Егэ по биологии часть а. Задания по генетике на ЕГЭ по биологии. Задача С6

Среди заданий по генетике на ЕГЭ по биологии можно выделить 6 основных типов. Первые два - на определение числа типов гамет и моногибридное скрещивание - встречаются чаще всего в части А экзамена (вопросы А7 , А8 и А30 ).

Задачи типов 3 , 4 и 5 посвящены дигибридному скрещиванию, наследованию групп крови и признаков, сцепленных с полом. Такие задачи составляют большинство вопросов С6 в ЕГЭ .

Шестой тип задач - смешанный. В них рассматривается наследование двух пар признаков: одна пара сцеплена с Х-хромосомой (или определяет группы крови человека), а гены второй пары признаков расположены в аутосомах. Этот класс задач считается самым трудным для абитуриентов.

В этой статье изложены теоретические основы генетики , необходимые для успешной подготовки к заданию С6, а также рассмотрены решения задач всех типов и приведены примеры для самостоятельной работы.

Основные термины генетики

Ген - это участок молекулы ДНК, несущий информацию о первичной структуре одного белка. Ген - это структурная и функциональная единица наследственности.

Аллельные гены (аллели) - разные варианты одного гена, кодирующие альтернативное проявление одного и того же признака. Альтернативные признаки - признаки, которые не могут быть в организме одновременно.

Гомозиготный организм - организм, не дающий расщепления по тем или иным признакам. Его аллельные гены одинаково влияют на развитие данного признака.

Гетерозиготный организм - организм, дающий расщепление по тем или иным признакам. Его аллельные гены по-разному влияют на развитие данного признака.

Доминантный ген отвечает за развитие признака, который проявляется у гетерозиготного организма.

Рецессивный ген отвечает за признак, развитие которого подавляется доминантным геном. Рецессивный признак проявляется у гомозиготного организма, содержащего два рецессивных гена.

Генотип - совокупность генов в диплоидном наборе организма. Совокупность генов в гаплоидном наборе хромосом называется геномом .

Фенотип - совокупность всех признаков организма.

Законы Г. Менделя

Первый закон Менделя - закон единообразия гибридов

Этот закон выведен на основании результатов моногибридного скрещивания. Для опытов было взято два сорта гороха, отличающихся друг от друга одной парой признаков - цветом семян: один сорт имел желтую окраску, второй - зеленую. Скрещивающиеся растения были гомозиготными.

Для записи результатов скрещивания Менделем была предложена следующая схема:

Желтая окраска семян
- зеленая окраска семян

(родители)
(гаметы)
(первое поколение)
(все растения имели желтые семена)

Формулировка закона: при скрещивании организмов, различающихся по одной паре альтернативных признаков, первое поколение единообразно по фенотипу и генотипу .

Второй закон Менделя - закон расщепления

Из семян, полученных при скрещивании гомозиготного растения с желтой окраской семян с растением с зеленой окраской семян, были выращены растения, и путем самоопыления было получено .


( растений имеют доминантный признак, - рецессивный)

Формулировка закона: у потомства, полученного от скрещивания гибридов первого поколения, наблюдается расщепление по фенотипу в соотношении , а по генотипу - .

Третий закон Менделя - закон независимого наследования

Этот закон был выведен на основании данных, полученных при дигибридном скрещивании. Мендель рассматривал наследование двух пар признаков у гороха: окраски и формы семян.

В качестве родительских форм Мендель использовал гомозиготные по обоим парам признаков растения: один сорт имел желтые семена с гладкой кожицей, другой - зеленые и морщинистые.

Желтая окраска семян, - зеленая окраска семян,
- гладкая форма, - морщинистая форма.


(желтые гладкие).

Затем Мендель из семян вырастил растения и путем самоопыления получил гибриды второго поколения.

Для записи и определения генотипов используется решетка Пеннета
Гаметы

В произошло расщепление на фенотипических класса в соотношении . всех семян имели оба доминантных признака (желтые и гладкие), - первый доминантный и второй рецессивный (желтые и морщинистые), - первый рецессивный и второй доминантный (зеленые и гладкие), - оба рецессивных признака (зеленые и морщинистые).

При анализе наследования каждой пары признаков получаются следующие результаты. В частей желтых семян и части зеленых семян, т.е. соотношение . Точно такое же соотношение будет и по второй паре признаков (форме семян).

Формулировка закона: при скрещивании организмов, отличающихся друг от друга двумя и более парами альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всевозможных сочетаниях .

Третий закон Менделя выполняется только в том случае, если гены находятся в разных парах гомологичных хромосом.

Закон (гипотеза) «чистоты» гамет

При анализе признаков гибридов первого и второго поколений Мендель установил, что рецессивный ген не исчезает и не смешивается с доминантным. В проявляются оба гена, что возможно только в том случае, если гибриды образуют два типа гамет: одни несут доминантный ген, другие - рецессивный. Это явление и получило название гипотезы чистоты гамет: каждая гамета несет только один ген из каждой аллельной пары. Гипотеза чистоты гамет была доказана после изучения процессов, происходящих в мейозе.

Гипотеза «чистоты» гамет - это цитологическая основа первого и второго законов Менделя. С ее помощью можно объяснить расщепление по фенотипу и генотипу.

Анализирующее скрещивание

Этот метод был предложен Менделем для выяснения генотипов организмов с доминантным признаком, имеющих одинаковый фенотип. Для этого их скрещивали с гомозиготными рецессивными формами.

Если в результате скрещивания все поколение оказывалось одинаковым и похожим на анализируемый организм, то можно было сделать вывод: исходный организм является гомозиготным по изучаемому признаку.

Если в результате скрещивания в поколении наблюдалось расщепление в соотношении , то исходный организм содержит гены в гетерозиготном состоянии.

Наследование групп крови (система АВ0)

Наследование групп крови в этой системе является примером множественного аллелизма (это существование у вида более двух аллелей одного гена). В человеческой популяции имеется три гена , кодирующие белки-антигены эритроцитов, которые определяют группы крови людей. В генотипе каждого человека содержится только два гена, определяющих его группу крови: первая группа ; вторая и ; третья и и четвертая .

Наследование признаков, сцепленных с полом

У большинства организмов пол определяется во время оплодотворения и зависит от набора хромосом. Такой способ называют хромосомным определением пола. У организмов с таким типом определения пола есть аутосомы и половые хромосомы - и .

У млекопитающих (в т.ч. у человека) женский пол обладает набором половых хромосом , мужской пол - . Женский пол называют гомогаметным (образует один тип гамет); а мужской - гетерогаметным (образует два типа гамет). У птиц и бабочек гомогаметным полом являются самцы , а гетерогаметным - самки .

В ЕГЭ включены задачи только на признаки, сцепленные с -хромосомой. В основном они касаются двух признаков человека: свертываемость крови ( - норма; - гемофилия), цветовое зрение ( - норма, - дальтонизм). Гораздо реже встречаются задачи на наследование признаков, сцепленных с полом, у птиц.

У человека женский пол может быть гомозиготным или гетерозиготным по отношению к этим генам. Рассмотрим возможные генетические наборы у женщины на примере гемофилии (аналогичная картина наблюдается при дальтонизме): - здорова; - здорова, но является носительницей; - больна. Мужской пол по этим генам является гомозиготным, т.к. -хромосома не имеет аллелей этих генов: - здоров; - болен. Поэтому чаще всего этими заболеваниями страдают мужчины, а женщины являются их носителями.

Типичные задания ЕГЭ по генетике

Определение числа типов гамет

Определение числа типов гамет проводится по формуле: , где - число пар генов в гетерозиготном состоянии. Например, у организма с генотипом генов в гетерозиготном состоянии нет, т.е. , следовательно, , и он образует один тип гамет . У организма с генотипом одна пара генов в гетерозиготном состоянии , т.е. , следовательно, , и он образует два типа гамет. У организма с генотипом три пары генов в гетерозиготном состоянии, т.е. , следовательно, , и он образует восемь типов гамет.

Задачи на моно- и дигибридное скрещивание

На моногибридное скрещивание

Задача : Скрестили белых кроликов с черными кроликами (черный цвет - доминантный признак). В белых и черных. Определите генотипы родителей и потомства.

Решение : Поскольку в потомстве наблюдается расщепление по изучаемому признаку, следовательно, родитель с доминантным признаком гетерозиготен.

(черный) (белый)
(черные) : (белые)

На дигибридное скрещивание

Доминантные гены известны

Задача : Скрестили томаты нормального роста с красными плодами с томатами-карликами с красными плодами. В все растения были нормального роста; - с красными плодами и - с желтыми. Определите генотипы родителей и потомков, если известно, что у томатов красный цвет плодов доминирует над желтым, а нормальный рост - над карликовостью.

Решение : Обозначим доминантные и рецессивные гены: - нормальный рост, - карликовость; - красные плоды, - желтые плоды.

Проанализируем наследование каждого признака по отдельности. В все потомки имеют нормальный рост, т.е. расщепления по этому признаку не наблюдается, поэтому исходные формы - гомозиготны. По цвету плодов наблюдается расщепление , поэтому исходные формы гетерозиготны.



(карлики, красные плоды)
(нормальный рост, красные плоды)
(нормальный рост, красные плоды)
(нормальный рост, красные плоды)
(нормальный рост, желтые плоды)
Доминантные гены неизвестны

Задача : Скрестили два сорта флоксов: один имеет красные блюдцевидные цветки, второй - красные воронковидные цветки. В потомстве было получено красных блюдцевидных, красных воронковидных, белых блюдцевидных и белых воронковидных. Определите доминантные гены и генотипы родительских форм, а также их потомков.

Решение : Проанализируем расщепление по каждому признаку в отдельности. Среди потомков растения с красными цветами составляют , с белыми цветами - , т.е. . Поэтому - красный цвет, - белый цвет, а родительские формы - гетерозиготны по этому признаку (т.к. есть расщепление в потомстве).

По форме цветка также наблюдается расщепление: половина потомства имеет блюдцеобразные цветки, половина - воронковидные. На основании этих данных однозначно определить доминантный признак не представляется возможным. Поэтому примем, что - блюдцевидные цветки, - воронковидные цветки.


(красные цветки, блюдцевидная форма)

(красные цветки, воронковидная форма)
Гаметы

Красные блюдцевидные цветки,
- красные воронковидные цветки,
- белые блюдцевидные цветки,
- белые воронковидные цветки.

Решение задач на группы крови (система АВ0)

Задача : у матери вторая группа крови (она гетерозиготна), у отца - четвертая. Какие группы крови возможны у детей?

Решение :


(вероятность рождения ребенка со второй группой крови составляет , с третьей - , с четвертой - ).

Решение задач на наследование признаков, сцепленных с полом

Такие задачи вполне могут встретиться как в части А, так и в части С ЕГЭ.

Задача : носительница гемофилии вышла замуж за здорового мужчину. Какие могут родиться дети?

Решение :

девочка, здоровая ()
девочка, здоровая, носительница ()
мальчик, здоровый ()
мальчик, больной гемофилией ()

Решение задач смешанного типа

Задача : Мужчина с карими глазами и группой крови женился на женщине с карими глазами и группой крови. У них родился голубоглазый ребенок с группой крови. Определите генотипы всех лиц, указанных в задаче.

Решение : Карий цвет глаз доминирует над голубым, поэтому - карие глаза, - голубые глаза. У ребенка голубые глаза, поэтому его отец и мать гетерозиготны по этому признаку. Третья группа крови может иметь генотип или , первая - только . Поскольку у ребенка первая группа крови, следовательно, он получил ген и от отца, и от матери, поэтому у его отца генотип .

(отец) (мать)
(родился)

Задача : Мужчина дальтоник, правша (его мать была левшой) женат на женщине с нормальным зрением (ее отец и мать были полностью здоровы), левше. Какие могут родиться дети у этой пары?

Решение : У человека лучшее владение правой рукой доминирует над леворукостью, поэтому - правша, - левша. Генотип мужчины (т.к. он получил ген от матери-левши), а женщины - .

Мужчина-дальтоник имеет генотип , а его жена - , т.к. ее родители были полностью здоровы.

Р
девочка-правша, здоровая, носительница ()
девочка-левша, здоровая, носительница ()
мальчик-правша, здоровый ()
мальчик-левша, здоровый ()

Задачи для самостоятельного решения

  1. Определите число типов гамет у организма с генотипом .
  2. Определите число типов гамет у организма с генотипом .
  3. Скрестили высокие растения с низкими растениями. В - все растения среднего размера. Какое будет ?
  4. Скрестили белого кролика с черным кроликом. В все кролики черные. Какое будет ?
  5. Скрестили двух кроликов с серой шерстью. В с черной шерстью, - с серой и с белой. Определите генотипы и объясните такое расщепление.
  6. Скрестили черного безрогого быка с белой рогатой коровой. В получили черных безрогих, черных рогатых, белых рогатых и белых безрогих. Объясните это расщепление, если черный цвет и отсутствие рогов - доминантные признаки.
  7. Скрестили дрозофил с красными глазами и нормальными крыльями с дрозофилами с белыми глазами и дефектными крыльями. В потомстве все мухи с красными глазами и дефектными крыльями. Какое будет потомство от скрещивания этих мух с обоими родителями?
  8. Голубоглазый брюнет женился на кареглазой блондинке. Какие могут родиться дети, если оба родителя гетерозиготны?
  9. Мужчина правша с положительным резус-фактором женился на женщине левше с отрицательным резусом. Какие могут родиться дети, если мужчина гетерозиготен только по второму признаку?
  10. У матери и у отца группа крови (оба родителя гетерозиготны). Какая группа крови возможна у детей?
  11. У матери группа крови, у ребенка - группа. Какая группа крови невозможна для отца?
  12. У отца первая группа крови, у матери - вторая. Какова вероятность рождения ребенка с первой группой крови?
  13. Голубоглазая женщина с группой крови (ее родители имели третью группу крови) вышла замуж за кареглазого мужчину со группой крови (его отец имел голубые глаза и первую группу крови). Какие могут родиться дети?
  14. Мужчина-гемофилик, правша (его мать была левшой) женился на женщине левше с нормальной кровью (ее отец и мать были здоровы). Какие могут родиться дети от этого брака?
  15. Скрестили растения земляники с красными плодами и длинночерешковыми листьями с растениями земляники с белыми плодами и короткочерешковыми листьями. Какое может быть потомство, если красная окраска и короткочерешковые листья доминируют, при этом оба родительских растения гетерозиготны?
  16. Мужчина с карими глазами и группой крови женился на женщине с карими глазами и группой крови. У них родился голубоглазый ребенок с группой крови. Определите генотипы всех лиц, указанных в задаче.
  17. Скрестили дыни с белыми овальными плодами с растениями, имевшими белые шаровидные плоды. В потомстве получены следующие растения: с белыми овальными, с белыми шаровидными, с желтыми овальными и с желтыми шаровидными плодами. Определите генотипы исходных растений и потомков, если у дыни белая окраска доминирует над желтой, овальная форма плода - над шаровидной.

Ответы

  1. типа гамет.
  2. типов гамет.
  3. типа гамет.
  4. высоких, средних и низких (неполное доминирование).
  5. черных и белых.
  6. - черные, - белые, - серые. Неполное доминирование.
  7. Бык: , корова - . Потомство: (черные безрогие), (черные рогатые), (белые рогатые), (белые безрогие).
  8. - красные глаза, - белые глаза; - дефектные крылья, - нормальные. Исходные формы - и , потомство .
    Результаты скрещивания:
    а)
  9. - карие глаза, - голубые; - темные волосы, - светлые. Отец , мать - .
    - карие глаза, темные волосы
    - карие глаза, светлые волосы
    - голубые глаза, темные волосы
    - голубые глаза, светлые волосы
  10. - правша, - левша; - положительный резус, - отрицательный. Отец , мать - . Дети: (правша, положительный резус) и (правша, отрицательный резус).
  11. Отец и мать - . У детей возможна третья группа крови (вероятность рождения - ) или первая группа крови (вероятность рождения - ).
  12. Мать , ребенок ; от матери он получил ген , а от отца - . Для отца невозможны следующие группы крови: вторая , третья , первая , четвертая .
  13. Ребенок с первой группой крови может родиться только в том случае, если его мать гетерозиготна. В этом случае вероятность рождения составляет .
  14. - карие глаза, - голубые. Женщина , мужчина . Дети: (карие глаза, четвертая группа), (карие глаза, третья группа), (голубые глаза, четвертая группа), (голубые глаза, третья группа).
  15. - правша, - левша. Мужчина , женщина . Дети (здоровый мальчик, правша), (здоровая девочка, носительница, правша), (здоровый мальчик, левша), (здоровая девочка, носительница, левша).
  16. - красные плоды, - белые; - короткочерешковые, - длинночерешковые.
    Родители: и . Потомство: (красные плоды, короткочерешковые), (красные плоды, длинночерешковые), (белые плоды, короткочерешковые), (белые плоды, длинночерешковые).
    Скрестили растения земляники с красными плодами и длинночерешковыми листьями с растениями земляники с белыми плодами и короткочерешковыми листьями. Какое может быть потомство, если красная окраска и короткочерешковые листья доминируют, при этом оба родительских растения гетерозиготны?
  17. - карие глаза, - голубые. Женщина , мужчина . Ребенок:
  18. - белая окраска, - желтая; - овальные плоды, - круглые. Исходные растения: и . Потомство:
    с белыми овальными плодами,
    с белыми шаровидными плодами,
    с желтыми овальными плодами,
    с желтыми шаровидными плодами.

Подготовка к ЕГЭ по биологии (часть С).

Повышева Ирина Валентиновна, учитель биологии ГБОУ СОШ №249 им.М.В.Маневича.

Для подготовки учеников к сдаче экзамена в формате ЕГЭ учитель использует различные формы тестов, тренируя навыки позволяющие выявить уровень освоения знаниями на базовом и повышенном уровне сложности.

Однако задания части С предполагают свободный ответ на поставленный вопрос и контролируют не только знания но и учебные умения. Каким образом научить полно глубоко и сжато излагать свои мысли? В данном случае можно предложить ученикам самим выступить в роли эксперта и оценить ответы.

При разборе и анализе ответов у учеников формируются навыки самоанализа и самоконтроля.

Достаточно часто встречаются задания по теме «Биосинтез белка».

Рассмотрим задачу С5. «Гормон окситоцин имеет белковую природу. В процессе трансляции его молекулы участвовало 9 молекул тРНК. Определите число аминокислот, входящих в состав синтезируемого белка, а также число триплетов и нуклеотидов, которые кодируют этот белок. Ответ поясните».(1)

Ответ ученика 1: « 9 аминокислот, 9 триплетов, 27 нуклеотидов».

Ответ ученика 2: « Так как каждая тРНК кодирует одну аминокислоту то в состав окситоцина входит 9 аминокислот. Каждая аминокислота состоит из трёх нуклеотидов, следовательно - 27 нуклеотидов».

Ответ ученика 3: «В процессе трансляции одна тРНК приносит одну аминокислоту. Информация о структуре белка закодирована на иРНК с помощью триплетов. Один триплет состоит из трёх нуклеотидов и кодирует одну аминокислоту. Таким образом, аминокислот в молекуле окситоцина 9, структурная часть иРНК содержит 9 триплетов и 27 нуклеотидов».

Анализ этих ответов позволяет избежать традиционных ошибок. Необходимо найти все вопросы, которые содержит задача. Ответ первого ученика не содержит пояснений и экспертом оценён в 1 балл.

Второй ответ содержит биологические ошибки и даёт возможность найти и исправить их. Оценивается в 0 баллов.

Третий - не содержит ошибок, имеет объяснение и экспертом оценивается в 3 балла.

Ошибки при ответах могут быть связаны с необходимостью построения чёткого, логического ответа, умения анализировать фактический материал. При подготовке к экзамену таким детям необходимо учиться составлять план ответа, учиться выделять основное. Разбор ошибок в этом случае даёт возможность понять, насколько важно последовательно излагать свои мысли. Рассмотрим это на конкретном примере.

С3. «Что произойдёт с клетками эпителиальной ткани, если их поместить в воду? Ответ обоснуйте».(2)

Ответ ученика 1: «Мембрана клетки обладает способностью свободно пропускать воду. Вода будет поступать в клетку, и клетка сначала увеличивается в размерах, а затем разрушается».

В данном случае ответ выстроен логично, однако остаётся непонятным, почему вода движется в клетку. Анализируя, ученики вспоминают явление плазмолиза и деплазмолиза клетки, понятие осмотическое давление и выясняют причину поступления воды.

Ответ ученика 2: «Клетка разрушится».

Интересно что дети, дающие подобные ответы, не всегда делают ошибки из-за того что не знают материал. При разборе вопроса с помощью учителя, они вполне могут дать полное и правильное объяснение. Исправляя ошибки, ребёнок учиться строить чёткие логические конструкции.

Ряд вопросов требует системного подхода. Например: «Какую роль птицы играют в биоценозе леса? Приведите не менее четырёх примеров».

В данном случае при ответе на необходимо рассматривать многочисленные связи между птицами и организмами сообщества.

Ответ ученика 1: «Птицы питаются насекомым и регулируют их численность. Питаются плодами».

Ответ ученика 2: «Птицы служат пищей для многих хищников, таким образом, численность птиц влияет на численность хищников».

Оба оцениваются экспертами в 1 балл, так как оба ученика приводят только часть рассуждений необходимых для полного ответа.

Сложность представляют вопросы, требующие умения анализировать процессы, происходящие в клетке, делать выводы и затем аргументированно излагать свои мысли.

С5.«Общая масса всех молекул ДНК в 46 хромосомах соматической клетки человека составляет около 6·10 -9 мг. Определите, чему равна масса всех молекул ДНК в сперматозоиде и в соматической клетке перед началом деления и после его окончания. Ответ поясните».(1)

Если ученик впервые сталкивается с подобным заданием, то первое ощущение- паника. Детальный разбор вопроса, анализ всех процессов происходящих на различных стадиях клеточного деления позволяет достаточно успешно справляться с заданиями такого типа.

Ответ ученика 1: «Происходит мейоз и перед делением масса ДНК составляет 12·10 -9 мг. Это происходит, так как в интерфазе ДНК удваивается. В конце деления в сперматозоиде 6·10 -9 мг ДНК, так как хромосомы расходятся в разные клетки».

Ответ неполный, содержит биологические ошибки, и экспертом оценивается в 1 балл.

Ответ ученика 2: «При образовании сперматозоида диплоидная клетка делится путём мейоза, а при образовании соматической клетки-митоза. Перед началом деления происходит репликация, и в обоих случаях масса ДНК будет составлять 12·10 -9 мг. Дальше при мейозе образуется гаплоидная клетка в которой находится хромосомы, состоящие из одной хроматиды(ДНК) значит в сперматозоиде 3·10 -9 мг. В соматической-6·10 -9 мг ДНК, при митозе образуется клетка диплоидная».

Экспертом оценивается в 3 балла. Интересно, что при разборе ответов ученики часто относятся к ним гораздо критичнее, чем учитель. Отмечают, что необходимо в ответе описывать процессы расхождения хромосом(хроматид), назвать фазы на которых происходят эти изменения.

Таким образом, разбирая и анализируя ответы, ученики учатся решать биологические задачи, приобретают навыки полного, аргументированного и грамотного изложения мыслей и что не менее важно приобретают большую уверенность необходимую для успешной сдачи экзамена.

Литература.

1.Кириленко А.А. Молекулярная биология. Сборник заданий для подготовки к ЕГЭ: уровни А, В и С. Ростов на Дону. 2011.

2.Самое полное издание типовых вариантов заданий ЕГЭ. Биология. М.2011.

Изучение основных законов наследственности и изменчивости организмов является одной из наиболее сложных, но очень перспективных задач, стоящих перед современным естествознанием. В данной статье мы рассмотрим как основные теоретические понятия и постулаты науки, так и разберемся с тем, как решать задачи по генетике.

Актуальность изучения закономерностей наследственности

Две важнейшие отрасли современной науки - медицина и селекция - развиваются благодаря исследованиям ученых-генетиков. Сама же биологическая дисциплина, название которой было предложено в 1906 году английским ученым У. Бетсоном, является не столько теоретической, сколько практической. Всем, кто решит серьезно разобраться в механизме наследования различных признаков (например, таких как цвет глаз, волос, группа крови), придется сначала изучить законы наследственности и изменчивости, а также выяснить, как решать задачи по генетике человека. Именно этим вопросом мы и займемся.

Основные понятия и термины

Каждая отрасль имеет специфический, только ей присущий, набор основных определений. Если речь зашла о науке, изучающей процессы передачи наследственных признаков, под последними будем понимать следующие термины: ген, генотип, фенотип, родительские особи, гибриды, гаметы и так далее. С каждым из них мы встретимся, когда будем изучать правила, объясняющие нам, как решать задачи по биологии на генетику. Но в начале мы изучим гибридологический метод. Ведь именно он лежит в основе генетических исследований. Он был предложен чешским естествоиспытателем Г. Менделем в 19 веке.

Как наследуются признаки?

Закономерности передачи свойств организма были открыты Менделем благодаря опытам, которые он проводил с широко известным растением - горохом посевным. Гибридологический метод представляет собой скрещивание двух единиц, которые отличаются друг от друга одной парой признаков (моногибридное скрещивание). Если в опыте участвуют организмы, которые имеют несколько пар альтернативных (противоположных) признаков, тогда говорят о полигибридном скрещивании. Ученый предложил следующую форму записи хода гибридизации двух растений гороха, которые отличаются окраской семян. А - желтая краска, а - зеленая.


В этой записи F1 - гибриды первого (I) поколения. Они все абсолютно единообразны (одинаковы), так как содержат А, контролирующий желтую окраску семян. Вышеприведенная запись соответствует первому (Правило единообразия гибридов F1). Знание его объясняет учащимся, как решать задачи по генетике. 9 класс имеет программу по биологии, в которой детально изучается гибридологический метод генетических исследований. В ней также рассматривается и второе (ІІ) правило Менделя, называемое законом расщепления. Согласно ему, у гибридов F2, полученных от скрещивания двух гибридов первого поколения друг с другом, наблюдается расщепление в соотношении по фенотипу 3 к 1, а по генотипу 1 к 2 и к 1.


Используя вышеприведенные формулы, вы поймете, как решать задачи по генетике без ошибок, если в их условиях можно применить первый или уже известный II закон Менделя, учитывая, что скрещивание происходит при одного из генов.

Закон независимого комбинирования состояний признаков

Если родительские особи различаются двумя парами альтернативных признаков, например, окраской семян и их формой, у таких растений, как тогда в ходе генетического скрещивания нужно использовать решетку Пиннета.

Абсолютно все гибриды, которые являются первым поколением, подчиняются правилу единообразия Менделя. То есть они желтые, с гладкой поверхностью. Продолжая скрещивать между собой растения из F1, мы получим гибриды второго поколения. Чтобы выяснить, как решать задачи по генетике, 10 класс на уроках биологии использует запись дигибридного скрещивания, применяя формулу расщепления по фенотипу 9:3:3:1. При условии, что гены расположены в различных парах, можно использовать третий постулат Менделя - закон независимых комбинирований состояний признаков.

Как наследуются группы крови?

Механизм передачи такого признака, как группа крови у человека, не соответствует закономерностям, рассмотренным нами ранее. То есть он не подчиняется первому и второму закону Менделя. Это объясняется тем, что такой признак, как группа крови, согласно исследованиям Ландштейнера, контролируется тремя аллелями гена I: А, В и 0. Соответственно генотипы будут такими:

  • Первая группа - 00.
  • Вторая - АА или А0.
  • Третья группа - ВВ или В0.
  • Четвертая - АВ.

Ген 0 является рецессивной аллелью к генам А и В. А четвертая группа является результатом кодоминирования (взаимного присутствия генов А и В). Именно это правило нужно обязательно учитывать, чтобы знать, как решать задачи по генетике на группы крови. Но это еще не все. Для установления генотипов детей по группе крови, родившихся от родителей с различными ее группами, воспользуемся таблицей, расположенной ниже.


Теория наследственности Моргана

Возвратимся к разделу нашей статьи «Закон независимого комбинирования состояний признаков», в котором мы рассмотрели, как решать задачи по генетике. как и сам ІІІ закон Менделя, которому оно подчиняется, применимо для аллельных генов, находящихся в гомологичных хромосомах каждой пары.

В середине 20 века американский ученый-генетик Т. Морган доказал, что большинство признаков контролируется генами, которые расположены в одной и той же хромосоме. Они имеют линейное расположение и образуют группы сцепления. И их количество равно именно гаплоидному набору хромосом. В процессе мейоза, приводящего к образованию гамет, в половые клетки попадают не отдельные гены, как считал Мендель, а целые их комплексы, названные Морганом группами сцепления.

Кроссинговер

Во время профазы I (ее еще называют первым делением мейоза) между внутренними хроматидами гомологичных хромосом происходит обмен участками (лукусами). Это явление получило название кроссинговера. Оно лежит в основе наследственной изменчивости. Кроссинговер особенно важен для изучения разделов биологии, занимающихся изучением наследственных заболеваний человека. Применяя постулаты, изложенные в хромосомной теории наследственности Моргана, мы определим алгоритм, отвечающий на вопрос, как решать задачи по генетике.

Сцепленные с полом случаи наследования являются частным случаем передачи генов, которые расположены в одной и той же хромосоме. Расстояние, которое существует между генами в группах сцепления, выражается в процентах - морганидах. А сила сцепления между данными генами прямо пропорциональна расстоянию. Поэтому кроссинговер чаще всего возникает между генами, которые располагаются далеко друг от друга. Рассмотрим явление сцепленного наследования более подробно. Но в начале вспомним, какие элементы наследственности отвечают за половые признаки организмов.

Половые хромосомы

В кариотипе человека они имеют специфическое строение: у женских особей представлены двумя одинаковыми Х-хромосомами, а у мужчин в половой паре, кроме Х-хромосомы, есть еще и У-вариант, отличающийся как по форме, так и по набору генов. Это значит, что он не гомологичен Х-хромосоме. Такие наследственные болезни человека, как гемофилия и дальтонизм, возникают вследствие «поломки» отдельных генов в Х-хромосоме. Например, от брака носительницы гемофилии со здоровым мужчиной возможно рождение такого потомства.


Выше приведенный ход генетического скрещивания подтверждает факт сцепления гена, контролирующего свертываемость крови, с половой Х-хромосомой. Данная научная информация используется для обучения учащихся приемам, определяющим, как решать задачи по генетике. 11 класс имеет программу по биологии, в которой детально рассматриваются такие разделы, как «генетика», «медицина» и «генетика человека». Они позволяют учащимся изучить наследственные болезни человека и знать причины, по которым они возникают.

Взаимодействие генов

Передача наследственных признаков - процесс достаточно сложный. Приведенные ранее схемы становятся понятными только при наличии у учащихся базового минимума знаний. Он необходим, так как обеспечивает механизмы, дающие ответ на вопрос о том, как научиться решать задачи по биологии. Генетика изучает формы взаимодействие генов. Это полимерия, эпистаз, комплементарность. Поговорим о них подробней.

Пример наследования слуха у человека является иллюстрацией такого типа взаимодействия, как комплементарность. Слух контролируется двумя парами различных генов. Первая отвечает за нормальное развитие улитки внутреннего уха, а вторая - за функционирование слухового нерва. В браке глухих родителей, каждый из которых является рецессивной гомозиготой по каждой одной из двух пар генов, рождаются дети с нормальным слухом. В их генотипе присутствуют оба доминантных гена, контролирующих нормальное развитие слухового аппарата.

Плейотропия

Это интересный случай взаимодействия генов, при котором от одного гена, присутствующего в генотипе, зависит фенотипическое проявление сразу нескольких признаков. Например, на западе Пакистана обнаружены человеческие популяции некоторых представителей. У них отсутствуют потовые железы на определенных участках тела. Одновременно у таких людей диагностировали отсутствие некоторых коренных зубов. Они не смогли сформироваться в процессе онтогенеза.

У животных, например, каракульских овец, присутствует доминантный ген W, который контролирует как окраску меха, так и нормальное развитие желудка. Рассмотрим, как наследуется ген W при скрещивании двух гетерозиготных особей. Оказывается, что в их потомстве ¼ ягнят, имеющих генотип WW, погибает из-за аномалий в развитии желудка. При этом ½ (имеющие серый мех) гетерозиготные и жизнеспособные, а ¼ - это особи с черным мехом и нормальным развитием желудка (их генотип WW).


Генотип - целостная система

Множественное действие генов, полигибридное скрещивание, явление сцепленного наследования служат неоспоримым доказательством того факта, что совокупность генов нашего организма является целостной системой, хотя и представлена индивидуальными аллелями генов. Они могут наследоваться по законам Менделя, независимо или локусами, сцеплено подчиняясь постулатам теории Моргана. Рассматривая правила, отвечающие за то, как решать задачи по генетике, мы убедились, что фенотип любого организма формируется под воздействием как аллельных, так и влияющих на развитие одного или нескольких признаков.

Инструкция

Для решения генетических задач используют определенные типы исследования. Метод гибридологического анализа был разработан Г. Менделем. Он позволяет выявить закономерности наследования отдельных признаков при половом размножении организмов . Сущность данного метода проста: при анализе определенных альтернативных признаков прослеживается передача их в потомстве. Также проводиться точный учет проявления каждого альтернативного признака и характер каждой отдельной особи потомства.

Основные закономерности наследования также были разработаны Менделем. Ученый вывел три закона. В последствии их так и назвали - законы Менделя. Первый - это закон единообразия гибридов первого поколения . Возьмите две гетерозиготные особи. При скрещивании они дадут два вида гамет. Потомство у таких родителей появиться в соотношении 1:2:1.

Второй закон Менделя - это закон расщепления. в основе его утверждение , что доминантный ген не всегда подавляет рецессивный. В этом случае не все особи среди первого поколения воспроизводят признаки родителей - появляется так называемый промежуточный характер наследования. Например, при скрещивании гомозиготных растений с красными цветками (АА) и белыми цветками (аа) получается потомство с розовыми. Неполное доминирование довольно распространенное явление . Оно встречается и в некоторых биохимических признаках человека .

Третий закон и последний - закон независимого комбинирования признаков. Для проявления этого закона необходимо соблюдение нескольких условий: не должно быть летальных генов, доминирование должно быть полным, гены должны находиться в разных хромосомах.

Особняком стоят задачи по генетике пола. Различают два вида половых хромосом: Х-хромосома (женская) и Y-хромосома (мужская). Пол, имеющий две одинаковые половые хромосомы, называют гомогаметным. Пол, определяемый различными хромосомами, называется гетерогаметным. Пол будущей особи определяется в момент оплодотворения. В половых хромосомах, помимо генов, несущих информацию о поле, содержатся и другие, не имеющие никакого отношения к этому. Например, ген, отвечающий за свертываемость крови, несет женская Х-хромосома. Сцепленные с полом признаки передаются от матери к сыновьям и дочерям, от отца же - только к дочерям.

Видео по теме

Источники:

  • решение задач по биологии генетика
  • на дигибридное скрещивание и на наследование признаков

Все задачи по биологии делятся на задачи по молекулярной биологии и задачи по генетике. В молекулярной биологии есть несколько тем, в которых есть задачи : белки, нуклеиновые кислоты, код ДНК и энергетический обмен.



Инструкция

Решайте задачи по теме «Белки» с помощью следующей формулы: m(min) = a/b*100%, где m(min) - минимальная молекулярная масса белка , a – атомная или молекулярная масса компонента, b – процентное содержание компонента. Средняя молекулярная масса одного кислотного остатка равна 120.

Вычисляйте необходимые величины по теме «Нуклеиновые кислоты», придерживаясь правил Чаргаффа:1.Количество аденина равно количеству тимина, а гуанина – цитозину;
2.Количество пуриновых оснований равно количеству пиримидиновых оснований, т.е. А+Г = Т+Ц.В цепи молекулы ДНК расстояние между нуклеотидами равно 0,34 нм. Относительная молекулярного масса одного нуклеотида равна 345.

Задачи на тему «Код ДНК» решайте с помощью специальной таблицы генетических кодов. Благодаря ей вы узнаете, какую кислоту кодирует тот или иной генетический код.

Вычисляйте нужный вам ответ для задач на тему «Энергетический обмен» по уравнению реакции. Одним из часто встречающихся является: С6Н12О6 + 6О2 → 6СО2 + 6Н2О.

Для успешного решения задачи вам необходимо понять, к какому разделу она относится : моногибридное, дигибридное или полигибридное скрещивание, наследование, сцепленное с полом либо признак наследуется при взаимодействии генов. Для этого посчитайте, какое расщепление генотипа или фенотипа наблюдается в потомстве в первом поколении. В условии может быть указано точное количество особей с каждым генотипом либо фенотипом, либо процент каждого генотипа (фенотипа) от общего числа . Эти данные нужно привести к простым числам .

Обратите внимание, не различается ли у потомства признаки в зависимости от пола.

Каждому типу скрещивания характерно свое особое расщепление по генотипу и фенотипу. Все эти данные содержатся в учебнике, и вам будет удобно выписать эти формулы на отдельный листок и использовать их при решении задач.

Теперь, когда вы обнаружили расщепление, по принципу которого идет передача наследственных признаков в вашей задаче, вы можете узнать генотипы и фенотипы всех особей в потомстве, а также генотипы и фенотипы родителей, участвовавших в скрещивании.

Изучение генетики сопровождается решением задач. Они наглядно показывают действие закона наследования генов. Большинству учащихся решение этих задач кажется невероятно сложным. Но, зная алгоритм решения, вы легко справитесь с ними.

Инструкция

Можно выделить два основных типа генетических задач . В первом типе задач известны генотипы родителей. Определить необходимо генотипы потомков. Сначала определите, какой аллель является доминантным. Найдите рецессивный аллель. Запишите генотипы родителей. Выпишите все возможные типы гамет. Соедините гаметы . Определите расщепление.

В задачах второго типа все наоборот. Здесь известно расщепление в потомстве. Требуется определить генотипы родителей. Найдите так же, как и в задачах первого типа, какой из аллелей является доминантным, какой - рецессивным. Определите возможные типы гамет. По ним определите генотипы родителей.

Чтобы решить задачу правильно, прочтите её внимательно и проанализируйте условие. Чтобы определить тип задачи, выясните, сколько пар признаков рассматривается в задаче. Обратите внимание также на то, сколько пар генов контролируют развитие признаков. Важно выяснить, гомозиготные или гетерозиготные организмы скрещиваются, каков тип скрещивания. Определите, независимо или сцеплено наследуются гены, сколько генотипов образуется в потомстве и связано ли наследование с полом.

Приступите к решению задачи. Сделайте краткую запись условия. Запишите генотип или фенотип особей, участвующих в скрещивании. Определите и отметьте типы образовавшихся гамет. Запишите генотипы или фенотипы потомства, полученного от скрещивания. Проанализируйте результаты, запишите их в численном соотношении. Напишите ответ.

Помните, что каждому типу скрещивания соответствует особое расщепление по генотипу и фенотипу. Все эти данные можно найти в учебниках или других пособиях. Выпишите все формулы на отдельный лист и держите его всегда под рукой. Также вы можете воспользоваться специальными таблицами для решения задач по генетике .

Источники:

  • Решение задач по генетике с помощью таблиц

Со вкусом оформленный школьный кабинет повышает уровень интереса учащихся к изучаемому предмету, создает уютную учебную атмосферу. Как оформить кабинет биологии таким образом, чтобы учащиеся с удовольствием приходили в него на уроки, а учителю было комфортно преподавать в этом помещении?



Инструкция

Оформите тематические стенды на одной из боковых стен кабинета. Они могут носить названия: «Эволюция Земли», «Строение клетки», «Сохраним для потомков и т.п. Некоторые стенды могут быть снабжены сменными панелями. Сделайте стенд с работами учащихся: рефератами, докладами, рисунками, интересными фотографиями природы и т.п. Используйте переносной стенд с дополнительной литературой по предмету с целью повышения интереса учащихся к биологии .

Создайте живой уголок в кабинете биологии: разместите в нем аквариум с рыбками, поселите хомячков или черепаху; можно ограничиться и одним аквариумом.

Храните наглядные пособия, используемые как средства обучения на уроках биологии (коллекции, гербарии, модели, и т.д.) на полках шкафов или на отдельных подвесных полочках. Таблицы и наиболее хрупкие и ценные материалы (приборы, модели, влажные препараты и т.п.) лучше хранить в закрытых тумбочках.

Выберите общее цветовое решение кабинета в соответствии с натуральными природными красками. Например, стены и шторы можно сделать в различных оттенках зеленого цвета , панели окрасить в бежевый цвет, который будет перекликаться с цветом мебели.

Нарисуйте на потолке кабинета природный орнамент с большими разноцветными кругами (например, цветы), который можно будет использовать во время физкультминуток для тренировки глаз.

Полезный совет

Поощряйте учащихся, стремящихся украсить кабинет биологии своими поделками, рисунками и т.п., развивайте у них чувство вкуса и любви к природе.

Источники:

  • оформление кабинета биологии

Г. Мендель в своих генетических опытах использовал гибридологический метод. Он скрещивал растения гороха, отличающиеся по одному или нескольким признакам. Затем ученый анализировал характер проявления признаков у потомства.



Инструкция

Чистые линии – это сорта растений , имеющих некоторый постоянный признак, например, желтый или зеленый цвет семян. Моногибридное скрещивание скрещивание двух чистых линий растений, отличающихся только по одному признаку. При дигибридном скрещивании берутся особи, у которых учитывают отличия по двум признакам.

Пусть, например, имеется чистая линия гороха с желтыми гладкими семенами , и линия с зелеными и морщинистыми. Признаки определяются парами