике учащихся от 2 к 4 классу: с годами усиливается тенденция к относительно полному аналитико-синтетическому восприятию условия задачи; более широким, быстрым и уверенным становится обобщение математического материала; происходит довольно заметное развитие способности к свёртыванию рассуждений и системы соответствующих действий, которая первоначально формируется на основе однотипных упражнений, а с годами всё чаще проявляется «с места»; к 4 классу учащиеся значительно легче переключаются с одной умственной операции на другую, качественно иную, чаще видят одновременно несколько способов решения задачи; память постепенно освобождается от хранения конкретного частного материала, всё большее значение приобретает запоминание математических отношений.

    4. У исследованных малоспособных (МС) учащихся младшего школьного возраста все перечисленные выше компоненты математических способностей проявляются на сравнительно низком уровне развития (способность к обобщению математического материала, гибкость мыслительных процессов) или не обнаруживаются совсем (способность к сокращению рассуждений и системы соответствующих действий, обобщённая математическая память).

    5. Сформировать основные компоненты математических способностей на более или менее удовлетворительном уровне в процессе экспериментального обучения можно было у детей группы МС только в результате упорного, настойчивого, систематического труда как со стороны экспериментатора, так и со стороны учащихся.

    6. Возрастные различия в развитии компонентов математических способностей у малоспособных к математике младших школьников выражены слабо и нечётко.

    В статье С.И. Шапиро «Психологический анализ структуры математических способностей в старшем школьном возрасте» показано, что в отличие от менее способных учащихся, у которых информация, как правило, хранится в памяти в узкоконкретной форме, разрозненно и недифференцированно, способные к математике учащиеся запоминают, используют и воспроизводят материал в обобщённом, «свёрнутом» виде.

    Значительный интерес представляет собой исследование математических способностей и их природных предпосылок И.А. Лёвочкиной , которая считает, что хотя математические способности и не были предметом специального рассмотрения в трудах Б.М.Теплова, однако ответы на многие вопросы, связанные с их изучением, можно найти в его работах, посвященных проблемам способностей. Среди них особое место занимают две монографические работы – «Психология музыкальных способностей» и «Ум полководца», ставшие классическими образцами психологического изучения способностей и вобравшими в себя универсальные принципы подхода к этой проблеме, которые возможно и необходимо использовать при изучении любых видов способностей.

    В обеих работах Б.М.Теплов не только дает блестящий психологический анализ конкретных видов деятельности, но и на примерах выдающихся представителей музыкального и военного искусства раскрывает необходимые составляющие, из которых складываются яркие таланты в этих областях. Особое внимание Б.М.Теплов уделил вопросу о соотношении общих и специальных способностей, доказывая, что успех в любом виде деятельности, в том числе в музыке и военном деле, зависит не только от специальных компонентов (например, в музыке – слух, чувство ритма), но и от общих особенностей внимания, памяти, интеллекта. При этом общие умственные способности неразрывно связаны со специальными способностями и существенно влияют на уровень развития последних.

    Наиболее ярко роль общих способностей продемонстрирована в работе «Ум полководца». Остановимся на рассмотрении основных положений этой работы, поскольку они могут быть использованы при изучении других видов способностей, связанных с мыслительной деятельностью, в том числе и математических способностей. Проведя глубокое изучение деятельности полководца, Б.М. Теплов показал, какое место в ней занимают интеллектуальные функции. Они обеспечивают анализ сложных военных ситуаций, выявление отдельных существенных деталей, способных повлиять на исход предстоящих сражений. Именно способность к анализу обеспечивает первый необходимый этап в принятии верного решения, в составлении плана сражения. Вслед за аналитической работой наступает этап синтеза, позволяющего объединить в единое целое многообразие деталей. По мнению Б.М. Теплова, деятельность полководца требует равновесия процессов анализа и синтеза, при обязательном высоком уровне их развития.

    Важное место в интеллектуальной деятельности полководца занимает память. Совсем не обязательно, чтобы она была универсальной. Гораздо важнее, чтобы она обладала избирательностью, то есть удерживала, прежде всего, необходимые, существенные детали. В качестве классического примера такой памяти Б.М. Теплов приводит высказывания о памяти Наполеона, который помнил буквально все, что имело непосредственное отношение к его военной деятельности, начиная от номеров частей и кончая лицами солдат. При этом Наполеон был неспособен запоминать бессмысленный материал, но обладал важной особенностью мгновенно усваивать то, что подчинялось классификации, определенному логическому закону.

    Б.М. Теплов приходит к выводу, что «умение находить и выделять существенное и постоянная систематизация материала – вот важнейшие условия, обеспечивающие единство анализа и синтеза, то равновесие между этими сторонами мыслительной деятельности, которые отличают работу ума хорошего полководца» . Наряду с выдающимся умом полководец должен обладать определенными личностными качествами. Это, прежде всего, мужество, решительность, энергия, то есть то, что применительно к полководческой деятельности принято обозначать понятием «воля». Не менее важным личностным качеством является стрессоустойчивость. Эмоциональность талантливого полководца проявляется в сочетании эмоции боевого возбуждения и умении собраться, сосредоточиться.

    Особое место в интеллектуальной деятельности полководца Б.М. Теплов отводил наличию такого качества, как интуиция. Он анализировал это качество ума полководца, сравнивая его с интуицией ученого. Между ними существует много общего. Основное же отличие, по мнению Б.М. Теплова, состоит в необходимости для полководца принятия срочного решения, от которого может зависеть успех операции, в то время как ученый не ограничен временными рамками. Но и в том и другом случае "озарению" должен предшествовать упорный труд, на основе которого и может быть принято единственно верное решение проблемы.

    Подтверждения положениям, проанализированным и обобщенным Б.М. Тепловым с психологических позиций, можно обнаружить в работах многих выдающихся ученых, в том числе и математиков . Так, в психологическом этюде «Математическое творчество» Анри Пуанкаре подробно описывает ситуацию, при которой ему удалось сделать одно из открытий. Этому предшествовала долгая подготовительная работа, большой удельный вес в которой составлял, по мнению ученого, процесс бессознательного. За этапом «озарения» необходимо следовал второй этап – тщательной сознательной работы по приведению в порядок доказательства и его проверке. А. Пуанкаре пришел к выводу, что важнейшее место в математических способностях занимает умение логически выстроить цепь операций , которые приведут к решению задачи. Казалось бы, это должно быть доступно любому способному логически мыслить человеку. Однако далеко не каждый оказывается способным оперировать математическими символами с той же легкостью, что и при решении логических задач.

    Для математика недостаточно иметь хорошую память и внимание. По мнению Пуанкаре, людей, способных к математике, отличает умение уловить порядок , в котором должны быть расположены элементы, необходимые для математического доказательства. Наличие интуиции такого рода – есть основной элемент математического творчества. Одни люди не владеют этим тонким чувством и не обладают сильной памятью и вниманием, поэтому не способны понимать математику. Другие – обладают слабой интуицией, но одарены хорошей памятью и способностью к напряженному вниманию, потому могут понимать и применять математику. Третьи – владеют такой особой интуицией и даже при отсутствии отличной памяти могут не только понимать математику, но и делать математические открытия .

    Здесь речь идет о математическом творчестве , доступном немногим. Но, как писал Ж. Адамар, «между работой ученика, решающего задачу по алгебре или геометрии, и творческой работой разница лишь в уровне, в качестве, так как обе работы аналогичного характера» . Для того, чтобы понять, какие качества еще требуются для достижения успехов в математике, исследователями анализировалась математическая деятельность: процесс решения задач, способы доказательств, логических рассуждений, особенности математической памяти. Этот анализ привел к созданию различных вариантов структур математических способностей, сложных по своему компонентному составу. При этом мнения большинства исследователей сходились в одном – что нет и не может быть единственной ярко выраженной математической способности – это совокупная характеристика, в которой отражаются особенности разных психических процессов: восприятия, мышления, памяти, воображения.

    Среди наиболее важных компонентов математических способностей выделяются специфическая способность к обобщению математического материала, способность к пространственным представлениям, способность к отвлеченному мышлению. Некоторые исследователи выделяют также в качестве самостоятельного компонента математических способностей математическую память на схемы рассуждений и доказательств, методы решения задач и принципы подхода к ним. Исследование математических способностей включает в себя и решение одной из важнейших проблем – поиска природных предпосылок, или задатков, данного вида способностей. Долгое время задатки рассматривались как фактор, фатально предопределяющий уровень и направление развития способностей. Классики отечественной психологии Б.М. Теплов и С.Л. Рубинштейн научно доказали неправомерность такого понимания задатков и показали, что источником развития способностей является тесное взаимодействие внешних и внутренних условий. Выраженность того или иного физиологического качества ни в коей мере не свидетельствует об обязательном развитии конкретного вида способностей. Оно может являться лишь благоприятным условием для этого развития. Типологические свойства, входящие в состав задатков и являющиеся важной их составляющей, отражают такие индивидуальные особенности функционирования организма, как предел работоспособности, скоростные характеристики нервного реагирования, способность перестройки реакции в ответ на изменение внешних воздействий.

    Свойства нервной системы, тесно связанные со свойствами темперамента, в свою очередь, влияют на проявление характерологических особенностей личности (В.С. Мерлин, 1986). Б.Г. Ананьев, развивая представления об общей природной основе развития характера и способностей, указывал на формирование в процессе деятельности связей способностей и характера, приводящих к новым психическим образованиям, обозначаемым терминами «талант» и «призвание» (Ананьев Б.Г., 1980). Таким образом, темперамент, способности и характер образуют как бы цепь взаимосвязанных подструктур в структуре личности и индивидуальности, имеющих единую природную основу (Э.А. Голубева, 1993).

    Основные принципы комплексного типологического подхода к изучению способностей и индивидуальности подробно изложены Э.А. Голубевой в соответствующей главе монографии. Одним из важнейших принципов является использование, наряду с качественным анализом, измерительных методов диагностики разных характеристик индивидуальности. Исходя из этого, И.А. Лёвочкина строила экспериментальное исследование математических способностей. В конкретную задачу входила диагностика свойств нервной системы, которые рассматривались в качестве задатков математических способностей, изучение личностных особенностей математически одаренных учащихся и особенностей их интеллекта. Эксперименты проводились на базе школы № 91 г. Москвы, в которой есть специализированные математические классы. В эти классы принимаются старшеклассники со всей Москвы, в основном победители районных и городских олимпиад, прошедшие дополнительное собеседование. Преподавание математики здесь ведется по более углубленной программе, дополнительно читается курс математического анализа. Исследование проводилось совместно с Е.П. Гусевой и учителем-экспериментатором В.М. Сапожниковым.

    Все ученики, с которыми довелось работать исследователю в 8-10 классах, уже определились в своих интересах и склонностях. Дальнейшую свою учебу и работу они связывают с математикой. Их успешность по математике значительно превосходит успешность учеников нематематических классов. Но при общей высокой успешности внутри этой группы учащихся наблюдаются существенные индивидуальные различия. Исследование строилось таким образом: учащихся наблюдали в процессе уроков, анализировали с помощью экспертов их контрольные работы, предлагали для решения экспериментальные задания, направленные на выявление некоторых компонентов математических способностей. Кроме того, с учащимися была проведена серия психологических и психофизиологических экспериментов. Изучались уровень развития и своеобразие интеллектуальных функций, выявлялись их личностные особенности и типологические особенности нервной системы. Всего на протяжении нескольких лет были обследованы 57 учеников с выраженными способностями к математике.

    Результаты

    Объективное измерение уровня интеллектуального развития при помощи теста Векслера у математически одаренных ребят показало, что большинство из них имеет очень высокий уровень общего интеллекта. Цифровые значения общего интеллекта многих учащихся, обследованных нами, превышали 130 баллов. Такой величины значения по некоторым нормативным классификациям обнаруживаются лишь у 2,2% населения. В подавляющем большинстве случаев наблюдали преобладание вербального интеллекта над невербальным. Сам по себе факт наличия высокоразвитого общего и вербального интеллекта у детей с выраженными математическими способностями не является неожиданным. Многие исследователи математических способностей отмечали, что высокая степень развития словесно-логических функций является необходимым условием для математических способностей. И.А. Лёвочкину интересовала не только количественная характеристика интеллекта, но и то, как она связана с психофизиологическими, природными особенностями учащихся. Индивидуальные особенности нервной системы диагностировались с помощью электроэнцефалографической методики. В качестве показателей свойств нервной системы были использованы фоновые и реактивные характеристики электроэнцефалограммы, запись которой производилась на 17-ти канальном энцефалографе. По этим показателям проводилась диагностика силы, лабильности и активированности нервной системы.

    И.А. Лёвочкина установила, используя статистические методы анализа, что более высокий уровень вербального и общего интеллекта в этой выборке имели обладатели более сильной нервной системы. Они же имели и более высокие оценки успеваемости по предметам естественного и гуманитарного циклов. По данным других исследователей, полученным на подростках-старшеклассниках общеобразовательных школ, более высокий уровень интеллекта и лучшую успеваемость имели обладатели слабой нервной системы (Голубева Э.А. с соавт. 1974, Кадыров Б.Р. 1977). Причину такого расхождения следует, вероятно, искать, прежде всего, в характере самой учебной деятельности. Учащиеся математических классов испытывают значительно большие учебные нагрузки, по сравнению с учениками обычных классов. С ними проводятся дополнительные факультативы, кроме того, помимо обязательных домашних и классных заданий, они решают множество заданий, связанных с подготовкой в высшие учебные заведения. Интересы этих ребят смещены в сторону повышенной постоянной умственной нагрузки. Такие условия деятельности предъявляют повышенные требования к выносливости, работоспособности, а поскольку главным, определяющим признаком свойства силы нервной системы является способность выдерживать длительное возбуждение, не входя в состояние запредельного торможения, то, видимо. поэтому наибольшую результативность демонстрируют те учащиеся, которые обладают такими характеристиками нервной системы, как выносливость, работоспособность.

    В.А. Крутецкий, изучая математическую деятельность способных к математике учеников, обращал внимание на их характерную особенность – способность к длительному поддержанию напряжения, когда ученик может долго и сосредоточенно заниматься, не обнаруживая усталости. Эти наблюдения позволили ему предположить, что такое свойство, как сила нервной системы, может являться одной из природных предпосылок, благоприятствующих развитию математических способностей. Полученные нами соотношения отчасти подтверждают это предположение. Почему лишь отчасти? Пониженная утомляемость в процессе занятий математикой отмечалась многими исследователями у способных к математике учеников по сравнению с неспособными к ней. И.А. Лёвочкина обследовала выборку, которая состояла только из способных учащихся. Однако среди них были не только обладатели сильной нервной системы, но и те, кто характеризовались как обладатели слабой нервной системы. Это означает, что не только высокая общая работоспособность, являющаяся благоприятной природной основой для успешности в данном виде деятельности, может обеспечивать развитие математических способностей.

    Анализ личностных особенностей показал, что в целом для группы учащихся с более слабой нервной системы оказались более характерны такие черты личности, как разумность, рассудительность, упорство (фактор J+ по Кеттеллу), а также независимость, самостоятельность (фактор Q2+). Лица с высокими оценками по фактору J уделяют много внимания планированию поведения, анализируют свои ошибки, проявляя при этом «осторожный индивидуализм». Высокие оценки по фактору Q2 имеют люди, склонные к самостоятельному принятию решений, способные нести за них ответственность. Этот фактор обозначается как «мыслящая интроверсия». Вероятно, обладатели слабой нервной системы достигают успешности в данном виде деятельности в том числе за счет формирования таких качеств, как планирование действий, самостоятельность.

    Можно также предположить, что разные полюса данного свойства нервной системы могут быть связаны с разными компонентами математических способностей. Так известно, что свойство слабости нервной системы характеризуется повышенной чувствительностью. Именно она может лежать в основе способности интуитивного, внезапного постижения истины, «озарения» или догадки, что является одним из важных компонентов математических способностей. И хотя это только предположение, но его подтверждение можно найти в конкретных примерах среди математически одаренных учеников. Вот два самых ярких таких примера . Дима на основании результатов объективной психофизиологической диагностики может быть отнесен к представителям сильного типа нервной системы. Он – «звезда первой величины» в математическом классе. Важно отметить то, что блестящих успехов он достигает без каких-либо видимых усилий, с легкостью. Никогда не жалуется на усталость. Уроки, занятия математикой являются для него необходимой постоянной умственной гимнастикой. Особое предпочтение отдается решению нестандартных, сложных задач, требующих напряжения мысли, глубокого анализа, строгой логический последовательности. Дима не допускает неточностей в изложении материала. Если учитель при объяснении делает логические пропуски, Дима обязательно обратит на это внимание. Его отличает высокая интеллектуальная культура. Это подтверждается и результатами тестирования. У Димы самый высокий в обследованной группе показатель общего интеллекта – 149 усл.ед.

    Антон – один из самых ярких представителей слабого типа нервной системы, которого нам довелось наблюдать среди математически одаренных ребят. Он очень быстро утомляется на уроке, не в состоянии долго и сосредоточенно работать, часто оставляет одни дела, чтобы без достаточного обдумывания взяться за другие. Случается, что он отказывается от решения задачи, если предвидит, что оно потребует больших усилий. Однако, несмотря на эти особенности, учителя очень высоко оценивают его математические способности. Дело в том, что он обладает прекрасной математической интуицией. Часто бывает, что он первым решает сложнейшие задания, выдавая конечный результат и опуская при этом все промежуточные этапы решения. Для него характерна способность к «озарению». Он не затрудняет себя объяснением, почему выбрано именно такое решение, но на проверку оно оказывается оптимальным и оригинальным.

    Математические способности очень сложны и многогранны по своей структуре. И тем не менее, выделяются как бы два основных типа людей с их проявлением – это «геометры» и «аналитики». В истории математики яркими примерами этого могут являться такие имена, как Пифагор и Евклид (крупнейшие геометры), Ковалевская и Клейн (аналитики, создатели теории функций). В основе такого деления лежат прежде всего индивидуальные особенности восприятия действительности, в том числе и математического материала. Оно определяется не предметом, над которым работает математик: аналитики и в геометрии остаются аналитиками, тогда как геометры любую математическую реальность предпочитают воспринимать образно. В этой связи уместно привести высказывание А. Пуанкаре: «Отнюдь не обсуждаемый ими вопрос заставляет их использовать тот или другой метод. Если часто об одних говорят, что они аналитики, а других называют геометрами, то это не мешает тому, что первые остаются аналитиками, даже когда занимаются вопросами геометрии, в то время как другие являются геометрами, даже если занимаются чистым анализом» .

    В школьной практике при работе с одаренными учащимися эти различия проявляются не только в разной успешности овладения разными разделами математики, но и в предпочтительном отношении к принципам решения задач. Одни ученики любые задачи стремятся решить с помощью формул, логического рассуждения, другие по возможности используют пространственные представления. Причем эти различия являются весьма устойчивыми. Конечно, среди учеников встречаются и такие, у которых наблюдается определенное равновесие этих характеристик. Они одинаково ровно овладевают всеми разделами математики, используя при этом разные принципы подхода к решению разных задач. Индивидуальные различия между учащимися в подходах к решению задач и методах их решения были выявлены И.А. Лёвочкиной не только благодаря наблюдению за учащимися при работе на уроках, но и экспериментальным путем. Для анализа отдельных компонентов математических способностей учителем-экспериментатором В.М. Сапожниковым была разработана серия специальных экспериментальных задач. Анализ результатов решения задач этой серии позволил получить объективное представление о характере мыслительной деятельности школьников и о соотношении образного и аналитического компонентов математического мышления.

    Были выявлены учащиеся, которые лучше справлялись с решением алгебраических задач, а также те, кто лучше решал геометрические задачи. Эксперимент показал, что среди учащихся есть представители аналитического типа математического мышления, которые характеризуются явным преобладанием вербально-логического компонента. У них нет потребности в наглядных схемах, они предпочитают оперировать знаковыми символами. Мышление учащихся, оказывающих предпочтение геометрическим заданиям, характеризуется большей выраженностью наглядно-образного компонента. Эти учащиеся испытывают потребность в наглядном представлении и интерпретации в выражении математических отношений и зависимостей.

    Из общего числа математически одаренных учеников, принявших участие в экспериментах, были выделены самые яркие «аналитики» и «геометры», составившие две крайние группы. В группу «аналитиков» вошли 11 человек, наиболее ярких представителей вербально-логического типа мышления. Группа «геометров» состояла из 5 человек, с ярким наглядно-образным типом мышления. Тот факт, что в группу ярких представителей «геометров» удалось отобрать значительно меньше учеников, можно объяснить, на наш взгляд, следующим обстоятельством. При проведении математических конкурсов и олимпиад недостаточно учитывается роль наглядно-образных компонентов мышления. В конкурсных заданиях удельный вес задач по геометрии невысок – из 4 – 5 заданий в лучшем случае одно направлено на выявление пространственных представлений у учащихся. Тем самым при отборе как бы «отсекаются» потенциально способные математики-геометры с ярким наглядно-образным типом мышления. Дальнейший анализ проводился с использованием статистического метода сравнения групповых различий (t-критерий Стьюдента) по всем, имевшимся в распоряжении психофизиологическим и психологическим показателям.

    Известно, что типологическая концепция И.П. Павлова помимо физиологической теории свойств нервной системы включала в себя классификацию специально человеческих типов высшей нервной деятельности, различающихся по соотношению сигнальных систем. Это – «художники», с преобладанием первой сигнальной системы, «мыслители», с преобладанием второй сигнальной системы, и средний тип, с равновесием обеих систем. Для «мыслителей» наиболее характерным является абстрактно-логический способ переработки информации, тогда как «художники» обладают ярким образным целостным восприятием действительности. Безусловно, эти различия не носят абсолютный характер, а отражают лишь преимущественные формы реагирования. Те же принципы лежат в основе различий между «аналитиками» и «геометрами». Первые предпочитают аналитические способы решения любых математических задач, то есть по типу приближаются к «мыслителям». «Геометры» стремятся вычленить в задачах образные компоненты, тем самым действуют так, как характерно для «художников».

    В последнее время появился ряд работ, в которых предпринимались попытки объединить учение об основных свойствах нервной системы с представлениями о специально человеческих типах – «художниках» и «мыслителях». Установлено, что к «художественному» типу тяготеют обладатели сильной, лабильной и активированной нервной системы, а к «мыслительному» – слабой, инертной и инактивированной нервной системы (Печенков В.В., 1989). В работе И.А. Лёвочкиной из показателей различных свойств нервной системы наиболее информативной психофизиологической характеристикой при диагностике типов математического мышления оказалась характеристика свойства силы–слабости нервной системы. В группу «аналитиков» вошли обладатели относительно более слабой нервной системы, по сравнению с группой «геометров», то есть выявленные различия между группами по свойству силы–слабости нервной системы оказались в русле ранее полученных результатов. По двум другим свойствам нервной системы (лабильности, активированности) статистически значимых различий установлено не было, а наметившиеся тенденции не противоречат исходным предположениям.

    Проведен также сравнительный анализ результатов диагностики личностных особенностей, полученных с помощью опросника Кэттелла. Статистически значимые различия между группами были установлены по двум факторам – Н и J. По фактору Н группу «аналитиков» можно в целом характеризовать как относительно более сдержанную, с ограниченным кругом интересов (Н-). Обычно люди с низкими показателями по этому фактору замкнуты, не стремятся к дополнительным контактам с людьми. Группа «геометров» имеет по этому личностному фактору большие величины (Н+) и отличается по нему определенной беззаботностью, общительностью. Такие люди не испытывают трудностей в общении, много и охотно идут на контакты, не теряются в неожиданных обстоятельствах. Они артистичны, способны выдерживать значительные эмоциональные нагрузки. По фактору J, который в целом характеризует такую черту личности, как индивидуализм, группа «аналитиков» имеет высокие среднегрупповые значения. Это означает, что им свойственны разумность, рассудительность, упорство. Люди, имеющие высокий вес по этому фактору, уделяют много внимания планированию своего поведения, при этом оставаясь замкнутыми и действуя индивидуально.

    В противовес им, ребята, входящие в группу «геометров», энергичны, экспрессивны. Они любят совместные действия, готовы включиться в групповые интересы и проявить при этом свою активность. Наметившиеся различия показывают, что исследуемые группы математически одаренных учащихся наиболее расходятся по двум факторам, которые, с одной стороны, характеризуют определенную эмоциональную направленность (сдержанность, рассудительность – беззаботность, экспрессивность), с другой, особенности в межличностных отношениях (замкнутость – общительность). Интересно, что описание этих черт в значительной степени совпадает с описанием типов экстравертов–интровертов, предложенных Айзенком. В свою очередь, эти типы имеют определенную психофизиологическую интерпретацию. Экстраверты – это сильные, лабильные, активированные; интроверты – слабые, инертные, инактивированные. Тот же набор психофизиологических характеристик получен для специально человеческих типов высшей нервной деятельности – «художников» и «мыслителей».

    Результаты, полученные И.А. Лёвочкиной, позволяют выстроить определенные синдромы взаимосвязи психофизиологических, психологических признаков и типов математического мышления.

    «Аналитики» «Геометры»

    (абстрактно-логический (наглядно-образный тип мышления)

    тип мышления)

    Слабая н.с. Сильная н.с. рассудительность беззаботность замкнутость общительность интроверты экстраверты

    Таким образом, проведенное И.А. Лёвочкиной комплексное исследование математически одаренных школьников позволило экспериментально подтвердить наличие определенного сочетания психологических и психофизиологических факторов, составляющих благоприятную основу для развития математических способностей. Это касается как общих, так и специальных моментов в проявлении данного вида способностей.

    Несколько слов о способностях к чтению чертежей .

    В исследовании Н. П. Линьковой «Способности к чтению чертежей у младших школьников» доказано, что умение читать и выполнять чертежи – одно из условий, обеспечивающих успешность деятельности в области техники. Поэтому изучение способностей к чтению чертежей входит в качестве составной части в исследование, посвященное техническому творчеству.

    Обычно конструктор использует чертежи для выражения мыслей, возникающих у него в процессе решения задачи.

    Конструктору необходим такой уровень владения навыками чтения чертежей, при котором сам процесс создания образа по его плоскому изображению превращается из специальной цели в средство, помогающее решать какую-либо другую задачу.

    Разница между этими двумя уровнями владения навыками чтения чертежей заключается не только в том, какая цель при этом ставится – представить объект по его изображению или использовать полученный образ для решения какой-либо задачи, но и в самом характере деятельности.

      Эксперименты, проведённые с младшими школьниками, подтвердили результаты, полученные в работе с учениками старших классов.

    Для успешного овладения приёмами чтения чертежей наиболее важной является способность ученика к определённым логическим операциям. К ним, прежде всего, относится умение проводить логический анализ изображений и соотносить их между собой, выдвигать гипотезы, предвосхищающие решения, делать логические заключения на основе имеющихся изображений и проводить необходимую проверку своих предположений.

    Способность к овладению такого рода операциями, условно названную способностью к логическому мышлению, можно считать центральной среди компонентов, обеспечивающих успешное овладение приёмами чтения чертежей.

    Она должна сочетаться с гибкостью мышления, со способностью отказываться от неправильного пути, по которому пошло решение, или даже от уже полученного решения.

    Мысленное представление образа объекта на основе его изображения может возникнуть только в результате такого анализа.

    Появление образа является результатом определённых действий. Если задача для ученика слишком лёгкая, эти действия носят свёрнутый, малозаметный характер. Но они сразу же проявляются в случае усложнения задачи или появления в ходе решения каких-либо затруднений.

    Успешность чтения чертежей обеспечивается одновременно и логическим анализом изображения, и деятельностью пространственного воображения, без которого невозможно возникновение образа. Однако логическому анализу принадлежит в этой работе ведущая роль. Он определяет направление поиска решения – неудачный или неполный анализ приводит к появлению неправильного образа.

    Способность к созданию устойчивых и ярких образов в данной ситуации только усложнит положение.

    2. Эксперименты показали, что у некоторых учеников младшего школьного возраста компоненты способностей, необходимые для овладения приёмами чтения чертежей, достигли такого уровня, что они без всяких затруднений выполняют самые разнообразные задания из школьного курса черчения.

    У большей же части учеников этого возраста необходимость проводить логический анализ изображений, делать умозаключения и обосновывать свои решения вызывает серьёзные затруднения. Речь идёт о степени развития способности к логическому мышлению.

    Вывод: обучение проекционному черчению можно начинать в начальной школе. Возможность организации такого обучения была проверена в ходе специального эксперимента, проведённого совместно с Э.А. Фарапоновой (Линькова, Фарапонова, 1967).

    Но при организации такого обучения в методику должны быть внесены серьёзные изменения.

    Эти изменения должны, прежде всего, идти по линии ослабления на первом этапе обучения требований к логическому анализу. Не менее важно, если не разгрузить, то хотя бы не усложнять требований, предъявляемых к пространственному воображению введением таких приёмов объяснения материала, как проектирование точек на плоскости трёхгранного угла, мысленный поворот моделей или их изображений.

    Объясняется данное требование не столько слабым развитием у детей этого возраста пространственного воображения (большей частью оно оказывается достаточно развитым), сколько их неподготовленностью к одновременному выполнению нескольких операций.

      Проведённое исследование показало наличие очень больших индивидуальных различий между учениками в степени развития у них способностей, необходимых для овладения приёмами чтения чертежей, начиная с момента прихода их в школу. Вопрос о причинах этих различий и о путях развития данных способностей не рассматривается в исследовании Н.П. Линьковой.

    "Нет ни одного ребенка не способного, бездарного. Важно, чтобы этот ум, эта талантливость стали основой успехов в учении, чтобы ни один ученик не учился ниже своих возможностей" (Сухомлинский В.А.)

    В чём же заключаются математические способности? Или они есть не что иное, как качественная специализация общих психических процессов и свойств личности, то есть общие интеллектуальные способности, развитые применительно к математической деятельности? Является ли математическая способность унитарным или интегральным свойством? В последнем случае можно говорить о структуре математических способностей, о компонентах этого сложного образования. Ответы на эти вопросы искали психологи и педагоги еще начала века, но до сих пор нет единого взгляда на проблему математических способностей. Попробуем разобраться в этих вопросах, проанализировав работы некоторых ведущих специалистов, работавших над этой проблемой .

    Большое значение в психологии придается проблеме способностей вообще и проблеме способностей школьников в частности. Целый ряд исследований психологов направлен на выявление структуры способностей школьников к различным видам деятельности.

    В науке, в частности, в психологической, продолжается дискуссия о самой сущности способностей, их структуре, происхождении и развитии. Не вдаваясь в детали традиционных и новых подходов к проблеме способностей, укажем на некоторые основные спорные пункты различных точек зрения психологов на способности. Однако среди них нет единого подхода к данной проблеме .

    Различие в понимании сущности способностей обнаруживается, прежде всего, в том, рассматриваются ли они как социально приобретенные свойства или же признаются как природные. Одни авторы под способностями понимают комплекс индивидуально-психологических особенностей человека, отвечающих требованиям данной деятельности и являющихся условием успешного ее выполнения, которые не сводятся к подготовленности, к имеющимся знаниям, умениям и навыкам. Здесь следует обратить внимание на несколько фактов. Во-первых, способности - это индивидуальные особенности, то есть то, что отличает одного человека от другого. Во-вторых, это не просто особенности, а психологические особенности. И, наконец, способности это не всякие индивидуально-психологические особенности, а лишь те, которые соответствуют требованиям определенной деятельности .

    При другом подходе, наиболее ярко выраженном у К.К. Платонова, способностью считается любое качество "динамической функциональной структуры личности", если оно обеспечивает успешное освоение и выполнение деятельности. Однако, как отмечал В.Д. Шадриков, "при таком подходе к способностям онтологический аспект проблемы переносится на задатки , под которыми понимаются анатомо-физиологические особенности человека, составляющие основу развития способностей. Решение психофизиологической проблемы заводилось в тупик в контексте способностей как таковых, поскольку способности, как психологическая категория не рассматривались как свойство мозга. Не более продуктивен и признак успешности, ибо успешность деятельности определяется и целью, и мотивацией, и многими другими факторами". Согласно его теории способностей, продуктивно определить способности как особенности можно только по отношению к их единичному и всеобщему .

    Всеобщим (общим) для каждой способности В.Д. Шадриков называет свойство, на основе которого реализуется конкретная психическая функция. Каждое свойство представляет собой сущностную характеристику функциональной системы. Именно для того чтобы реализовать это свойство, формировалась конкретная функциональная система в процессе эволюционного развития человека, например свойство адекватно отражать объективный мир (восприятие) или свойство запечатлевать внешние воздействия (память) и так далее. Свойство проявляется в процессе деятельности. Таким образом, теперь можно определить способности с позиции всеобщего как свойство функциональной системы, реализующее отдельные психические функции .

    Различают два вида свойств: те, которые не обладают интенсивностью и поэтому не могут ее менять, и те, которые обладают интенсивностью, то есть могут быть больше или меньше. Гуманитарные науки имеют дело главным образом со свойствами первого вида, естественные со свойствами второго вида. Психические функции характеризуются свойствами, которые обладают интенсивностью, мерой выраженности. Это позволяет определить способности с позиции единичного (отдельного, индивидуального). Единичное будет представлено мерой выраженности свойства;

    Таким образом, согласно представленной выше теории, способности можно определить как свойства функциональных систем, реализующих отдельные психические функции, которые имеют индивидуальную меру выраженности, проявляющуюся в успешности и качественном своеобразии освоения и реализации деятельности. При оценке индивидуальной меры выраженности способностей целесообразно использовать те же параметры, что и при характеристике любой деятельности: производительность, качество и надежность (в плане рассматриваемой психической функции).

    Одним из инициаторов изучения математических способностей школьников был выдающийся французский математик А. Пуанкаре. Он констатировал специфичность творческих математических способностей и выделил их важнейший компонент - математическую интуицию. С этого времени началось изучение этой проблемы. Впоследствии психологи выделили три вида математических способностей - арифметические, алгебраические и геометрические. При этом оставался неразрешимым вопрос о наличии математических способностей .

    В свою очередь, исследователи В. Хаекер и Т. Циген выделили четыре основных сложных компонента: пространственный, логический, числовой, символический, являющихся "ядром" математических способностей. В этих компонентах они различали понимание, запоминание, оперирование .

    Наряду с основным компонентом математического мышления - способностью к избирательному мышлению, к дедуктивному рассуждению в числовой и символической сферах, способностью к абстрактному мышлению, А. Блекуэлл выделяет еще и способность к манипулированию пространственными объектами. Также он отмечает вербальную способность и способность сохранять в памяти данные в их точном и строгом порядке и значении .

    Значительная часть их представляет интерес и сегодня. В книге, которая в оригинале названа "Психология алгебры", Э. Торндайк формулирует сначала общие математические способности : умение обращаться с символами, выбирать и устанавливать соотношения, обобщать и систематизировать, определенным образом выбирать существенные элементы и данные, приводить в систему идеи и навыки. Он выделяет также специальные алгебраические способности : возможность понимать и составлять формулы, выражать в виде формулы количественные соотношения, преобразовывать формулы, составлять уравнения, выражающие данные количественные отношения, решать уравнения, выполнять тождественные алгебраические преобразования, графически выражать функциональную зависимость двух величин и т.д.

    Одно из самых значительных со времени выхода работ Э. Торндайка исследований математических способностей принадлежит шведскому психологу И. Верделину. Он дает весьма широкое определение математических способностей, в котором отражает репродуктивный и продуктивный аспекты, понимание и применение, но основное внимание он уделяет важнейшему из этих аспектов - продуктивному, который исследует в процессе решения задач. Ученый полагает, что на характере математических способностей может сказываться метод обучения .

    Крупнейший швейцарский психолог Ж. Пиаже придавал большое значение мыслительным операциям, выделяя в онтогенетическом развитии интеллекта стадию малоформализированных конкретных операций, связанных с конкретными данными, и стадию обобщенных формализированных операций, когда организуются операторные структуры. Он соотносил последние с тремя фундаментальными математическими структурами, которые выделены Н. Бурбаки: алгебраическими, структурами порядка и топологическими. Ж. Пиаже обнаруживает все типы этих структур в развитии арифметических и геометрических операций в сознании ребенка и в особенностях логических операций. Отсюда делается вывод о необходимости синтеза математических структур и операторных структур мышления в процессе преподавания математики .

    В психологии исследованием проблемы математических способностей занимался В.А. Крутецкий. В своей книге "Психология математических способностей школьников" он приводит следующую общую схему структуры математических способностей школьников. Во-первых, получение математической информации - способность к формализированному восприятию математического материала, схватыванию структуры задачи. Во-вторых, переработка математической информации - способность к логическому мышлению в сфере количественных и пространственных отношений, числовой и знаковой символики, способность мыслить математическими символами, способность к быстрому и широкому обобщению математических объектов, отношений и действий, способность к свертыванию процесса математических рассуждений и системы соответствующих действий, способность мыслить свернутыми структурами. Также необходима гибкость мыслительных процессов в математической деятельности, стремление к ясности, простоте, экономности и рациональности решений. Существенную роль играет тут способность к быстрой и свободной перестройке направленности мыслительного процесса, переключению с прямого на обратный ход мысли (обратимость мыслительного процесса при математическом рассуждении). В-третьих, хранение математической информации - математическая память (обобщенная память на математические отношения, типовые характеристики, схемы рассуждений и доказательств, методы решения задач и принципы подхода к ним). И, наконец, общий синтетический компонент - математическая направленность ума. Все приведенные выше исследования позволяют утверждать, что фактор общих математических рассуждений лежит в основе общих умственных способностей, и математические способности имеют общеинтеллектуальную основу .

    Из различного понимания сущности способностей вытекает различный подход к раскрытию их структуры, которая у разных авторов предстает в виде набора разных качеств, классифицируемых по разным основаниям и находящихся в разном соотношении.

    Нет однозначного ответа и на вопрос о генезисе и развитии способностей, их связи с деятельностью. Наряду с утверждением, что способности в своей родовой форме существуют у человека до деятельности как предпосылка ее реализации. Высказывалась и другая, противоречивая точка зрения: способности не существуют до деятельности Б.М. Тепловым. Последнее положение заводит в тупик, так как непонятно, каким образом начинает совершаться деятельность без способностей к ней. В действительности способности на определенном уровне их развития существуют до деятельности, а с началом ее проявляются и затем развиваются в деятельности, если она предъявляет все более высокие требования к человеку .

    Однако это не раскрывает соотношения навыков и способностей. Решение этой проблемы предложил В.Д. Шадриков. Он считает, что суть онтологических различий способностей и навыков заключается в следующем: способность описывается функциональной системой, одним из ее обязательных элементов является природный компонент, в качестве которого выступают функциональные механизмы способностей, а навыки описываются изоморфной системой, одним из ее главных компонентов являются способности, выполняющие в этой системе те функции, которые в системе способностей реализуют функциональные механизмы. Таким образом, функциональная система навыков как бы произрастает из системы способностей. Это система вторичного уровня интеграции (если принять систему способностей за первичную) .

    Говоря о способностях вообще, следует указать, что способности бывают разного уровня учебные и творческие. Учебные способности связаны с усвоением уже известных способов выполнения деятельности, приобретением знаний, умений и навыков. Творческие способности связаны с созданием нового, оригинального продукта, с нахождением новых способов выполнения деятельности. С этой точки зрения различают, например, способности к усвоению, изучению математики и творческие математические способности. Но, как писал Ж. Адамар, "между работой ученика, решающего задачу …, и творческой работой разница лишь в уровне, так как обе работы аналогичного характера" .

    Природные предпосылки имеют значение, однако, они не являются собственно способностями, а являются задатками. Сами по себе задатки не означают, что у человека разовьются соответствующие способности. Развитие способностей зависит от многих социальных условий (воспитание, потребность в общении, система образования).

    Виды способностей:

    1. Природные (естественные) способности.

    Являются общими для человека и животных: восприятие, память, способность к элементарной коммуникации. Данные способности непосредственно связаны с врожденными задатками. На базе этих задатков у человека, при наличии элементарного жизненного опыта, через механизмы учения, формируются специфические способности.

    2. Специфические способности.

    Общие: определяют успехи человека в различных видах деятельности (мыслительные способности, речь, точность ручных движений).

    Специальные: определяют успехи человека в специфических видах деятельности, для осуществления которых необходимы задатки особого рода и их развитие (музыкальные, математические, лингвистические, технические, художественные способности).

    Кроме того, способности делят на теоретические и практические. Теоретические предопределяют склонность человека к абстрактно-теоретическим размышлениям, а практические - к конкретным практическим действиям. Чаще всего теоретические и практические способности не сочетаются друг с другом. Большинство людей обладают или одним, или другим типом способностей. Вместе они встречаются крайне редко.

    Существует также деление на учебные и творческие способности. Первые определяют успешность обучения, усвоения знаний, умений и навыков, а вторые определяют возможность открытий и изобретений, создания новых предметов материальной и духовной культуры.

    3. Творческие способности.

    Это в первую очередь умение человека находить особый взгляд на привычные и повседневные вещи или задачи. Это умение напрямую зависит от кругозора человека. Чем больше он знает, тем легче ему взглянуть на исследуемый вопрос с разных ракурсов. Творческая личность постоянно стремится больше узнать об окружающем мире не только в области своей основной деятельности, но и в смежных отраслях. В большинстве случаев творческий человек - это в первую очередь оригинально мыслящий человек, способный на нестандартные решения.

    Уровни развития способностей:

    • 1) Задатки - природные предпосылки способностей;
    • 2) Способности - сложное, интегральное, психическое образование, своеобразный синтез свойств и компонентов;
    • 3) Одаренность - своеобразное сочетание способностей, которое обеспечивает человеку возможность успешного выполнения какой-либо деятельности;
    • 4) Мастерство - совершенство в конкретном виде деятельности;
    • 5) Талант - высокий уровень развития специальных способностей (это определенное сочетание высокоразвитых способностей, т.к. изолированная способность, даже очень высокоразвитая, не может быть названа талантом);
    • 6) Гениальность - высший уровень развития способностей (за всю историю цивилизации было не более 400 гениев).

    Общие умственные способности - это способности, которые необходимы для выполнения ни какой-то одной, а многих видов деятельности. К общим умственным способностям относят, например, такие качества ума, как умственная активность, критичность, систематичность, сосредоточенное внимание. Человек от природы наделен общими способностями. Любая деятельность осваивается на фундаменте общих способностей, которые развиваются в этой деятельности .

    Как отмечает В.Д. Шадриков, "специальные способности" есть общие способности, приобретшие черты оперативности под влиянием требований деятельности". Специальные способности это способности, которые необходимы для успешного овладения какой-нибудь одной определенной деятельностью. Эти способности также представляют собой единство отдельных частных способностей. Например, в составе математических способностей большую роль играет математическая память; способность к логическому мышлению в области количественных и пространственных отношений; быстрое и широкое обобщение математического материала; легкое и свободное переключение от одной умственной операции к другой; стремление к ясности, экономичности, рациональности рассуждений и так далее. Все частные способности объединяются стержневой способностью математической направленностью ума (под которой понимают тенденцию вычленять при восприятии пространственные и количественные отношения, функциональные зависимости), связанной с потребностью в математической деятельности.

    А. Пуанкаре пришел к выводу, что важнейшее место в математических способностях занимает умение логически выстроить цепь операций, которые приведут к решению задачи. Кроме того, для математика недостаточно иметь хорошую память и внимание. По мнению Пуанкаре, людей, способных к математике, отличает умение уловить порядок, в котором должны быть расположены элементы, необходимые для математического доказательства. Наличие интуиции такого рода есть основной элемент математического творчества .

    Л.А. Венгер относит к математическим способностям такие особенности умственной деятельности, как обобщение математических объектов, отношений и действий, то есть способность видеть общее в разных конкретных выражениях и задачах; способность мыслить "свернутыми”, крупными единицами и "экономно", без лишней детализации; способность переключения с прямого на обратный ход мысли .

    Для того чтобы понять, какие еще качества требуются для достижения успехов в математике, исследователями анализировалась математическая деятельность: процесс решения задач, способы доказательств, логических рассуждений, особенности математической памяти. Этот анализ привел к созданию различных вариантов структур математических способностей, сложных по своему компонентному составу. При этом мнения большинства исследователей сходились в одном: что нет, и не может быть единственной ярко выраженной математической способности это совокупная характеристика, в которой отражаются особенности разных психических процессов: восприятия, мышления, памяти, воображения.

    Выделение наиболее важных компонентов математических способностей представлено на рисунке 1:

    Рисунок 1

    Некоторые исследователи выделяют также в качестве самостоятельного компонента математическую память на схемы рассуждений и доказательств, методы решения задач и способы подхода к ним. Одним из них является В.А. Крутецкий. Он так определяет математические способности: "Под способностями к изучению математики мы понимаем индивидуально-психологические особенности (прежде всего особенности умственной деятельности), отвечающие требованиям учебной математической деятельности и обуславливающие на прочих равных условиях успешность творческого овладения математикой как учебным предметом, в частности относительно быстрое, легкое и глубокое овладение знаниями, умениями и навыками в области математики".

    В своей работе мы, главным образом, будем опираться на исследования именно этого психолога, так как его исследования этой проблемы и на сегодняшний день являются самыми глобальными, а выводы наиболее экспериментально обоснованными.

    Итак, В.А. Крутецкий различает девять компонентов математических способностей:

    • 1. Способность к формализации математического материала, к отделению формы от содержания, абстрагированию от конкретных количественных отношений и пространственных форм и оперированию формальными структурами, структурами отношений и связей;
    • 2. Способность обобщать математический материал, вычленять главное, отвлекаясь от несущественного, видеть общее во внешне различном;
    • 3. Способность к оперированию числовой и знаковой символикой;
    • 4. Способность к "последовательному, правильно расчлененному логическому, рассуждению", связанному с потребностью в доказательствах, обосновании, выводах;
    • 5. Способность сокращать процесс рассуждения, мыслить свернутыми структурами;
    • 6. Способность к обратимости мыслительного процесса (к переходу с прямого на обратный ход мысли);
    • 7. Гибкость мышления, способность к переключению от одной умственной операции к другой, свобода от сковывающего влияния шаблонов и трафаретов;
    • 8. Математическая память. Можно предположить, что ее характерные особенности также вытекают из особенностей математической науки, что это память на обобщения, формализованные структуры, логические схемы;
    • 9. Способность к пространственным представлениям, которая прямым образом связана с наличием такой отрасли математики, как геометрия .

    Кроме перечисленных, есть и такие компоненты, наличие которых в структуре математических способностей, хотя и полезно, не обязательно. Учителю, прежде чем относить ученика к числу способных или неспособных к математике, необходимо это учитывать. Не являются обязательными в структуре математической одаренности следующие компоненты:

    • 1. Быстрота мыслительных процессов как временная характеристика.
    • 2. Индивидуальный темп работы не имеет решающего значения. Ученик может размышлять неторопливо, медленно, но обстоятельно и глубоко.
    • 3. Способности к быстрым и точным вычислениям (в частности в уме). На самом деле вычислительные способности далеко не всегда связаны с формированием подлинно математических (творческих) способностей.
    • 4. Память на цифры, числа, формулы. Как указывал академик А.Н. Колмогоров, многие выдающиеся математики не обладали сколько-нибудь выдающейся памятью такого рода.

    Большинство психологов и педагогов, говоря о математических способностях, опираются именно на эту структуру математических способностей В.А. Крутецкого. Однако в процессе различных исследований математической деятельности учеников, проявляющих способности к этому школьному предмету, некоторыми психологами были выделены и другие компоненты математических способностей. В частности, нас заинтересовали результаты исследовательской работы З.П. Горельченко. Он отметил у способных к математике учеников следующие особенности. Во-первых, он уточнил и расширил компонент структуры математических способностей, называемый в современной психологической литературе "обобщение математических понятий" и высказал мысль о единстве двух противоположных тенденций мышления учащегося к обобщению и "сужению" математических понятий. В указанном компоненте, можно видеть отражение единства индуктивного и дедуктивного методов познания учащимися нового в математике. Во-вторых, диалектические зачатки в мышлении учащихся при усвоении новых математических знаний. Это проявляется в том, что почти в любом отдельном математическом факте наиболее способные учащиеся стремятся усмотреть, понять факт, ему противоположный, или, по крайне мере, рассмотреть предельный случай исследуемого явления. В-третьих, он отметил особое повышенное внимание к возникающим новым математическим закономерностям, противоположным ранее установленным .

    Одним из характерных признаков повышенных математических способностей учащихся и переходу их к зрелому математическому мышлению может считаться и относительно раннее понимание надобности аксиом как исходных истин при доказательствах. Доступное изучение аксиом и аксиоматического метода в значительной мере способствует ускорению развития дедуктивного мышления учащихся. Замечено также, что эстетическое чувство в математической работе у разных учащихся проявляется по-разному. По-разному различные ученики отвечают и на попытку воспитать и развить у них эстетическое чувство, соответствующее их математическому мышлению. Помимо указанных компонентов математических способностей, которые можно и должно развивать, необходимо учитывать еще и то, что успешность осуществления математической деятельности является производным определенного сочетания качеств: активного положительного отношения к математике, интереса к ней, стремления заниматься ею, переходящими на высоком уровне развития в страстную увлеченность. Также можно выделить ряд характеристических черт, таких как: трудолюбие, организованность, самостоятельность, целеустремленность, настойчивость, а также устойчивых интеллектуальных качеств, чувства удовлетворения от напряженной умственной работы, радость творчества, открытия и так далее.

    Наличие во времени осуществления деятельности благоприятных для выполнения психических состояний, например, состояние заинтересованности, сосредоточенности, хорошего "психического" самочувствия и т.д. Определенный фонд знаний, умений и навыков в соответствующей области. Определенные индивидуально-психологические особенности в сенсорной и умственной сферах, отвечающие требованиям данной деятельности .

    Наиболее способных к математике учащихся отличает особый эстетический склад математического мышления. Он позволяет им сравнительно легко понимать некоторые теоретические тонкости в математике, улавливать безупречную логику и красоту математических рассуждений, фиксировать малейшую шероховатость, неточность в логическом строе математических концепций. Самостоятельное устойчивое стремление к оригинальному, нешаблонному, изящному решению математической задачи, к гармоническому единству формальных и семантических компонентов решения задачи, блестящие догадки, иногда опережающие логические алгоритмы, порою трудно переложимые на язык символов, свидетельствуют о наличии в мышлении чувства хорошо развитого математического предвидения, являющегося одной из сторон эстетического мышления в математике. Повышенные эстетические эмоции при математическом размышлении присущи в первую очередь учащимся с высоко развитыми математическими способностями и совместно с эстетическим складом математического мышления могут служить существенным признаком наличия математических способностей у школьников .