Причины и патогенез наследственных болезней. Роль наследственности в патологии

Дисциплина: «Патофизиология»
Автор: Герасимова Людмила Ивановна,
к.м.н., доцент
:
Роль наследственности
в патологии
Этиология и патогенез
наследственных болезней

Ключевые понятия темы

Наследственность
Генотип, фенотип
Мутации, мутагенные факторы
Наследственные болезни
2007
аутосомно-доминантные,
аутосомно-рецессивные,
сцепленные с полом
Хромосомные болезни
Врождённые болезни, фенокопии
Диагностика, лечение и профилактика
наследственных заболеваний человека
Copyright L. Gerasimova
2

Происхождение болезней

Врождённые
Болезни, проявляющиеся, в основном,
при рождении
Наследственные
Приобретённые
Болезни, возникающие
в постнатальном периоде
Ненаследственные
Связаны с перестройкой Являются результатом
наследственного
воздействий патогенных
материала
факторов на организм в
Генно-молекулярные
антенатальный
болезни
и перинатальный
Хромосомные болезни
периоды развития
(врожденный сифилис,
токсоплазмоз, СПИД,
гемолитическая болезнь
новорожденного и др.)
2007
Copyright L. Gerasimova
3

Наследственность – свойство организмов сохранять и обеспечивать передачу наследственных признаков потомкам, а также

программировать особенности их
индивидуального развития в конкретных условиях среды.
Нормальные и патологические признаки организма являются
результатом взаимодействия наследственных (внутренних) и
средовых (внешних) факторов.
2007
Copyright L. Gerasimova
4

Генотип – совокупность всех генов в организме

стабильность
изменчивость
Основа стабильности генотипа:
дублированность (диплоидность) его структурных
элементов;
доминирование нормального аллеля над
патологическим рецессивным геном, благодаря чему
огромное количество заболеваний, передающихся по
рецессивному типу, не проявляется в гетерозиготном
организме;
система оперона, обеспечивающая репрессию
(блокирование) патологического гена (например,
онкогена);
механизмы репарации ДНК, позволяющие с помощью
набора ферментов (инсертаза, экзо- и эндонуклеаза,
ДНК-полимераза, лигаза) быстро исправлять
возникающие в ней повреждения.
2007
Copyright L. Gerasimova
5

Изменчивость
Генотипическая
(наследуемая)
Фенотипическая
(ненаследуемая)
Фенокопии
Соматическая
соматических клетках)
Наследуемый признак – результат
мутаций – устойчивое изменение
генетического материала
Результат случайной
перекомбинации аллелей
независимое расхождение
хромосом при мейозе
кроссинговер
случайная встреча гамет
2007
Copyright L. Gerasimova
Генеративная
(в половых клетках)
Мутационная
Комбинативная
6

Мутация - это главная причина возникновения наследственного заболевания.

Мутации – количественные или
качественные изменения генотипа,
передающихся в процессе репликации
генома от клетки к клетке,
из поколения в поколение.
2007
Copyright L. Gerasimova
7

Причины мутаций

Спонтанные мутации
Индуцированные мутации
Мутагенные факторы – мутагены
Экзогенные
Эндогенные
2007
Ионизирующие излучения, УФЛ, электромагнитные поля,
температурный фактор
Химические вещества (окислители: нитраты, нитриты,
активные формы кислорода; производные фенола,
алкилирующие вещества, пестициды, ПАУ …)
Вирусы
и др.
Антимутагенные факторы
Возраст родителей
Хронический стресс
Гормональные нарушения
Вит. С, А, Е, фолиевая кислота
Антиоксиданты (ионол, соли селена …)
Ферменты (пероксидаза, НАДФоксидаза, глутатион-пероксидаза,
каталаза...)
Аминокислоты (аргинин, гистидин,
метионин цистамин …)
Copyright L. Gerasimova
8

Генные мутации
изменение структуры гена –
выпадение, замена или вставка
новых нуклеотидов в цепи ДНК
«точечные» мутации
изменение рамки считывания ДНК
2007
Copyright L. Gerasimova
9

Делеция
Транслокация
Хромосомные
мутации
Структурные перестройки хромосом:
делеции,
дупликации,
транслокации,
инверсии.
Делеция короткого плеча
хромосомы 5 – с-м кошачего крика
Трисомия короткого плеча хромосомы 9
– микроцефалия, умственная
отсталость, ВПР
Инверсия
Транслокация Робертсона
Ломкая Х-хромосома
с-м Мартина-Белла
2007
Copyright L. Gerasimova
10

Геномные мутации
изменение числа хромосом
Результат комбинативной изменчивости
Нарушение мейоза
Неправильное расхождение хромосом
в мейозе
полиплоидии -
кратное увеличение полного набора хромосом
Триплоидия
Тетраплоидия
У человека – несовместимы с жизнью –
спонтанный аборт.
анеуплоидии -
изменение числа хромосом в одной или
нескольких парах
Моносомия
С-м Шерешевского-Тернера (ХО)
Трисомия
2007
С-м Дауна – 21 пара
С-м Эдвардса – 18 пара
С-м Патау – 13 пара
Трисомия Х
С-м Клайнфельтера – XXY
Copyright L. Gerasimova
11

Общий патогенез генно-молекулярных болезней

Ген
Локализация
гена
Белок
(структурный б.
или фермент)
Признак
Аутосомы
Половые хромосомы
(Х-хромосома)
доминантный
Аутосомно-доминантные
Сцепленные с Х-хромосомой
доминантные
рецессивный
Аутосомно-рецессивные
Сцепленные с Х-хромосомой
рецессивные
Тип
наследования
2007
Copyright L. Gerasimova
12

Ген локализован в аутосоме
Генотип: гомо- и гетерозигота
Не зависят от пола
«Вертикальный» характер распределения болезни
Здоровые лица не передают заболевания
последующим поколениям
Не ограничивают репродуктивные возможности
Родители
Возможный
2007
генотип детей
Copyright L. Gerasimova
Больные – гетерозиготы
13

Аутосомно-доминантные болезни

Ахондроплазия
Б-нь Геттингтона
Врожденная телеангиоэктазия (с-м Ослера-Вебера-Рандю)
Дефицит антитромбина
Наследственный сфероцитоз
Нейрофиброматоз
Непереносимость лактозы
Несовершенный остеогенез
Поликистоз почек
Прогрессирующая оссифицирующая фибродисплазия
Семейная гиперхолестеринемия
Семейный полипоз кишечника
С-м Марфана
С-м Шарко-Мари-Тутта
Челюстно-лицевой дизостоз
2007
Copyright L. Gerasimova
Арахнодактилия Брахидактилия Полидактилия Синдактилия
14

Ген локализован в аутосоме
Генотип: гомозигота
Не зависят от пола
«Горизонтальный» характер распределения
болезни
Здоровые лица (гетерозиготы) передают
заболевания последующим поколениям
Сокращают продолжительность жизни,
ограничивают репродуктивные
возможности
«носитель»
- отец
Гомозиготы – больные
Гетерозиготы – носители
2007
Copyright L. Gerasimova
15

Аутосомно-рецессивные болезни
Адрено-генитальный синдром
Альбинизм
Анемия Фанкони
Атаксия Фредериксена
Болезнь Вильсона-Коновалова
Галактоземия
Гемохроматоз
Гликигенозы
Гомоцистинурия
Дефицит альфа-1-антитрипсина

(гемолитическая анемия)
Муковисцидоз (кистозный фиброз)
Мукополисахаридозы
Пигментная ксеродерма
Семейная средиземноморская лихорадка
Синдром Ротора (желтуха)
С-м Дабина-Джонсона
Спинальные мышечные атрофии
Талассемия
Фенилкетонурия
2007
Муковисцидоз
Дефект CFTR → повышенная вязкость
секрета → обтурация протоков желёз
→ кистозно-фиброзное перерождение
Copyright L. Gerasimova
16

Аутосомно-рецессивные болезни

Фенилкетонурия
(фенилпировироградная олигофрения)
Фенилаланин
Накопление
фенилпировиноградной
кислоты → интоксикация
Нарушение образования
катехоламинов →
снижение функции ЦНС →
олигофрения
Волосы новорождённого
с фенилкетонурией
2007
Copyright L. Gerasimova
Нарушение синтеза
меланина →
депигментация
17

Х-сцепленные болезни

Агаммаглобулинемия
Адренолейкодистрофия
Гемофилия
Дальтонизм
Дефицит глюкозо-6-фосфатдегидрогеназы
(гемолитическая анемия)
Ихтиоз
Ломкая Х-хромосома
Мышечная дистрофия Беккера
Мышечная дистрофия Дюшенна
Нечувствительность к андрогенам
С-м Вискотта-Олдрича
2007
Copyright L. Gerasimova
здоровый
больной
носитель
18

Хромосомные болезни

Возраст
матери
15 - 19
20 - 24
25 - 29
30 - 34
35 - 39
40 - 44
45 - 49
1:1600
1:1400
1:1100
1:700
1:240
1:70
1:20
Болезнь Дауна
2007
Трисомия
13
1:17000
1:33000
1:14000
1:25000
1:11000
1:20000
1:7100
1:14000
1:2400
1:4800
1:700
1:1600
1:650
1:1500
Широкое лицо
Увеличенный язык
Эпикант
Раскосые глаза
Плоская переносица
Короткая, широкая ладонь,
с единственной поперечной складкой
Мизинец укорочен и загнут внутрь
Отставание физического развития
Умственная отсталость
Пороки сердца, ЖКТ, почек
Иммунодефицит
С-м Дауна Трисомия 18
Copyright L. Gerasimova
поперечная
складка
19

Хромосомные болезни
Синдром Клайнфельтера (47 XXY, 48 XXXY)
Высокий рост
Телосложение по женскому
типу
Гипоплазия яичек
Евнухоидизм
Нарушение сперматогенеза
Гинекомастия
Склонность к ожирению
Психические нарушения
Умственная отсталость
2007
Copyright L. Gerasimova
20

Хромосомные болезни
Синдром Шерешевского-Тернера (45 XO)
Низкий рост, нарушение
окостенения скелета
(кифоз, сколиоз…)
Дисгенезия гонад
(недоразвитие вторичных
половых признаков,
бесплодие)
Внешний вид старше паспортного возраста
Крыловидная складка на шее
Низкий рост волос
Деформированные ушные раковины
Широкое расположение сосков
Множественные родимые пятна на коже
Умственная отсталость (редко)
2007
Copyright L. Gerasimova
21

Врождённые болезни

Фетальный
алкогольный синдром
Талидомидовый
синдром
2007
Copyright L. Gerasimova
22

Диагностика врождённых и наследственных заболеваний

Клинико-синдромологический
метод
Генеалогический метод
Цито-генетический метод
Кариотип
половой хроматин
(количество Х-хромосом)
Биохимический метод
Молекулярная диагностика
(анализ ДНК)
2007
Copyright L. Gerasimova
23

Профилактика врождённых и наследственных заболеваний

2007
Исключение действия мутагенов
(в т.ч. лекарственных)
Медико-генетическое консультирование
– определение риска
Пренатальная диагностика
УЗИ
Биопсия хориона
Амниоцентез
α-фетопротеин

Copyright L. Gerasimova
24

Лечение врождённых и наследственных
заболеваний
Этиотропное – генная инженерия
Патогенетическое
Заместительная терапия
гормоны при их недостатке
(инсулин, АДГ…)
криоглобулин при гемофилии
Ig при агаммаглобулинемии

Исключение веществ при нарушении
их метаболизма
(фенилаланина при ФКУ, лактозы при
непереносимости лактозы)
Симптоматическое
2007
Copyright L. Gerasimova

Отдельные гены, хромосомы и геном в целом постоянно претерпевают разнообразные изменения. Хотя существуют механизмы репарации (восстановления) ДНК, часть повреждений и ошибок сохраняется. Изменения в последовательности и числе нуклеотидов в ДНК обозначают как мутации.

IМутации - инициальное звено патогенеза наследственных заболеваний.

В широком смысле термином «мутация» обозначают любые изменения генетического материала (пара нуклеотидов, ген, аллели, хромосомы, ядерный и митохондриальный геном). В узком значении термин «мутация» соотносят с изменениями на уровне гена, то есть генные мутации. Мутагены - причины мутаций - факторы химической, физической или биологической природы. Мутагенез (мутационный процесс) - изменения, приводящие к возникновению мутаций. Различают генные, хромосомные и геномные мутации.

Мутации обнаруживают как в соматических клетках (фенотипически проявляются только в мутировавшей клетке или её потомстве), так и в половых клетках. Последние потенциально могут быть переданы по наследству и проявляться в фенотипе потомства, в том числе и в виде наследственных заболеваний.

Этиология и патогенез наследственных болезней

Генные мутации

♦ По характеру изменений гена различают делеции, дупликации, инверсии, вставки, транзиции, миссенс- и нонсенс-мутации.

♦ По последствиям генных мутаций их классифицируют на нейтральные, регуляторные и динамические.

Хромосомные мутации (аберрации) характеризуются изменением структуры отдельных хромосом. Последовательность нуклеотидов в генах обычно не меняется, но изменение числа или положения генов при аберрациях может привести к генетическому дисбалансу.

Различают внутрихромосомные, межхромосомные и изохромосомные аберрации.

Изменения генома. Геномные мутации характеризуются изменением числа отдельных хромосом (моносомии и полисомии) или их гаплоидного набора (анеуплоидии и полиплоидии).

Мутагены классифицируют по происхождению (источнику) на эндогенные и экзогенные, а по природе на физические, химические и биологические.

Экзогенные мутагены. К ним относятся многочисленные факторы внешней среды (например, радиационное излучение, алкилирующие агенты, окислители, многие вирусы).

Эндогенные мутагены образуются при жизнедеятельности организма (например, свободные радикалы).

Физические мутагены - ионизирующее излучение и температурный фактор.

Химические мутагены - сильные окислители или восстановители (например, нитраты, нитриты, активные формы кислорода), алкилирующие агенты, пестициды (например, гербициды, фунгициды); некоторые пищевые добавки (например, ароматические углеводороды, цикламаты), продукты переработки нефти, органические растворители, лекарственные средства (например, цитостатики, содержащие ртуть средства, иммунодепрессанты).

Биологические мутагены - вирусы (например, кори, краснухи, гриппа и др.); Аг некоторых микроорганизмов, транспозоны, онкогены.

Частота мутаций. Средняя частота возникновения мутаций в структурных локусах оценена в пределах от 10 -5 до 10 -6 на одну гамету за каждое поколение. Весь геном содержит 3х10 9 пар оснований, около 23 тыс. генов. Следовательно, каждое последующее поколение приобретает несколько десятков мутаций. В Каталоге наследственных заболеваний человека OMIM перечислено около 7000 моногенных болезней (вызываемых мутациями конкретного гена). Для значительного числа пора- жённых генов идентифицированы разные аллели, количество которых для некоторых болезней достигает десятков и сотен.

Наследственные формы патологии

Для наследственных форм патологии приняты определения, перечисленные ниже.

Наследственные - болезни, причиной которых является генная, хромосомная или геномная мутация. Они, как правило (но не всегда) передаются от родителей потомкам.

Генные - болезни, вызываемые генными мутациями.

Хромосомные - болезни, возникающие вследствие хромосомных

и геномных мутаций.

Болезни с наследственной предрасположенностью (мультифактори-

альные, многофакторные) - болезни, развивающиеся в результате взаимодействия определённых комбинаций аллелей разных локусов и воздействий факторов окружающей среды.

Генетические болезни соматических клеток: злокачественные ново-

образования (изменения в генетическом материале являются этиологическими для злокачественного роста) и врождённые пороки, развившиеся вследствие мутаций.

Семейные - болезни, наблюдающиеся у двух и более членов семьи в одном или нескольких поколениях. Термин применяют для нозологических единиц, когда с высокой степенью вероятности подозревают их наследуемую природу, но наличие генетического дефекта не установлено.

Врождённые - болезни, проявившиеся при рождении (они могут

быть наследственными и ненаследственными).

Врождённый порок развития - морфологический дефект органа, части его или большой области тела, возникший в результате нарушенного органогенеза. Врождённые пороки развития могут быть наследственными и приобретёнными (под действием тератогенов во внутриутробном периоде).

ГЕННЫЕ БОЛЕЗНИ

Типы наследования. Для любого моногенного заболевания существенной характеристикой является тип наследования: аутосомно-доминант- ный, аутосомно-рецессивный, сцепленный с хромосомой X (доминантный и рецессивный), голандрический (сцепленный с хромосомой Y) и митохондриальный.

♦ При заболеваниях с рецессивным типом наследования фенотип гетерозиготы может не отличаться от нормы (т.е. иметь слабые проявления заболевания или не иметь их).

♦ При заболеваниях с доминантным типом наследования пациенты в гетерозиготном состоянии имеют практически ту же клиническую картину, что и в гомозиготном состоянии, но проявления болезни у гомозигот тяжелее.

Аутосомно-доминантный тип наследования

Примеры: синдром Марфана, гемоглобиноз M, хорея Хантингтона, полипоз толстой кишки, семейная гиперхолестеринемия, нейрофиброматоз, полидактилия. Родословная с аутосомно-доминантным типом наследования (синдром Марфана в 5 поколениях) представлена на рис. 3-1А.

Рис. 3-1. Родословные с разными типами наследования заболеваний. А - аутосомно-доминантный; Б - аутосомно-рецессивный; В - доминантный Х-сцепленный; Г - рецессивный Х-сцепленный. Римские цифры - поколения. Кружок - пол женский, квадрат - пол мужской, тёмный кружок или квадрат - больной, наискось перечёркнутый тёмный кружок или квадрат - умерший больной. Стрелкой указан пробанд - больной или носитель изучаемого признака.

Особенности наследования: ❖ один из родителей пациента, как правило, болен; ❖ выраженность и количество проявлений зависят от действия факторов среды; ❖ частота патологии у лиц мужского и женского пола одинакова; ❖ в каждом поколении имеются больные (так называемый вертикальный характер распределения болезни); ❖ вероятность рождения больного ребёнка равна 50% (независимо от пола ребёнка и количества родов); ❖ непоражённые члены семьи, как правило, имеют здоровых потомков (поскольку не имеют мутантного гена).

Аутосомно-рецессивный тип наследования

Примеры: фенилкетонурия, адреногенитальный синдром, кожно-глазной альбинизм, галактоземия, гликогенозы, гиперлипопротеинемии, муковисцидоз. Родословная с аутосомно-рецессивным типом наследования (муковисцидоз в 4 поколениях) представлена на рис. 3-1Б. Особенности наследования: ❖ родители больного, как правило, здоровы; заболевание может обнаруживаться у других родственников (например, у двоюродных или троюродных братьев/сестёр больного);

❖ однообразные проявления болезни (в связи с высокой пенетрантностью); ❖ симптомы болезни обычно выявляются уже в детском возрасте; ❖ частота патологии у лиц мужского и женского пола равная; ❖ в родословной патология проявляется по горизонтали, часто у сибсов; ❖ заболевание отсутствует у единокровных (дети одного отца от разных матерей) и единоутробных (дети одной матери от разных отцов) братьев и сестёр; ❖ появление аутосомно-рецессивной патологии более вероятно при кровнородственных браках за счёт большей вероятности встречи двух супругов, гетерозиготных по одному и тому же патологическому аллелю, полученному от их общего предка.

Сцепленное с хромосомой X доминантное наследование

Примеры: одна из форм гипофосфатемии - витамин D-резистент- ный рахит, болезнь Шарко-Мари-Тута X-сцепленная доминантная, рото-лице-пальцевой синдром типа I. Родословная с доминантным X-сцепленным типом наследования витамин D-резистентного рахита в четырёх поколениях представлена на рис. 3-1В. Особенности наследования: ❖ поражение лиц мужского и женского пола;

❖ у мужчин более тяжёлое течение заболевания; ❖ передача больным мужчиной патологического аллеля только дочерям, но не сыновьям (сыновья получают от отца хромосому Y); ❖ передача больной женщиной заболевания и сыновьям, и дочерям с равной вероятностью.

Сцепленное с хромосомой X рецессивное наследование

Примеры заболеваний: гемофилия A, гемофилия B, дальтонизм, мышечная дистрофия Дюшенна-Беккера, болезнь Хантера (мукопо-

лисахаридоз типа II), гипогаммаглобулинемия брутоновского типа. Родословная с рецессивным X-сцепленным типом наследования (гемофилия A в 4 поколениях) представлена на рис. 3-1Г. Признаки заболевания: ❖ больные рождаются в браке фенотипически здоровых родителей; ❖ заболевание наблюдается исключительно у лиц мужского пола; ❖ матери больных - облигатные носительницы патологического гена; ❖ сын никогда не наследует заболевание от отца;

❖ у носительницы мутантного гена вероятность рождения больного ребёнка равна 25% (50% родившихся мальчиков - больные).

Голандрический, или сцепленный с хромосомой Y, тип наследования

Примеры: гипертрихоз ушных раковин, избыточный рост волос на средних фалангах пальцев кистей, азооспермия.

Особенности наследования: ❖ передача признака от отца всем сыновьям (только сыновьям, дочери никогда не наследуют признак от отца);

❖ «вертикальный» характер наследования признака; ❖ вероятность наследования для лиц мужского пола равна 100%;

Митохондриальное наследование

Примеры заболеваний («митохондриальные болезни»): атрофия зрительного нерва Лебера, синдромы Лея (митохондриальная миоэнцефалопатия), MERRF (миоклоническая эпилепсия), кардиомиопатия дилатационная семейная.

Особенности наследования: ❖ наличие патологии у всех детей больной матери; ❖ рождение здоровых детей у больного отца и здоровой матери (объясняется тем, что митохондриальные гены наследуются от матери).

ХРОМОСОМНЫЕ БОЛЕЗНИ

Хромосомные болезни выявляются у новорождённых с частотой около 6:1000. Инициальное звено патогенеза - геномная или хромосомная мутация. Тяжесть нарушений обычно прямо коррелирует со степенью хромосомного дисбаланса: чем больше хромосомного материала вовлечено в аберрацию, тем раньше проявляется хромосомный дисбаланс в онтогенезе и тем значительнее нарушения физического и психического развития индивида.

Особенности: ❖ большинство геномных мутаций (полиплоидии, трисомии по крупным хромосомам [рис. 3-2], моносомии по аутосомам) летальны; ❖ мутации в гаметах приводят к развитию так называемых полных форм хромосомных болезней, когда изменения кариотипа выявляются во всех клетках организма; ❖ мутации в соматических клетках на ранних этапах эмбриогенеза приводят к развитию мозаи-

Рис. 3-2. Характеристика наиболее частых аутосомных трисомий [по 4].

цизма: часть клеток организма имеет нормальный кариотип, а другая часть - аномальный.

Аномалии половых хромосом. Нарушение расхождения половых хромосом приводит к образованию аномальных гамет: у женщин - XX и 0 (в последнем случае гамета не содержит половых хромосом); у мужчин - XY и 0. При слиянии половых клеток в подобных случаях возникают количественные нарушения половых хромосом. При болезнях, вызванных дефицитом или избытком Х хромосом, нередко наблюдается мозаицизм.

Синдром Кляйнфелтера: Частота: 2-2,5 на 1000 новорождённых мальчиков. ❖ Кариотип: разнообразные цитогенетические варианты (47,XXY; 48,XXXY; 49,XXXXY и др.), но чаще встречается вариант 47,XXY. ❖ Проявления: высокий рост, непропорционально длинные конечности, отложение жира по женскому типу, евнухоидное телосложение, скудное оволосение, гинекомастия, гипогенитализм, бесплодие (в результате нарушения сперматогенеза, снижения продукции тестостерона и увеличения продукции женских половых гормонов), снижение интеллекта (чем больше в кариотипе добавочных хромосом, тем более выражено). ❖ Лечение мужскими половыми гормонами направлено на коррекцию вторичных половых признаков, но и после терапии больные остаются бесплодными.

Трисомия X - наиболее частый синдром из группы полисомий X; частота 1:1000 новорождённых девочек, кариотип 47,XXX; пол -

женский, фенотип женский; как правило, физическое и психическое развитие у женщин с этим синдромом не имеет отклонений от нормы.

Синдром Шерешевского-Тёрнера. Частота синдрома: 1:3000 но- ворождённых девочек ❖ Кариотип: 45,Х0, но встречаются и другие варианты. ❖ Проявления: низкий рост, короткая шея с избытком кожи или крыловидной складкой, широкая, часто деформированная грудная клетка, деформация локтевых суставов, недоразвитие первичных и вторичных половых признаков, бесплодие. ❖ Раннее лечение женскими половыми гормонами может оказаться эффективным.

БОЛЕЗНИ С НАСЛЕДСТВЕННЫМ ПРЕДРАСПОЛОЖЕНИЕМ

Болезни с наследственным предрасположением называют также многофакторными (мультифакториальными), так как их возникновение определяется взаимодействием наследственных факторов и факторов внешней среды. К болезням с наследственным предрасположением относятся ишемическая болезнь сердца (ИБС), гипертоническая болезнь, бронхиальная астма, психические заболевания, СД, ревматические болезни, язвенная болезнь желудка, врождённые пороки развития (ВПР) и многие другие. Болезни с наследственным предрасположением классифицируют - в зависимости от числа генов, определяющих предрасположенность, - на моногенные и полигенные.

Моногенные болезни с наследственным предрасположением детерминируются одним мутантным геном и возникают при действии конкретного и обязательного фактора внешней среды. Пример - непереносимость лактозы: при мутантной форме гена лактазы употребление молока приводит к развитию кишечного дискомфорта и поноса.

Полигенные болезни. Предрасположенность к развитию полигенных болезней детерминируется взаимодействием нормальных и изменён- ных (мутировавших) генов, хотя каждый из них по отдельности не приводит к развитию заболевания. Индивид с такой комбинацией генов под действием определённого фактора окружающей среды достигает «порога возникновения» болезни и заболевает.

Характеристика многофакторных болезней: ❖ наследование не отвечает менделевским закономерностям; ❖ патогенез зависит от «удельного вклада» генетических и средовых факторов; эта зависимость различна как для разных заболеваний, так и для каждого человека; ❖ характерно наличие большого числа клинических вариантов; ❖ наблюдается более высокая конкордантность по заболеванию у монозиготных близнецов в сравнении с дизиготными.

Врождённые пороки развития

Аномалии развития (в том числе врождённые пороки - ВПР) и их причины изучает тератология. Распространённость ВПР составляет 2-3% от общего количества родившихся живыми детей.

Типы ВПР. В зависимости от времени воздействия повреждающих факторов выделяют гаметопатии, бластопатии, эмбриопатии и фетопатии.

Гаметопатии - результат воздействия на половые клетки (в основе лежат мутации в половых клетках).

Бластопатии - следствие поражения бластоцисты - зародыша первых 15 сут после оплодотворения (до завершения формирования зародышевых листков). Результатом бластопатий являются двойниковые пороки (сросшиеся близнецы), циклопия (наличие одного или двух слившихся глазных яблок в единственной орбите по срединной линии лица).

Эмбриопатии - результат воздействия тератогенного фактора на эмбрион в период с 16-го дня до 8 недели беременности. К этой группе относятся талидомидные, диабетические, алкогольные и некоторые медикаментозные эмбриопатии, а также ВПР, развившиеся под влиянием вируса краснухи.

Фетопатии - следствие повреждения плода от 9-й недели до момента рождения. К фетопатиям относятся, например, крипторхизм, открытый боталлов проток или пренатальная гипоплазия какого-либо органа или плода в целом.

агенезия - полное отсутствие органа (например, тимуса, почки, глаз);

аплазия и гипоплазия - отсутствие или значительное недоразвитие органа при наличии его сосудистой ножки и нервов (например, одной почки, селезёнки, лёгкого, кишечника);

атрезия - полное отсутствие канала или естественного отверстия (например, атрезия наружного слухового прохода, пищевода, ануса);

гетеротопия - перемещение клеток, тканей или части органа в другую ткань (например, клеток поджелудочной железы в дивертикул Меккеля, хромаффинных клеток в ткань лёгких);

персистирование - сохранение эмбриональных структур, исчезающих в норме к определённому этапу развития (например, открытый артериальный проток у годовалого ребёнка, крипторхизм);

стеноз - сужение просвета отверстия или канала (например, клапанного отверстия сердца, привратника желудка, фрагмента кишечника);

удвоение (утроение) - увеличение числа органов или его части (например, удвоение матки, мочеточников);

эктопия - необычное расположение органа (например, почки в малом тазу, сердца - вне грудной клетки).

Уродства (как правило, дефекты морфогенеза) - наиболее тяжёлые проявления ВПР.

Дисплазии (мальформации, деформации, дизрупции) - морфологические врождённые изменения, выходящие за пределы общепринятой нормы.

Малые аномалии развития (стигмы дизэмбриогенеза: синдактилия, ямочки на щеках, аномалии ушных раковин, искривление мизинца и др.) - врождённые дефекты, не требующие косметической или медицинской коррекции.

Клинически значимые пороки развития - врождённые аномалии, требующие тех или иных форм медицинского вмешательства (квалифицированной диагностики, медицинской коррекции). Степень тяжести врождённого порока может быть различной: от малых аномалий (например, полидактилия) до очень тяжёлых системных поражений (гидроцефалия, болезнь Дауна).

ЭТИОЛОГИЯ И ПАТОГЕНЕЗ

На развитие организма оказывают влияние как генетические факторы, так и факторы окружающей среды. Факторы, приводящие к развитию ВПР, обозначают как тератогены. Большинство врождённых пороков обусловлено воздействием факторов внешней среды, генетическими дефектами или их сочетанием (табл. 3-1). В ряде случаев не удаётся установить причину врождённого дефекта (спорадические болезни).

Таблица 3-1. Причины врождённых аномалий

Тератогенные агенты

Ионизирующее излучение. Доза облучения и срок гестации определяют степень и характер аномалий плода. Так у детей, рождён- ных после атомных взрывов в Хиросиме и Нагасаки (внутриутробное облучение), наблюдали различные аномалии ЦНС и лейкозы. Однако, эти поражения возникали в случаях, когда плод подвергался облучению до 16 недель гестации, в период органогенеза; при облучении на более поздних сроках происходит задержка роста на фоне нормального умственного развития.

Стадия внутриутробного развития плода (рис. 3-3). Степень воздействия на эмбрион зависит от срока беременности на момент воздействия: ❖ 2-4 нед. после оплодотворения: плод либо развивается нормально, либо гибнет; ❖ 4-12 нед.: возникают микроцефалия, умственная отсталость, катаракта, задержка роста, микрофтальмия; ❖ 12-16 нед: развивается умственная отсталость или задержка роста; ❖ после 20 нед: повреждение волосяных фолликулов, поражение кожи и слизистых оболочек, угнетение красного костного мозга.

Доза: ❖ дозу облучения 5-10 рад считают нетератогенной; ❖ 10- 25 рад - возможно повреждающее действие на плод; ❖ более 25 рад - часто возникают структурные пороки развития, задержка роста и гибель плода. После воздействия такой дозы рекомендуют прерывание беременности (медицинский аборт).

Лекарственные препараты (ЛС). Американская Федеральная Комиссия по пищевым продуктам и ЛС (FDA) предложила все ЛС подразделять на 5 категорий:

A. ЛС совершенно безвредны для плода (например, витамины).

B. Опыты на животных не выявили тератогенности, но нет контрольных исследований на беременных. В эту категорию также входят ЛС, оказывающие повреждающее воздействие на животных, но не на человека (например, пенициллин, дигоксин, адреналин, тербуталин).

C. Исследования на животных показали или тератогенное, или эмбриотоксическое воздействие ЛС на плод, но исследования на людях не проводились. Эти ЛС можно применять только в тех случаях, когда польза от их применения перевешивает потенциальный риск для плода (фуросемид, гуанидин, верапамил).

D. Есть доказательства тератогенности ЛС. Однако, польза от его применения при определённых обстоятельствах превышает риск для плода (например, фенитоин).

X. Исследования на животных и людях выявили очевидную опасность для плода. ЛС этой категории противопоказаны беремен-

Рис. 3-3. Критические сроки развития возможных пороков развития по системам органов, [по 4].

ным или женщинам, желающим забеременеть (например, изотретиноин).

Алкоголь - один из наиболее распространённых тератогенов. Количество употребляемого алкоголя коррелирует со степенью вредного воздействия на плод. Выраженность поражения (сильная, слабая или её отсутствие) во многом зависит от генетической предрасположенности. В настоящее время нет данных о безопасной дозе потребления алкоголя во время беременности. В связи с этим рекомендован полный отказ от алкоголя во время беременности.

Наркотики:

Марихуана. У женщин, курящих марихуану во время беременности, повышена частота выкидышей и преждевременных родов.

Героин. Побочные продукты синтеза, встречающиеся в недостаточно очищенном героине, часто обладают выраженным тератогенным эффектом. Основное неблагоприятное действие на плод при употреблении героина состоит в развитии выраженного «синдрома отмены» у новорождённого, что в 3-5% случаев приводит к гибели ребёнка. Метадон (аналог героина) обладает такими же свойствами.

Фенилциклидин (ангельская пыль) иногда вызывает развитие дефектов лица у плода.

Кокаин. При употреблении беременной кокаина увеличивается риск развития врождённых аномалий, гибели плода и рождения детей с малой массой тела.

Гипертермия. Длительный подъём температуры (до 38,9 °С и выше) у женщины в период с 4 по 14 нед. беременности обладает большим тератогенным эффектом, чем кратковременные подъёмы до тех же цифр.

Вещества, загрязняющие окружающую среду, можно рассматривать как тератогены, хотя изучение их влияния представляет большие трудности.

Вирус краснухи. При заражении краснухой на первом месяце беременности вероятность развития аномалий плода составляет 50%. Риск снижается до 22% при инфицировании на втором месяце и до 6-10% на третьем-четвёртом месяце беременности.

Цитомегаловирус поражает плод в 1-2% случаев всех беременностей. От 1 до 3 из 10 000 новорождённых страдает серьёзными пороками развития.

Вирус простого герпеса 2-го типа. Хотя герпетическая инфекция встречается довольно часто, её передача от больной беременной плоду происходит менее чем в 0,02% случаев. Ещё реже возникают пороки развития, возможно из-за того, что инфицирование плода в I триместре беременности обычно приводит к его гибели.

Токсоплазма. Количество детей с врождённым токсоплазмозом колеблется от 1 до 6 на 1 000 новорождённых. Внутриутробное заражение плода происходит у 30% инфицированных беременных.

Treponema pallidum способна проходить через плацентарный барьер на любом сроке беременности, но заражение плода редко происходит до 16-18 нед. гестации. Последствия внутриутробного инфицирования: преждевременные роды или выкидыш, гибель плода, смерть 50% заражённых новорождённых, врождённый сифилис.

Вирус ветряной оспы. Первичное инфицирование проявляется в виде ветряной оспы, рецидив заболевания называют опоясывающим лишаем. Во время беременности трансплацентарная передача вируса плоду в 5% случаев происходит в I триместре беременности и приблизительно в 24% случаев, если заражение женщины произошло на последнем месяце беременности. При опоясывающем лишае инфицирования плода не происходит.

Энтеровирусы. Инфицирование матери вирусом Коксаки вызывает пороки развития или гибель плода в 40% случаев.

Методы диагностики

Клинико-синдромологический метод позволяет выявлять морфологические, биохимические и функциональные признаки наследственных форм патологии (например, дефицит плазменного фактора VIII при подозрении на гемофилию A; кариотип 45,Х0 при подозрении на синдром Шерешевского-Тёрнера; поражения скелета, сердечнососудистой системы и глаз при подозрении на синдром Марфана).

Клинико-генеалогический метод позволяет выявить патологические признаки и проследить особенности их передачи в поколениях при составлении родословной.

Составление родословной начинают со сбора сведений о семье консультирующегося или пробанда. Терминология: пробанд - больной или носитель изучаемого признака, сибсы (братья и сёс- тры) - дети одной родительской пары, семья - в узком смысле родительская пара и их дети, но иногда и более широкий круг кровных родственников, хотя в последнем случае лучше применять термин род.

Близнецовый метод базируется на сравнительном анализе частоты определённого признака в разных группах близнецов, а также в сопоставлении с партнёрами монозиготных пар между собой и общей популяцией. Идентичность близнецов по анализируемому признаку обозначают как конкордантность, а отличие - как дискордантность. Роль наследственности и факторов среды в возникновении патологии у близнецов оценивают по специальным формулам.

Цитогенетическая диагностика основана на микроскопическом изучении хромосом с целью выявления структурных нарушений в хромосомном наборе (кариотипирование). В качестве материала используют тканевые культуры с большим числом делящихся клеток, чаще лимфоциты периферической крови. Хромосомы на стадии метафазы изучают при помощи специальных методов окрашивания и составляют идиограммы (систематизированные кариотипы с расположением хромосом от наибольшей к наименьшей), что позволяет выявлять геномные и хромосомные мутации.

Биохимическая диагностика базируется на изучении биохимических показателей, отражающих сущность болезни (например, активность ферментов, наличие патологических метаболитов, концентрация компонентов ферментативной реакции).

Молекулярная диагностика. При помощи методов ДНК-диагностики устанавливают последовательность расположения отдельных нуклеотидов, выделяют гены и их фрагменты, устанавливают их наличие в изучаемых клетках. К числу наиболее эффективных методов относятся гибридизация ДНК, клонирование ДНК, полимеразная цепная реакция.

Гибридизация ДНК. Для определения порядка расположения нуклеотидов в исследуемом генетическом материале изучаемую ДНК помещают в специальную среду, где происходит контакт ДНК с нитями другой нуклеиновой кислоты. В случае комплементарности каких-либо двух нитей происходит их «сшивка». При специальных исследованиях используют генетические «зонды» - фрагменты меченной радиоактивным изотопом однонитевой ДНК с известной последовательностью нуклеотидов.

Блот-гибридизация. Для выявления интересующих (в том числе мутантных) генов ДНК подвергают рестрикции, разделяют по молекулярной массе, денатурируют и переносят на носитель (нейлоновую или иную мембрану). Фиксированную на носителе в виде пятна ДНК гибридизируют с меченым радиоактивным изотопом ДНКили РНК-зондом. В результате определяют положение аномального фрагмента ДНК.

Клонирование ДНК. С помощью специализированных ферментов (ДНК-рестриктаз) подразделяют нить ДНК на отдельные группы генов или на единичные гены. Для изучения признаков (в том числе патологических), кодируемых данными генами, особенностей транскрипции и трансляции создают нужное количество копий данного гена.

Полимеразная цепная реакция (специфическая амплификация ДНК). Применяют для изучения локусов предполагаемых мутаций и других особенностей структуры ДНК. Для исследования можно использовать любой биологический материал, содержащий ДНК (например, кусочек ткани, капля или пятно крови, смыв полости рта, луковица корня волос). На первом этапе исследуемую ДНК подвергают отжигу: расщепляют на две нити при нагревании до 95-98 °C. Затем одну из нитей гибридизируют и стимулируют синтез последовательности, комплементарной исследуемой ДНК (с помощью ДНК-полимеразы). В первом цикле полимеразной цепной реакции гибридизацию выполняют с исследуемым фрагментом ДНК, а в последующих - с вновь синтезированными. При каждом цикле реакции число синтезированных копий участка ДНК увеличивается двукратно. Циклы повторяют до накопления нужного количества ДНК.

Принципы лечения

Лечение наследственных болезней базируется на трёх принципах: этиотропном, патогенетическом и симптоматическом.

Этиотропная терапия направлена на устранение причины заболевания. С этой целью разрабатываются, апробируются и частично могут быть применены методы коррекции генетических дефектов, называемые генной терапией.

Патогенетическая терапия имеет целью разрыв звеньев патогенеза. Для достижения этой цели применяют несколько методов.

Заместительная терапия - введение в организм дефицитного вещества (не синтезирующегося в связи с аномалией гена, который контролирует продукцию данного вещества; например, инсулина при СД, антигемофильного глобулина человека при гемофилии).

Коррекция метаболизма путём: ❖ ограничения попадания в организм веществ, метаболически не усваивающихся (например, фенилаланина или лактозы); ❖ выведения из организма метаболитов, накапливающихся в нём в избытке (например, фенилпировиноградной кислоты или холестерина); ❖ регуляции активности ферментов (например, подавление активности КФК при

отдельных видах миодистрофий, активация липопротеинлипазы крови при гиперхолестеринемии). ♦ Хирургическая коррекция дефектов (например, создание шунта между нижней полой и воротной венами у пациентов с «гепатотропными» гликогенозами).

Симптоматическая терапия. Направлена на устранение симпто-

мов, усугубляющих состояние пациента (например, применение веществ, снижающих вязкость секретов экзокринных желёз при муковисцидозе; хирургическое удаление дополнительных пальцев и перемычек кожи между ними при поли- и синдактилии; выполнение пластических операций при дефектах лица, пороках сердца и крупных сосудов).

Профилактика

Всем семьям, имеющим случаи наследственных заболеваний, т.е. при повышенной вероятности рождения ребёнка с патологией необходимо проводить медико-генетическое консультирование, задачи которого - выявление генетических заболеваний и определение возвратного риска.

Выявление генетических заболеваний. В первую очередь необходима

точная диагностика, позволяющая определить природу заболевания и отдифференцировать состояния, имеющие сходную клиническую картину.

Определение возвратного риска. При установлении точного диагноза

Анализ родословной (см. рис. 3-1) - первый этап медико-генетичес-

кого консультирования. Необходимо собрать полную информацию о состоянии здоровья всех членов семьи (не менее четырёх поколений).

В настоящее время общепризнанно, что причиной болезней наследственного генеза является действие факторов, способных изменить, причем необратимо, генетический код наследственной информации, т.е. вызвать мутации. Мутацию можно определить как изменение наследственного аппарата, приводящее к появлению нового признака, закрепляющегося в генотипе и способного передаваться в последующие поколения. Особенностью мутации является точное воспроизведение в длительном ряду клеточных поколений, практически независимо от условий среды, в которых происходит онтогенез.

Мутации постоянно обнаруживаются в природе с определенной частотой относительно близкой у различных видов живых организмов. Примерно каждый десятый индивид является носителем новой мутации. Правда, большинство этих мутаций находится в рецессивном состоянии, увеличивая лишь скрытую, потенциальную изменчивость, характерную для организмов любого вида. В живой природе именно наследственная, в основном мутационная изменчивость определяет процесс эволюции организмов, дает огромный простор для действия естественного отбора - главнейшего фактора эволюции.

Мутагенной активностью в зависимости от силы и продолжительности действия обладают очень многие факторы окружающей среды. К числу наиболее активных мутагенов относятся:

1. Физические факторы - ионизирующая радиация, УФЛ, хроническая гипоксия, перегревание.

2. Химические - перекись водорода, альдегиды и кетоны, азотная кислота и ее соли, соли тяжелых металлов и алкилирующие соединения, пищевые красители, инсектициды, гербициды, алкоголь и никотин, цитостатики, ингибиторы синтеза ДНК, лекарства: антибиотики, циклофосфамид, митомицин С и т.д.

3. Биологические - вирусы.

4. Некоторые нарушения в самом организме: нарушения обмена витамина В 12 , аутоиммунные заболевания, ошибки репликации.

Из всех мутагенов наиболее серьезны именно химические, поскольку они действуют направленно на один и тот же ген, зачастую приводя к профпатологии, например, выхлопные газы транспортных средств, нитросоединения (супермутагены, способные встраиваться в молекулу ДНК).

По данным В.Д. Москаленко этанол не нарушает прямо генетический аппарат, но повышает его чувствительность к другим, до этого даже безобидным веществам. У женщин-алкоголичек во время беременности в тканях зародыша активно разрушается фолиевая кислота - нарушается равновесие ЦНС. Ферменты плода, разрушающие алкоголь в 10 раз менее активны, чем у взрослого и токсический эффект этанола выражается угнетением белково-синтетических процессов с последующим развитием «алкогольного синдрома плода» (больные дети более похожи друг на друга, чем на родителей). Алкоголизм - болезнь с наследственной предрасположенностью (у монозигот конкордантность 60%, у дизигот - 30%).

Все еще продолжающееся загрязнение окружающей среды (биосферы) является общемедицинской и общебиологической проблемой. Загрязнение биосферы способствует возникновению различных соматических заболеваний и вызывает изменения в генетическом аппарате, в результате чего в человеческой популяции возрастает число наследственных заболеваний. Этот факт вызывает озабоченность ученых всего мира, общественности и правительств. Отечественный генетик Н.П.Дубинин (1977) подчеркивал, что в современных условиях теория мутации приобретает жизненно важное значение: отрицательные эффекты от загрязнения начинают проявляться уже и сейчас и характер взаимоотношений человека с окружающей средой все менее допускает нерегулируемые воздействия.

Установлен факт генетической адаптации. Вероятность ее тем больше, чем многочисленнее популяция, чем более выражена способность к размножению. Примером генетической адаптации может служить возникновение устойчивых форм микробов к действию бактериостатических препаратов, появление устойчивых к ядохимикатам насекомых и т.д. Для человека фактор генетической адаптации большого значения не имеет ввиду низкой потенции к размножению и значительного срока до полового созревания, что увеличивает вероятность компенсации отрицательной мутации в герменативных клетках положительными мутациями. В целом увеличение мутагенности среды отрицательно сказывается на человеческой популяции. По мнению Н.П.Дубинина, существенным буфером в этом отношении, задерживающим рост наследственных заболеваний у людей, является постоянное смешение различных их групп. Вероятно также, что определенную роль играет и возрастание культурно-гигиенических навыков.

Очень большую опасность представляет повышение уровня радиационного фона планеты. По мнению многих ученых это повышение может увеличить число мутаций и соответственно наследственных заболеваний. Загрязнение атмосферы в сочетании с курением привело в последнее время к увеличению заболеваемости раком легких, что тесно связано с содержанием в табачном дыме канцерогенов, в основном бензпирена. Особую тревогу вызывает возросшее число курящих женщин в связи с отрицательным действием на половые клетки плода и проявлением отрицательного результата в третьем поколении. Передача в потомство мутагенных и канцерогенных влияний от матери трансплацетарно и через молоко имеет место и при употреблении в пищу больших количеств копченостей, приготовленных традиционными способами, жареных продуктов, а также при контакте матерей с другими бытовыми и производственными факторами.

Патогенез наследственных заболеваний.

Проявление генов опосредуется через процессы регуляции белковосинтетических процессов. В цепи ген-признак протекают сложные процессы, зависящие от многих факторов. Одни только структурные гены, непосредственно отвечающие за синтез белка, не в состоянии обеспечить детерминацию развития. В процессе обмена веществ одновременно имеет место активация синтеза не одним, целой группой ферментов, обеспечивающих последовательность определенной цепи реакций, поскольку каждый фермент связан со своим геном структурно-функциональной организации.

Согласно процессу генетической регуляции синтеза белка деятельность структурного гена находится под контролем гена-оператора, активность которого, в свою очередь, определяется геном-регулятором, продуктом длительности которого является белок-репрессор, способный связываться с тем или иным веществом, образовавшимся в клетке в процессе обмена. При этом, в зависимости от характера вещества, с которым связывается репрессор, возможно двоякое его действие на оперон: с одной стороны - тормозящее, с другой, если подавляющее влияние репрессора устраняется (связь с веществом) - начинается деятельность соответствующего оперона - активация синтеза.

Можно предполагать, что определенные изменения контролирующих генов наряду с мутациями структурных ответственны за возникновение генетически обусловленных болезней. Кроме того, в ряде случаев средовые факторы нарушают реализацию действия нормального гена, т.е. наследственную информацию. Отсюда появляется основание для утверждения, что в ряде случаев заболевания являются связанными не столько с патологией регуляции наследственной информации, сколько с патологией ее реализации.

В условиях эксперимента есть возможность заблокировать рецепторное поле клетки - мишень для действия стероидных гормонов с помощью, например, анилиновых красителей. В связи с этим происходит снятие регулирующего влияния гормонов и нарушение синтеза белка - нарушается реализация действия нормального гена.

Указанный механизм демонстративен при тестикулярной феминизации - заболевании, при котором формируется псевдогермафродит с наружными гениталиями по женскому типу (внутренние половые органы отсутствуют). При генетическом обследовании выявляется мужской набор половых хромосом, половой хроматин в клетках слизистой отсутствует. Патогенез страдания связан с первичной андрогеноустойчивостью органов-мишеней.

Один и тот же мутантный ген у разных организмов может проявить свой эффект различным образом. Фенотипическое проявление гена может варьировать по степени выраженности признака. Это явление связано с экспрессивностью гена - степенью выраженности действия в фенотипическом отношении. Один и тот же признак может проявляться у одних и не проявляется у других особей родственной группы - это явление называется пенетрантностью проявления гена - % особей в популяции, имеющих мутантный фенотип (отношение числа носителей патологического признака к числу носителей мутантного гена). Экспрессивность и пенетрантность характеризуют фенотипические проявления гена, что обусловлено взаимодействием генов в генотипе и различной реакцией генотипа на средовые факторы. Пенетрантность отражает гетерогенность популяции не по основному гену, определяющему конкретный признак, а по модификаторам, создающим генотипическую среду для проявления гена. К модификаторам относят простагландины, активные метаболиты, биоактивные вещества различного происхождения.

По характеру изменений генома выделяют следующие мутации:

1. Генные - связанные с одной парой нуклеотидов в полипептидной цепи ДНК (цитологически невидимые изменения).

2. Хромосомные - на уровне отдельной хромосомы (делеция - фрагментация хромосом, приводящая к утрате ее части; дупликация - удвоение участка, перестройки хромосом, обусловленные изменением групп сцепленных генов внутри хромосом - инверсия; перемещение участков - инсерция и др).

3. Геномные - а) полиплоидия - изменение числа хромосом, кратное гаплоидному набору; б) анэуплоидия (гетероплоидия) - некратное гаплоидному набору.

По проявлению в гетерозиготе:

1. Доминантные мутации.

2. Рецессивные мутации.

По уклонению от нормы:

1. Прямые мутации.

2. Реверсии (часть из них – обратные, супрессорные).

В зависимости от причин, вызвавших мутации:

1. Спонтанные

2. Индуцированные

По локализации в клетке:

1. Ядерные

2. Цитоплазматические

По отношению к особенностям наследования:

1. Генеративные, происходящие в половых клетках

2. Соматические

По фенотипу (летальные, морфологические, биохимические, поведенческие, чувствительности к повреждающим агентам и др.).

Мутации могут изменить поведение, касаться любых физиологических особенностей организма, вызывать изменение какого-либо фермента и, конечно, затрагивать строение особи. По влиянию на жизнеспособность мутации могут быть летальными и полулетальными, снижающими в большей или меньшей степени жизнеспособность организма. Могут быть практически нейтральными в данных условиях, прямо не влияющими на жизнеспособность и, наконец, хотя и редко, мутации, которые уже при возникновении оказываются полезными.

Итак, в связи с этим, согласно фенотипической классификации выделяют:

1. Морфологические мутации, при которых отмечается преимущественно изменение роста и формирования органов.

2. Физиологические мутации - повышающие или понижающие жизнедеятельность организма, полностью или частично тормозящие развитие (полу- и летальные мутации). Существует понятие о летальных генах. Такие гены (обычно в гомозиготном состоянии) или ведут к летальному исходу, или увеличивают его вероятность в раннем эмбриогенезе, или в раннем постнатальном периоде. В большинстве случаев конкретная патология пока не выявлена.

3. Биохимические мутации - мутации, тормозящие или изменяющие синтез определенных химических веществ в организме.

Приведенные принципы классификации дают возможность систематизировать наследственные болезни по характеристике генетического дефекта.

Классификация форм наследственной патологии .

Наследственность и среда играют роль этиологических факторов при любом заболевании, хотя и с разной долей участия. В связи с этим выделяют следующие группы наследственных болезней:

1) собственно наследственные болезни, в которых этиологическую роль играет изменение наследственных структур, роль среды заключается лишь в модификации проявлений заболевания. В эту группу входят моногеннно обусловленные болезни (фенилкетонурия, гемофилия, ахондроплазия), а также хромоомные болезни.

2) экогенетические заболевания, которые также являются наследственными, обусловленными патологическими мутациями, однако для их проявления необходимо специфическое воздействие среды. Например, серповидноклеточная анемия у гетерозиготных носителей при пониженном парциальном давлении кислорода; острая гемолитическая анемия у лиц с мутацией в локусе глюкозо-6-фосфат-дегидрогеназы под влиянием сульфаниламидов.

3) в этой группе многие распространенные заболевания, особенно у пожилых – гипертоническая болезнь, ишемическая болезнь сердца, язвенная болезнь желудка. Этиологическим фактором в их возникновении является средовое воздействие, однако его реализация зависит от индивидуальной генетически детерминируемой предрасположенности организма, в связи с чем эти болезни называют мультифакториальными или болезнями с наследственным предрасположением.

С генетической точки зрения наследственные болезни делят на генные и хромосомные. Генные болезни связаны с генными мутациями и далее по количеству затронутых генов выделяют моногенные и полигенные болезни. Выделение моногенных болезней основывается на их сегрегации в поколениях по закону Менделя. Полигенные – болезни с наследственным предрасположением, поскольку предрасположенность является многофакторной.

Хромосомные болезни – большая группа патологических состояний, основные проявления которых составляют множественные пороки развития и которые определяются отклонениями в содержании хромосомного материала.

Деление наследственных болезней на эти группы не формально. Генные болезни передаются из поколения в поколение без изменений, в то время как большинство хромосомных болезней вообще не передаются, структурные перестройки передаются с дополнительными перекомбинациями.

Генные болезни.

Ген может мутировать, приводя к изменению или полному отсутствию белка. В связи с этим выделяют отдельные формы генных болезней. Так, нарушение синтеза структурного белка ведет к возникновению пороков развития (синдактилия, полидактилия, брахидактилия, ахондроплазия, микроцефалия и т.д.), нарушение со стороны транспортного белка приводит к функциональным болезням (болезни зрения, слуха и др.), ферментопатии - с нарушением белков – ферментов.

По аутосомно-доминантному типу наследуется около 900 болезней: полидактилия, синдактилия и брахидактилия, астигматизм, гемералопия, анонихия, арахнодактилия и ахондроплазия.

При аутосомно-рецессивном типе наследования признак проявляется только у особей гомозиготных по данному гену, т.е. когда рецессивный ген получен от каждого родителя. По этому типу наследуется более 800 заболеваний, основная группа – ферментопатии (фенилкетонурия, алкаптонурия, амавротическая идиотия, галактоземия, мукополисахаридозы), различные виды глухоты и немоты.

Выделено также и неполное доминирование. Такой тип наследования показан для эссенциальной гиперхолестеринемии: соответствующий ген в гетерозиготном состоянии определяет лишь предрасположенность к гиперхолестеринемии, в гомозиготном же состоянии он приводит к наследственной форме патологии холестеринового обмена – ксантоматозу.

Наследование в связи с полом имеет ряд особенностей. Х и Y –хромосомы имеют общие (гомологичные) участки, в которых локализованы гены, наследуемые одинаково как у мужчин, так и у женщин. Например, пигментная ксеродерма, спастическая параплегия, эпидермальный буллез. Негомологичный участок Y-хромосомы (голандрическое наследование) содержит гены перепонок между пальцами и волосатых ушей с передачей только сыновьям.

Негомологичный участок Х-хромосомы (рецессивные для женщин и доминантные для мужчин в силу гемизиготности) содержит гены гемофилии, агаммаглобулинемии, несахарного диабета, дальтонизма, ихтиоза. К числу доминантных, полностью сцепленных с полом по Х-хромосоме (с ее негомологичным участком) относятся гипофосфатемический рахит, отсутствие резцов в челюстях. Выявлена также возможность передачи наследственных признаков через цитоплазму яйцеклетки (плазмогены) только через мать – слепота в результате атрофии зрительных нервов (синдром Лебера).

Хромосомные болезни отличаются от других наследственных заболеваний тем, что они за редким исключением ограничиваются распространением в пределах одного поколения в связи с полным отсутствием плодовитости у носителей. Тем не менее, хромосомные болезни относятся к группе наследственных, так как они обусловлены мутацией наследственного вещества в половых клетках одного или обоих родителей на хромосомном или геномном уровне. Клинически эти заболевания проявляются тяжелыми нарушениями психики в сочетании с рядом дефектов соматического развития. Хромосомные болезни встречаются в среднем с частотой 1: 250 новорожденных. У 90% эмбрионов с аномалиями хромосом происходит нарушение хромосомного баланса и большая часть прекращает свое развитие на ранних стадиях.

Факторы, ведущие к хромосомным аномалиям, по-видимому, общие:

1. Возраст матери. По сравнению со средним возрастом (19-24) у женщин после 35 лет вероятность рождения детей с хромосомными аномалиями возрастает в 10 раз, после 45 лет - в 60 раз. В отношении возраста отцов данных почти нет. Влияние возраста может быть и обратным, например, синдром Шерешевского-Тернера чаще появляется у детей молодых матерей.

2. Ионизирующая радиация - поскольку все виды ионизирующего излучения вызывают хромосомные аберрации в зародышевых и соматических клетках.

3. Вирусные инфекции - корь, краснуха, ветряная оспа, опоясывающий лишай, желтая лихорадка, вирусный гепатит, токсоплазмоз.

Хромосомные болезни в своей основе могут иметь либо структурные, либо числовые нарушения как со стороны аутосом, так и хромосом половых клеток.

1. Структурные нарушения аутосом: 5р - утрата короткого плеча (делеция) - синдром «кошачьего крика» - название обусловлено сходством плача ребенка с кошачьем мяуканьем. Это связано с нарушениями ЦНС и с нарушением гортани. Для синдрома характерны также микрогнатия, синдактилия. Отмечается понижение сопротивляемости к инфекциям, поэтому больные погибают рано. Выявляются различные пороки развития (аномалии сердца, почек, грыжи). Встречаются и другие хромосомные аберрации типа делеций: синдромы 4р, 13р, 18р и 18q, 21р, 22q. Транслокации могут быть несбалансированными, что приводит к патологическим состояниям их носителей и сбалансированными - фенотипически не проявляющимися. Структурные нарушения со стороны половых хромосом описаны при синдроме Шерешевского-Тернера со стороны единственной Х-хромосомы (р, q, r, изохромосомы р и q).

2. Числовые нарушения. Аномалии крупных хромосом 1-12 пары обычно летальны. Достаточная жизнеспособность имеет место при трисомии по 21 паре, аномальных половых хромосом и частичных аномалиях. Нуллисомия - отсутствие пары - нежизнеспособность. Моносомия - жизнеспособность только при синдроме ХО. Полиплоидии обычно летальны. Трисомия по 13 паре - синдром Патау - характеризуется множественными пороками головного мозга, сердца, почек, (дети погибают обычно на 3-4 месяце жизни). Трисомия по 18 паре - синдром Эдвардса - множественные дефекты жизненноважных органов, до 1 года обычно доживают не более 7% больных. Транслокационная форма болезни Дауна выражается переносом лишней хромосомы с 22, 4, 15 на 21 пару. Числовые нарушения по половым хромосомам встречаются в виде синдрома Клейнфельтера - ХХУ и его вариантах (ХХХУ, ХХХХУ), характеризуется снижением интеллекта и гипогонадизмом. Известны синдромы ХХХ и варианты, а также ХУУ - в этом случае добавочная У-хромосома влияет больше на поведение, чем на интеллект. Больные агрессивны, отличаются неправильным, даже криминальным поведением.

Явление мозаичности связано с разными видами соотношения нормальных и аномальных клеток. В этом случае - промежуточное положение между здоровыми и больными (стертые в клиническом отношении формы).

Важным методом предупреждения хромосомных болезней является планирование семьи. Так, в частности, идеальным условием считается зачатие в день овуляции. Также, за 1 месяц до зачатия не должно быть воздействия мутагенов (химических – их основной источник производство; физических – рентгеновское облучение в диагностических или лечебных целях). Особенно опасны вирусные инфекции и соответственно рекомендуется зачатие только спустя 6 месяцев после инфекции. Важно также повышенное введение витаминов – А, С, Е, фолиевой кислоты, микроэлементов – Са, Мg, Zn.

Важна также пренатальная диагностика: проводятся скриннинговые обследования с 16 недели оценка a-фетопротеина, при показаниях также амниоцентез, кариограмма, хориондиагностика.

Врожденные-заболевания, проявляющиеся сразу после рождения.Могут быть и наследственными и ненаследственными – обусловленными действием неблагоприятных факторов среды на развивающийся плод в период беременности и не затрагивающие его генетический аппарат.

Наследственные -в основе кот лежат структурные изменения в генетическом материале.

Механизмы развития наследственной патологии.

Генные изменения характеризуются трансформацией структуры гена, т.е. молекулярной организации участка ДНК, включающего азотистые основания (например, замена одного основания на другое или изменение их последовательности). Генные мутации могут возникать также вследствие нарастания числа триплетных повторов нуклеотидов до предела, свыше того уровня, который протекает без изменения фенотипа.

Такая экспансия определенных триплетов приводит к нарушению работы генов («динамические» мутации).

Хромосомные изменения характеризуются трансформацией структуры хромосом, что нередко обнаруживается при раздельном их морфологическом анализе. Хромосомные аберрации проявляются делецией (отрыв участка хромосомы), инверсией (поворот участка хромосомы), транслокацией (перемещением участка в другое место той же или другой хромосомы), фрагментацией хромосомы и другими явлениями.

Геномные изменения характеризуются отклонением от нормы числа хромосом, что проявляется уменьшением или увеличением их количества. Хромосомные и геномные мутации лежат в основе большой группы наследственных заболеваний, получивших название «хромосомные болезни».

В соответствии с закономерностями передачи информации в клетке (ДНК- РНК - белок) появление мутированного гена может приводить к снижению (утрате) синтеза белка, появлению патологического белка, неспособного выполнять ту или иную функцию, или дерепрессии гена и появлению эмбрионального белка.

Мед. генетика - раздел генетики, изучающий наследственность и изменчивость человека под углом зрения патологии.

Задачи:

1. Изучение наследственных форм патологии:

Этиологии, патогенеза

Характера течения

Совершенствования диагностики

Разработка методов лечения и профилактики

2. Изучение наследственной предрасположенности и резистентности к наследственным заболеваниям.

3. Изучение мутаций и антимутагенеза.

4. Изучение роли наследственности в процессах компенсации и декомпенсации.

5. Изучение общебиологических и теоретических вопросов медицины: малигнизация, тканевая несовместимость и др.

Фенокопии - изменения признаков организма под влиянием факторов внешней Среды в период эмбрионального развития, по основным проявлениям, сходные с наследственной патологией.

Причины фенокопий:

1. Кислородное голодание плода.

2 Болезнь матери при беременности.

3. Психическая травма у беременной.

4. Эндокринные заболевания у беременной.

5. Питание беременной (недостатки С, В, Р, РР вит., Со, Са, Fe).

6. Лекарственные препараты при беременности (антибиотики, сульфаниламиды).

Наследственность – свойство клеток и организмов передавать свои анатомо-физиологические признаки (особенности) потомкам. Процесс передачи этих признаков – наследование. Передача осуществляется с помощью генов – материальных единиц наследственности. От родителей потомкам передаются не признаки в готовом виде, и информация (код) о синтезе белка (фермента), детерминирующего этот признак. Гены – участки молекулы ДНК. Они состоят из кодонов. Каждый кодон представляет собой группу из 3 нуклеидов и, ≥, явл-ся нуклеотидным триплетом. Каждый кодон кодирует инфор-ию о стр-ре аминокислот и местоположение ее в белковой молекуле. Гены собираются в блоки, а последние в ДНК-нити, которые образуют хромосому . Общее число хромосом у человека в соматической кл-ке 46, в гамете – 23.

Причины наследственных болезней : Стартовое звено патогенеза наследственных заболеваний - мутации - нарушения структуры генов, хромосом или изменение их числа. В зависимости от уровня организации генетического материала (ген, хромосома, геном) говорят о мутациях генных, хромосомных и геномных.

Причинами мутаций могут быть различные факторы. Их обозначают как мутагены, а изменения, приводящие к возникновению мутаций, называют мутационным процессом. В результате мутационного процесса возникают разные виды мутаций. Изменения генетического материала разнообразны (делеции, вставки и т.д.), что позволяет подразделить мутации по механизму дефекта генетического материала (типы мутаций).

Мутагены (равно и вызываемые ими мутации) классифицируют по происхождению (источнику) на эндогенные и экзогенные , а по природе на физические, химические и биологические .

1)Экзогенные мутагены. Их большинство, к ним относятся различные и многочисленные факторы внешней среды (радиационное излучение, алкилирующие агенты, окислители, многие вирусы).

2)Эндогенные мутагены образуются в процессе жизнедеятельности организма (мутации могут возникать под влиянием свободных радикалов, продуктов липопероксидации).

1)Физические мутагены - ионизирующее излучение и температурный фактор.

2)Химические мутагены - самая многочисленная группа мутагенов. К химическим мутагенам относятся: сильные окислители или восстановители (нитраты, нитриты, активные формы кислорода); алкилирующие агенты (йодацетамид); пестициды (гербициды, фунгициды); некоторые пищевые добавки (ароматические углеводороды, цикламаты); продукты переработки нефти; органические растворители; JIC (цитостатики, содержащие ртуть средства, иммунодеп-рессанты); другие химические соединения.

3)Биологические мутагены: вирусы (например, кори, краснухи, гриппа); Аг некоторых микроорганизмов.

В результате мутаций образуется аномальный ген с измененным кодом. Реализация действия аномального гена – завершающее звено патогенеза наследственных болезней. Различают несколько путей реализации аномального гена, образовавшегося вследствие мутаций:

1-й путь реализации действия аномального гена: аномальный ген, утративший код нормальной программы синтеза структурного или функционально важного белка > прекращение синтеза иРНК > прекращение синтеза белка > нарушение ж/д > наследственная болезнь (гипоальбуминемия, гемофилия А);

2-й путь реализации действия аномального гена: аномальный ген, утративший код нормальной программы синтеза фермента > прекращение синтеза иРНК > прекращение синтеза белка-фермента > нарушение ж/д > наследственная болезнь (энзимопатическая метгемоглобинемия, гипотиреоз, альбинизм, алкаптонурия);

3-й путь реализации действия аномального гена: аномальный ген с патологическим кодом > синтез патологической иРНК > синтез патологического белка > нарушение ж/д > наследственная болезнь (серповидно - клеточная анемия).