Биология в лицее. Органы, ткани и функциональные системы высших растений

- 105.00 Кб

Федеральное агенство по образованию РФ

ГОУ ВПО «Майкопский государственный технологический университет»

Кафедра фармации

по дисциплине: «Ботаника»

на тему: «Ткани растений»

Выполнила: студентка 2 курса

группы Ф-21

фармацевтического факультета

Калайджан Г.В.

Проверила: Артемьева В.В.

Майкоп-2011

ТКАНИ РАСТЕНИЙ

Образовательные ткани (меристемы)

Образовательные ткани в теле растений располагаются в разных местах, поэтому их делят на следующие группы

Верхушечные (апикальные) меристемы располагаются на верхушках, или апексах, осевых органов – стебля, корня. С помощью этих меристем вегетативные органы растений осуществляют свой рост в длину.

  1. Латеральные меристемы характерны для осевых органов. Там они располагаются концентрически, в виде муфты.
  2. Интеркалярные, или вставочные, меристемы происходят от верхушечных меристем. Это группы клеток, еще не способных размножаться, однако вставшие на путь дифференциации. Инициальных клеток среди них нет, но много специализированных.
  3. Раневые меристемы обеспечивают восстановление поврежденной части тела. Регенерация начинается с дедифференциации, то есть обратного развития от специализированных клеток к меристематическим. Они превращаются в феллоген, который образует пробку, покрывающую поверхность раны. Дедифференцированные клетки, делясь, могут формировать рыхлую паренхиматозную ткань – каллус. Из него при определенных условиях образуются органы растений.

Покровные ткани

Они исполняют роль пограничного барьера, отделяя ниже лежащие ткани от окружающей среды. Первичные покровы растения состоят только из живых клеток. Вторичные и третичные покровы – в основном из мертвых с толстыми клеточными стенками.

Основные функции покровных тканей:

  • защита растения от высыхания;
  • защита от попадания вредных микроорганизмов;
  • защита от солнечных ожогов;
  • защита от механических повреждений;
  • регуляция обмена веществ между растением и окружающей средой;
  • восприятие раздражения.

Первичная покровная ткань – эпидерма, эпидермис. Состоит из живых клеток. Образуется из апикальных меристем. Покрывает молодые растущие стебли и листья.

Эпидерма сформировалась у растений в связи с выходом из водной среды обитания на сушу с целью предотвращения от высыхания. Кроме устьиц, все клетки эпидермы плотно соединены между собой. Наружные стенки основных клеток толще остальных. Вся поверхность покрыта слоем кутина и растительных восков. Этот слой называется кутикулой (кожица). Она отсутствует на растущих корнях и подводных частях растений. При пересыхании проницаемость кутикулы значительно ослабляется.

Кроме основных клеток, в эпидермисе имеются и другие, в частности волоски, или трихомы. Они бывают одноклеточными и многоклеточными. Функционально они увеличивают поверхность эпидермы, например, в зоне роста корня, служить механической защитой, цепляться за опору, уменьшать потери воды. Ряд растений имеют железистые волоски, например, крапива.

Только у высших растений в эпидермисе имеются устьица, которые регулируют обмен воды и газов. Если кутикулы нет, то и отсутствует потребность в устьицах. Устьица – это группа клеток, образующих устьичный аппарат, который состоит из двух замыкающих клеток и примыкающих к ним клеток эпидермы – побочных клеток. Они отличаются от основных эпидермальных клеток. Замыкающие клетки отличаются от окружающих их клеток формой и присутствием большого количества хлоропластов и неравномерно утолщенными стенками. Те, которые обращены друг к другу, толще остальных. Между замыкающими клетками образуется устьичная щель, которая ведет в подустьичное пространство, называемое подустьичной полостью. Замыкающие клетки обладают высокой фотосинтетической активностью. В них содержится большое количество запасного крахмала и многочисленные митохондрии.

Число и распределение устьиц, типы устьичных аппаратов широко варьирует у различных растений. Устьица у современных мохообразных отсутствуют. Фотосинтез у них осуществляет гаметофитное поколение, а спорофиты к самостоятельному существованию не способны.

Обычно устьица располагаются на нижней стороне листа. У плавающих на водной поверхности растений – на верхней поверхноси. У листьев злаков устьица часто располагаются равномерно с обеих сторон. Такие листья освещаются сравнительно равномерно. На 1мм 2 поверхности может располагаться от 100 до 700 устьиц.

Вторичная покровная ткань (перидерма). Эта ткань приходит на смену эпидерме, когда зеленый цвет однолетних побегов сменяется коричневым. Она многослойна и состоит из центрального слоя камбиальных клеток - феллогена. Клетки феллогена, делясь, наружу откладывают слой феллемы, а внутрь – феллодерму.

Феллема, или пробка. Сначала состоит из живых тонкостенных клеток. Со временем их стенки пропитываются суберином и растительными восками и отмирают. Содержимое клетки наполняется воздухом.

Функции феллемы:

  • предотвращает потерю влаги;
  • защищает растение от механических повреждений;
  • защищает от болезнетворных микроорганизмов;
  • обеспечивает термоизоляцию, так как клетки заполнены воздухом.

Клетки феллогена, расположенного в самой эпидерме, подлежащем субэпидермальном слое, реже – в глубоких слоях первичной коры, являются генерирующей основой первичной коры.

Слой пробки не постоянен. В нем происходят разрывы, которые сообщаются с межклетниками, расположенными рядом. При этом на поверхности образуются небольшие бугорки – чечевички, которые сообщают пространства межклетников с атмосферным воздухом.

Осенью феллоген под чечевичками откладывает слой опробковевших клеток, сильно уменьшающих транспирацию, но не исключающий ее полностью. Весной этот слой изнутри разрушается. На светлой коре березы чечевички хорошо заметны в виде темных черточек.

Третичная покровная ткань (корка), так же характерна только для древесных форм растений.

Феллоген многократно закладывается в более глубоких слоях коры. Ткани, которые оказываются снаружи от него, со временем отмирают, образуя корку. Клетки ее мертвы и не способны к растяжению. Однако расположенные глубже живые клетки делятся, что приводит к увеличению поперечного размера ствола. Со временем наружный слой корки разрывается. Время наступления такого разрыва является довольно постоянной величиной для конкретных растений. У яблони это происходит на седьмом году жизни, у граба – на пятидесятом. У некоторых видов не происходит совсем. Основная функция корки – защита от механических и термических поражений.

Паренхима

Она представляет собой группу специализированных тканей, заполняющих пространства внутри тела растения между проводящими и механическими тканями. Чаще клетки паренхимы имеют округлую, реже вытянутую форму. Характерно наличие развитых межклетников. Пространства между клетками совместно образуют транспортную систему - апопласт. Кроме этого, межклетники образуют «систему вентиляции» растения. Через устьица, или чечевички, они связаны с атмосферным воздухом и обеспечивают оптимальный газовый состав внутри растения. Особенно необходимы развитые межклетники для растений, произрастающих на заболоченной почве, где нормальный газообмен затруднен. Такую паренхиму называют аэренхимой.

Элементы паренхимы, заполняя промежутки между другими тканями, выполняют также функцию опоры. Клетки паренхимы живые, у них нет толстых клеточных стенок, как у склеренхимы. Поэтому механические свойства обеспечиваются тургором. Если содержание воды падает, что приводит к плазмолизу и завяданию растения.

Ассимиляционная паренхима образована тонкостенными клетками со множеством межклетников. Клетки этой структуры содержат множество хлоропластов, поэтому ее называют хлоренхимой. Хлоропласты располагаются вдоль стенки, не затеняя друг друга. В ассимиляционной паренхиме происходят реакции фотосинтеза, которые обеспечивают растение органическими веществами и энергией. Результат фотосинтетических процессов – это возможность существования всех живых организмов Земли.

Ассимиляционные ткани представлены только в освещенных частях растения, от окружающей среды они отделены прозрачной эпидермой. Если на смену эпидерме приходят непрозрачные вторичные покровные ткани, ассимиляционная паренхима исчезает.

Запасающая паренхима служит вместилищем органических веществ, которые временно не используются растительным организмом. В принципе откладывать органические вещества в виде различного рода включений способна любая клетка с живым протопластом, однако на этом специализируются некоторые клетки. Богатые энергией соединения откладываются только в вегетационный период, расходуются в период покоя и при подготовке к очередной вегетации. Поэтому запасные вещества откладываются в вегетативных органах только у многолетних растений.

Вместилищем запасов могут быть обычные органы (побег, корень), а так же специализированные (корневища, клубни, луковицы). Все семенные растения запасают энергетически ценные вещества в семенах (семядолях, эндосперме). Многие растения засушливого климата, запасают не только органические вещества, но и воду. Например, алоэ запасает воду в мясистых листьях, кактусы в побегах.

Механические ткани

Механические свойства растительных клеток обеспечиваются:

  • жесткой оболочкой клетки;
  • тургесцентностью, то есть тургорным состоянием клеток.

Несмотря на то, что механическими свойствами обладают практически все клетки тканей, однако в растении есть ткани, для которых механические свойства являются основными. Это колленхима и склеренхима. Они обычно функционируют при взаимодействии с другими тканями. Внутри тела растения образуют своеобразный каркас. Поэтому их называют арматурными.

Не у всех растений одинаково хорошо выражены механические ткани. Значительно в меньшей степени во внутренней опоре нуждаются растения, живущие в водной среде, чем наземные. Причина в том, что водные растения нуждаются во внутренней опоре в меньшей степени. Их тело в значительной степени поддерживается окружающей водой. Воздух на суше подобной поддержки не создает, так как по сравнению с водой имеет меньшую плотность. Именно по этой причине становится актуальным наличие специализированных механических тканей.

Совершенствование внутренних опорных структур происходило в процессе эволюции.

Колленхима. Образована только живыми клетками, вытянутыми вдоль оси органа. Этот вид механических тканей формируется очень рано, в период первичного роста. Поэтому важно, чтобы клетки оставались живыми и сохраняли способность растягиваться вместе с растягивающимися клетками, которые находятся рядом.

Особенности клеток колленхимы:

  • неравномерные утолщения оболочки, в результате чего одни участки её остаются тонкими, а другие утолщаются;
  • оболочки не одревесневают.

Клетки колленхимы располагаются по-разному относительно друг друга. У находящихся рядом клеток на обращенных друг к другу уголках образуются утолщения. Такая колленхима называется уголковой. В другом случае клетки располагаются параллельными слоями. Оболочки клеток, обращенные к этим слоям, сильно утолщены. Это пластинчатая колленхима. Клетки могут располагаться рыхло, с обильными межклетниками – это рыхлая колленхима. Такая колленхима часто встречается у растений на переувлажнённых почвах.

Колленхима имеет особое значение у молодых растений, травянистых форм, а также в частях растений, где вторичный рост не происходит, например, в листьях. В этом случае она закладывается очень близко к поверхности, иногда сразу под эпидермой. Если орган имеет грани, то по их гребням обнаруживают мощные слои колленхимы.

Описание работы

Образовательные ткани в теле растений располагаются в разных местах, поэтому их делят на следующие группы
Верхушечные (апикальные) меристемы располагаются на верхушках, или апексах, осевых органов – стебля, корня. С помощью этих меристем вегетативные органы растений осуществляют свой рост в длину.

Ткани растений и их виды

Многообразие типов клеток появилось в растительном мире в длительном процессе эволюции (от лат. эволютио - «развертывание») - изменении во времени. У первых организмов Земли все клетки были почти одинаковыми. Позднее появились водоросли, мхи, папоротниковидные растения. У этих растений клетки имеют специфическое строение. Поэтому можно достаточно точно определить, растениям какой группы они принадлежат. Однако общее строение клетки у всех растений примерно одинаково.

Клетки с одинаковыми свойствами образуют у растений хорошо различимые группы. Одни группы обеспечивают рост растения, другие - питание, третьи - проведение веществ в организме.

Группы клеток, сходных по строению, функциям и имеющих общее происхождение, называют тканями .

В некоторых тканях клетки лежат очень близко друг к другу, в других - рыхло. Промежутки, образующиеся между клетками, называют межклеточными пространствами (или межклетниками ). Не только клетки, но и межклетники входят в состав ткани. У высших растений различают ткани: образовательные, основные (фотосинтезирующие и запасающие), покровные, проводящие, механические.

Образовательная ткань состоит из клеток, которые способны делиться в течение всей жизни растения. Клетки здесь лежат очень близко друг к другу и постоянно делятся. Благодаря делению они образуют множество новых клеток, обеспечивая тем самым рост растения в длину и толщину. Появившиеся в ходе деления образовательных тканей клетки затем преобразуются в клетки других тканей растения.

Основная ткань выполняет такие функции в организме растения, как создание и накопление веществ. Например, в основной ткани находится пигмент хлорофилл, а значит, создается органическое вещество и запасается энергия солнечного излучения. Ткань, в которой образуются (синтезируются) органические вещества, преимущественно находится в мякоти листа.

Ткани, в клетках которых накапливаются запасные вещества, называют запасающими тканями. Пример запасающих тканей - мякоть плодов.

Рассматривая клетки листа элодеи, мы познакомились с примером фотосинтезирующей ткани. В прозрачной цитоплазме клеток этой ткани так много хлоропластов, что порой трудно рассмотреть ядро.

Запасающие и фотосинтезирующие ткани объединяют в одну группу основных тканей, т.к. они действительно обладают сходными функциями - создания и накопления веществ.

Покровная ткань защищает снаружи все органы растения. Клетки покровной ткани могут быть плотно сомкнутыми между собой. Например, в кожице, которая покрывает листья и молодые побеги, эти клетки с очень тонкой, прозрачной клеточной оболочкой легко пропускают солнечный свет в глубь растения. В корнях и стеблях оболочки клеток покровной ткани (пробки) могут опробковевать. Покровная ткань защищает растение от высыхания, перегрева и от механических повреждений.

Проводящая ткань осуществляет передвижение растворенных питательных веществ по растению. У многих высших растений она представлена проводящими элементами (сосудами, трахеидами и ситовидными трубками). В стенках проводящих элементов есть поры и сквозные отверстия, облегчающие передвижение веществ от клетки к клетке.

Проводящая ткань образует в теле растения непрерывную разветвленную сеть, соединяющую все его органы в единую систему - от тончайших корешков до молодых побегов, почек и кончиков листа.

Механическая ткань образована клетками с очень прочными оболочками. Благодаря ей растения могут противостоять большим механическим нагрузкам (например, переносить раскачивание ствола порывами ветра, удерживать тонкими стеблями и ветвями огромные кроны деревьев).

Главная особенность живых организмов заключается в том‚ что они представляют собой открытые системы‚ которые обмениваются с окружающей средой энергией‚ веществом и информацией (рис. 4).

Тело высших растений состоит из двух главных частей - побега и корня, которые образуют главную ось растения. Побег включает стебель, листья, вегетативные почки (апикальную и боковые), цветки и плоды; корневая система - главный, боковые и при­даточные корни.

Стебель выполняет опорную и проводящую функции. Он обладает также двига­тельной активностью (зона растяжения), часто служит местом отложения запасных ве­ществ и в ряде случаев является органом вегетативного размножения (столоны, усы и т, д.). В связи с новыми функциями стебля, появившимися в ходе эволюции, возникли его многочисленные модификации. Например, подземные корневища, клубни, луковицы выполняют функции вегетативного размножения, хранения запасных веществ, перенесе­ния неблагоприятных сезонных условий. Сочные фотосинтезирующие стебли суккулен­тов представляют собой приспособление к недостатку влаги. Функцию поддержания те­ла лазящих растений выполняют усики винограда и тыквенных, являющиеся модифици­рованными стеблями. Защитная функция свойственна колючкам стеблевого происхож­дения (у боярышника, гледичии).

Рис. 4. Растение – открытая система

Лист - специализированный орган воздушного питания, осуществляющий фото­синтез, газообмен и транспирацию. Видоизмененные листья могут выполнять функции запасающего органа (семядоли). У растений засушливых мест обитания листья сильно редуцируются или приобретают форму колючек (кактусы). У лазящих растений (горох, чина) листья становятся усиками, а у насекомоядных листовая пластин­ка превращена в ловчий аппарат.

Корень - специализированный орган почвенного питания, он поглощает воду и минеральные элементы, служит для закрепления в почве и обладает двигательной актив­ностью (зона растяжения). Корень может также иметь запасные функции, приобретая форму корневых клубней (георгин), мясистых корней (орхидные). Выполнение новых функций приводит к возникновению корней подпорок (баньян), ходульных корней (ман­гровые), дыхательных корней у болотных растений с сильным развитием аэренхимы, корней-прицепок (плющ), воздушных корней у эпифитных растений (орхидные) и дру­гих модификаций. В корне, как и в побеге, образуются специфические метаболиты, в том числе фитогормоны.

Вегетативные почки служат для нарастания побега и его ветвления.

Генеративные органы обеспечивают процесс полового размножения. Цветок представляет собой видоизмененный неразветвленный побег с ограниченным ростом, приспособленный для полового размножения с последующим образованием семян и плода. Органы цветка являются видоизмененными листьями: покровные листья форми­руют чашелистики и лепестки, а спорообразующие листья дают начало тычинкам и пес­тикам. Особенности строения цветка связаны со способами опыления. Сложная форма и яркая окраска венчика служат для перекрестного опыления насекомыми.

Каждый из перечисленных органов растительного организма построен из не­скольких типов тканей, т.е. групп клеток, которые выполняют определенную физиоло­гическую функцию и имеют сходное морфологическое строение, обеспечивающее реа­лизацию этой функции. По функциональному значению в растениях различают следую­щие типы тканей: образовательные (меристемы), ассимиляционные (хлоренхима), запа­сающие, покровные, выделительные, механические (скелетные), проводящие и аэренхи­му. Причем в каждом таком типе представлены ткани с более узкой специализацией. На­пример, к ассимиляционным тканям листа относятся столбчатая и губчатая паренхима, обкладка пучка. К покровным тканям - эпидермис, ризодерма, перидерма, эндодерма и др.

У растений существует несколько единых для всего организма функциональных систем, каждая из которых состоит из нескольких типов тканей и специализированных клеток. Это системы автотрофного (листья) и почвенного питания (корни), сосудистая проводящая система, которую у растений можно рассматривать как внутренний орган, опорная система (механические и другие ткани), двигательная система (зоны растяжения и участки с обратимо изменяющимся тургором клеток), половая система. Сосудистая система у растений выполняет те же функции, что и кровеносная система животных, за исключением транспорта кислорода. Диффузный характер имеют дыхательная и выде­лительная системы. Дыхательный газообмен облегчается с помощью межклетников, аэренхимы, устьиц и чечевичек. У большинства растений отсутствуют дифференциро­ванные органы чувств. Нет у растений и нервной системы. Передача электрических им­пульсов осуществляется по проводящим пучкам.

Все эти особенности растительного организма связаны с его способом питания. Растению нет необходимости передвигаться в поисках пищи, как животным, так как СО 2 , вода, минеральные соли и свет есть в окружающей среде повсюду. Однако эти фак­торы присутствуют в «рассеянном» состоянии. Поэтому, чтобы максимально прибли­зиться к пище, растение должно удлинять осевые органы и развивать поверхности со­прикосновения с окружающей средой. Это и определяет форму растительного организ­ма, а также отсутствие у него специальных органов дыхания, так как растение дышит всей своей разветвленной и пластинчатой поверхностью. Медленно меняющиеся усло­вия окружающей среды не требуют от растений быстрых двигательных реакций. Однако при необходимости в процессе эволюции у них развивается способность к быстрым движениям, как, например, у мимозы или у венериной мухоловки.

Основные функции растительного организма и их взаимосвязь можно представить в виде следующей схемы:

На схеме видно, что центральное место в обмене веществ целого растения занима­ет транспорт веществ. Этот транспорт может осуществляться по нескольким непрерыв­ным фазам в теле растительного организма, клетки которого соединены друг с другом клеточными стенками и плазмодесмами: по апопласту (в фазе клеточных стенок и по межклетникам), по симпласту (синцитию протопластов) и, возможно, по эндопласту (т. е. по непрерывным цистернам ЭР). Однако основным путем дальнего транспорта ве­ществ по растению является проводящая (сосудистая) система, состоящая из ксилемы и флоэмы. Питательные вещества, поступающие по транспортным системам, пронизы­вающим все тело растения, при участии дыхания используются для синтеза специфиче­ских метаболитов и структур растущих и функционирующих клеток. При этом часть ве­ществ выделяется наружу или в вакуоль. На основе деления, роста и дифференцировки клеток осуществляется морфогенез растения, а также процессы размножения. Во многих явлениях жизнедеятельности существенную роль играют двигательные реакции расте­ний. Защитные функции растений реализуются за счет синтеза защитных веществ, часть из которых может выделяться наружу, а также благодаря формированию специальных анатомических и морфологических структур. Для всех этих процессов необходима энер­гия, освобождаемая при дыхании.

Таким образом, высшее растение - сложнейшая биологическая система, функцио­нальную активность которой обеспечивают 10-15 органов, 3-4 десятка различных специализированных тканей, несколько десятков специализированных групп клеток. У покрытосеменных насчитывается до 80 различных типов клеток.


«Система (от греч. systema - целое‚ составленное из частей) – множество элементов‚ находящихся в отношениях и связанных друг с другом‚ образующих определенную целостность‚ единство».

Советский энциклопедический словарь

РЕГУЛЯТОРНЫЕ СИСТЕМЫ РАСТЕНИЙ

Сложное строение растительного организма, дифференцированного на большое количество специализированных органоидов, клеток, тканей и органов, требует и совершенных систем управления. Целостность всякого, в том числе и растительного, организма обеспечивается системами регуляции. Регуляция обеспечивает гомеостаз организма, т. е. сохранение постоянства параметров внутренней среды, а также создает условия для его развития (эпигенеза).

В ходе эволюции сначала должны были возникнуть внутриклеточные системы регуляции. К ним относятся регуляция на уровне ферментов, генетическая и мембранная регуляции. Все эти системы регуляции тесно связаны между собой. Например, свойства мембран зависят от генной активности, а дифференциальная активность самих генов находится под контролем мембран. Больше того, в основе всех форм внутриклеточной регуляции лежит единый первичный принцип, который можно назвать рецепторно-конформационным. Во всех случаях белковая молекула - будь то фермент, рецептор или регуляторный белок - «узнает» специфический для нее фактор и, взаимодействуя с ним, изменяет свою конфигурацию.

С появлением многоклеточных организмов развиваются и совершенствуются межклеточные системы регуляции. Они включают в себя трофическую, электрофизиологическую системы и гормональную.

Конец работы -

Эта тема принадлежит разделу:

ЛЕКЦИИ ПО ФИЗИОЛОГИИ РАСТЕНИЙ

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ОБЛАСТНОЙ УНИВЕРСИТЕТ... Д А КЛИМАЧЕВ... ЛЕКЦИИ ПО ФИЗИОЛОГИИ РАСТЕНИЙ МОСКВА Климачев Д А...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

МОСКВА – 2006
Печатается по решению кафедры ботаники с основами сельского хозяйства. Климачев Д.А. Лекции по физиологии растений. М.: Изд-во МГОУ‚ 2006. – 282 с.

И основные направления исследований
В биосфере главенствующее положение занимает растительный мир-основа жизни на нашей планете. Растение обладает уникальным свойством-способностью накапливать энергии» света в органических веществах

Природа и функции основных химических компонентов растительной клетки
Земная кора и атмосфера содержит более ста химических элементов. Из всех этих элементов лишь ограниченное количество было отобрано в ходе эволюции для форми­рования сложного, высокоорганизованного

Элементарный состав растений
Азот - входит в состав белков, нуклеиновых кислот, фосфолипидов, порфиринов‚ цитохромов, коферментов (НАД, НАДФ). Поступает в растения в виде NО3-, NО2

Углеводы
Углеводы - сложные органические соединения, молекулы которых построены из атомов трех химических элементов: углерода, кислорода, водорода. Углеводы - основ­ной источник энергии для живых систем. Кр

Растительные пигменты
Пигменты - высокомолекулярные природные окрашенные соединения. Из не­скольких сотен пигментов, существующих в природе, важнейшими с биологической точки зрения являются металлопорфириновые и флавино

Фитогормоны
Известно, что жизнь животных контролируется нервной системой и гормонами, но далеко не все знают, что жизнь растений тоже контролируется гормонами, ко­торые называют фитогормонами. Они регулируют ж

Фитоалексины
Фитоалексины - это низкомолекулярные антибиотические вещества высших рас­тений, возникающие в растении в ответ на контакт с фитопатогенами; при быстром дос­тижении антимикробных концентраций они мо

Клеточная оболочка
Клеточная оболочка придает клеткам и тканям растений механическую прочность, защищает протоплазматическую мембрану от разрушения под влиянием гидростатиче­ского давления, развиваемого внутри клетки

Вакуоль
Вакуоль - полость, заполненная клеточ­ным соком и окруженная мембраной (тонопластом). В молодой клетке обычно имеется не­сколько мелких вакуолей (провакуолей). В про­цессе роста клетки образуется о

Пластиды
Различают три вида пластид: хлоропласта - зеленые, хромопласты - оранжевые, лейкопласты - бесцветные. Размер хлоропластов колеблется от 4 до 10 мкм. Число хлоропластов обычно со­ста

Регуляция активности ферментов
Изостерическая регуляция активности ферментов осуществляется на уровне их каталитических центров. Реакционная способность и направленность работы каталитического центра прежде всего зависят от коли

Генетическая система регуляции
Генетическая регуляция включает в себя регуляцию на уровне репликации‚ транскрипции, процессинга и трансляции. Молекулярные механизмы регуляции здесь те же (рН‚ ноны, модификация молекул, белки-рег

Мембранная регуляция
Мембранная регуляция осуществляется благодаря сдвигам в мембранном транспорте, связыванию или освобождению ферментов и регуляторных белков и путем изменения активности мембранных ферментов. Все фун

Трофическая регуляция
Взаимодействие с помощью питательных веществ - наиболее простой способ связи между клетками, тканями и органами. У растений корни и другие гетеротрофные органы зависят от поступления ассимилятов‚ о

Электрофизиологическая регуляция
Растительные организмы в отличие от животных не имеют нервной системы. Тем не менее, электрофизиологические взаимодействия клеток‚ тканей и органов играют существенную роль в координации функционал

Ауксины
Одни из первых экспериментов по регуляции роста у растений были выполнены Чарльзом Дарвином и его сыном Фрэнсисом и изложены в работе «Сила движения у растений»‚ опубликованной в 1881 г. Дарвины си

Цитокинины
Вещества, необходимые для индукции деления растительных клеток, получили название цитокининов. Впервые в чистом виде фактор клеточного деления был выделен из автоклавированного препарата ДНК спермы

Гиббереллины
Японский исследователь Е.Куросава в 1926 г. установил, что культуральная жидкость фитопатогенного гриба Gibberella fujikuroi содержит химическое вещество, способствующее сильному вытягиванию стебле

Абсцизины
В 1961 г. В.Лью и Х.Карнс из сухих зрелых коробочек хлопчатника выделили в кристаллическом виде вещество, ускоряющее опадение листьев, и назвали его абсцизином (от англ. abscission - отделение, опа

Брассиностероиды
Впервые в пыльце рапса и ольхи были обнаружены вещества, обладающие регулирующей рост активностью и названные брассинами. В 1979 г. было выделено активное начало (брассинолид) и определено его хими

Термодинамические основы водного обмена растений
Введение в физиологию растений понятий термодинамики дало возможность математически описать и объяснить причины, вызывающие как водообмен клеток, так и транспорт воды в системе почва - растение - а

Поглощение и передвижение воды.
Источником воды для растений является почва. Количество доступной для растения воды определяется ее состоянием в почве. Формы почвенной влаги: 1. Гравитационная вода – заполняет п

Транспирация.
В основе расходования воды растительным организмом лежит физический процесс испарения – переход воды из жидкого состояния в парообразное‚ происходящий в результате соприкосновения органов растения

Физиология устьичных движений
Степень раскрытия устьиц зависит от интенсивности света, оводненности тканей листа, концентрации СО2 в межклетниках, температуры воздуха и других факторов. В зависимости от фактора, запу

Пути снижения интенсивности транспирации
Перспективным способом снижения уровня транспирации является применение антитранспирантов. По механизму действия их можно разделить на две группы: вещества‚ которые вызывают закрывание устьиц; веще

История фотосинтеза
В старые времена врач обя­зан был знать ботанику, ведь многие лекарственные средст­ва готовились из растений. Неудивительно, что лекари не­редко выращивали растения, проводили с ними различные опыт

Лист как орган фотосинтеза
В процессе эволюции растений сформировался специализированный орган фотосинтеза – лист. Приспособление его к фотосинтезу шло в двух направлениях: возможно более полное поглощение и запасание лучист

Хлоропласты и фотосинтетические пигменты
Лист растения - орган, обеспечивающий условия для проте­кания фотосинтетического процесса. Функционально же фото­синтез приурочен к специализированным органеллам - хлоропластам. Хлоропласты высших

Хлорофиллы
В настоящее время известно несколько различных форм хлорофилла, которые обозначают латинскими буквами. Хлоропласты высших растений содержат хлорофилл а и хлорофилл b. Они были идентифицированы русс

Каротиноиды
Каротиноиды - жирорастворимые пигменты желтого, оран­жевого и красного цветов. Они входят в состав хлоропластов и хромопластов незеленых частей растений (цветков, плодов, кор­неплодов). В зеленых л

Организация и функционирование пигментных систем
Пигменты хлоропластов объединены в функциональные ком­плексы - пигментные системы, в которых реакционный центр - хлорофилл а, осуществляющий фотосенсибилизацию, связан процессами переноса энергии с

Циклическое и нециклическое фотосинтетическое фосфорилирование
Фотосинтетическое фосфорилирование, т. е. образование АТФ в хлоропластах в ходе реакций, активируемых светом, может осуществляться циклическим и нециклическим путями. Циклическое фотофосфо

Темновая фаза фотосинтеза
Продукты световой фазы фотосинтеза АТФ и НАДФ. Н2 ис­пользуются в темновой фазе для восстановления СО2 до уровня углеводов. Реакции восстановления происходят насто

С4-путь фотосинтеза
Путь усвоения СО2, установленный М. Кальвиным, является основным. Но существует большая группа растений, включаю­щая более 500 видов покрытосеменных, у которых первичными продуктами фикс

САМ-метаболизм
Цикл Хетча и Слэка обнаружен также у растений-суккулентов (из родов Crassula, Bryophyllum и др.). Но если у С4-растений кооперация достигнута за счет пространственного разделения двух ци

Фотодыхание
Фотодыхание - это индуцированное светом поглощение кис­лорода и выделение СО2, которое наблюдается только в расти­тельных клетках, содержащих хлоропласты. Химизм этого про­цесса значител

Сапротрофы
В настоящее время грибы относят к самостоятельному цар­ству, однако многие стороны физиологии грибов близки к фи­зиологии растений. По-видимому, сходные механизмы лежат и в основе их гетеротрофного

Насекомоядные растения
В настоящее время известно свыше 400 видов покрытосе­менных растений, которые ловят мелких насекомых и другие ор­ганизмы, переваривают свою добычу и используют продукты ее разложения как дополнител

Гликолиз
Гликолиз - это процесс генерации энергии в клетке, происхо­дящий без поглощения О2 и выделения СО2. Поэтому его ско­рость трудно измерить. Основной функцией гликолиза наряду с

Электрон-транспортная цепь
В рассмотренных ре­акциях цикла Кребса и при гликолизе молекулярный кислород не участвует. Потребность в кислороде возникает при окислении восстановленных переносчиков НАДН2 и ФАДН2

Окислительное фосфорилирование
Главной особенностью внут­ренней мембраны митохондрии является присутствие в ней бел­ков - переносчиков электронов. Эта мембрана непроницаема для ионов водорода, поэтому перенос последних через мем

Пентозофосфатное расщепление глюкозы
Пентозофосфатный цикл‚ или гексозомонофосфатный шунт‚ часто называют апотомическим окислением‚ в отличие от гликолитического цикла‚ называемого дихотомическим (распад гексозы на две триозы). Особен

Жиры и белки как дыхательный субстрат
Запасные жиры расходуются на дыхание проростков‚ развивающихся из семян‚ богатых жирами. Использование жиров начинается с их гидролитического расщепления липазой на глицерин и жирные кислоты‚ что п

Элементы‚ необходимые для растительного организма
Растения способны поглощать из окружающей среды практически все элементы периодической системы Д.И. Менделеева. Причем многие рассеянные в земной коре элементы накапливаются в растениях в значитель

Признаки голодания растений
Во многих случаях при недостатке элементов минерального питания у растений появляются характерные симптомы. В ряде случаев эти признаки голодания могут помочь установить функции данного элемента, а

Антагонизм ионов
Для нормальной жизнедеятельности как растительных, так и животных организмов в окружающей их среде должно быть определенное соотношение различных катионов. Чистые растворы солей одного какого-либо

Поглощение минеральных веществ
Корневая система растений поглощает из почвы как воду, так и питательные вещества. Оба эти процесса взаимосвязаны, но осуществляются на основе разных механизмов. Многочисленные исследования показал

Ионный транспорт в растении
В зависимости от уровня организации процесса различают три типа транспорта веществ в растении: внутриклеточный, ближний (внутри органа) и дальний (между органами). Внутриклеточный

Радиальное перемещение ионов в корне
Путем обменных процессов и диффузии ионы поступают в клеточные стенки ризодермы, а затем через коровую паренхиму направляются к проводящим пучкам. Вплоть до внутреннего слоя коры эндодермы возможно

Восходящий транспорт ионов в растении
Восходящий ток ионов осуществляется преимущественно по сосудам ксилемы, которые лишены живого содержимого и являются составной частью апопласта растения. Механизм ксилемного транспорта - массовый т

Поглощение ионов клетками листа
На долю проводящей системы приходится около 1/4 объема ткани листа. Суммарная длина разветвлений проводящих пучков в 1 см листовой пластинки достигает 1 м. Такая насыщенность тканей листа проводяще

Отток ионов из листьев
Почти все элементы, за исключением кальция и бора, могут оттекать из листьев, достигших зрелости и начинающих стареть. Среди катионов во флоэмных экссудатах доминирующее место принадлежит калию, на

Азотное питание растений
Основными усвояемыми формами азота для высших растений являются ионы аммония и нитрата. Наиболее полно вопрос об использовании растениями нитратного и аммиачного азота разработан академиком Д. Н. П

Ассимиляция нитратного азота
Азот входит в состав органических соединений только в восстановленной форме. Поэтому включение нитратов в обмен веществ начинается с их восстановления, которое может осуществляться и в корнях, и в

Ассимиляция аммиака
Аммиак, образовавшийся при восстановлении нитратов или молекулярного азота, а также поступивший в растение при аммонийном питании, далее усваивается в результате восстановительного аминирования кет

Накопление нитратов в растениях
Темпы поглощения нитратного азота часто могут превышать скорость его метаболизации. Связано это с тем, что многовековая эволюция растений шла в условиях недостатка азота и вырабатывались системы не

Клеточные основы роста и развития
Основой роста тканей, органов и всего растения являются образование и рост клеток меристематической ткани. Различают апикальную, латеральную и интеркалярную (вставочную) меристемы. Апикальная мерис

Закон большого периода роста
Скорость роста (линейного, массы) в онтогенезе клетки, ткани, любого органа и растения в целом непостоянна и может быть выражена сигмовидной кривой (рис. 26). Впервые эта закономерность роста была

Гормональная регуляция роста и развития растений
Многокомпонентная гормональная система участвует в управлении ростовыми и формообразовательными процессами растений, в реализации генетической программы роста и развития. В онтогенезе в отдельных ч

Влияние фитогормонов на рост и морфогенез растений
Прорастание семян. В набухающем семени центром образования или высвобождения гиббереллинов, цитокининов и ауксинов из связанного (конъюгированного) состояния является зародыш. Из з

Использование фитогормонов и физиологически активных веществ
Изучение роли отдельных групп фитогормонов в регуляции роста и развития растений определило возможность использования этих соединений, их синтетических аналогов и других физиологически активных вещ

Физиология покоя семян
Покой семян относится к завершающей фазе эмбрионального периода онтогенеза. Основным биологическим процессом, наблюдаемым при органическом покое семян, является их физиологическое дозревание‚ вслед

Процессы, протекающие при прорастании семян
При прорастании семян выделяют следующие фазы. Поглощение воды - сухие семена, находящиеся в состоянии покоя, поглощают воду из воздуха или какого-либо субстрата до наступления критической

Покой растений
Рост растений не является непрерывным процессом. У большинства растений время от времени наступают периоды резкого замедления или даже почти полной приостановки ростовых процессов – периоды покоя.

Физиология старения растений
Этап старения (старости и отмирания) - это период от полного прекращения плодоношения до естественной смерти растения. Старение - это период закономерного ослабления процессов жизнедеятельности, из

Осенняя окраска листьев и листопад
Осенью лиственные леса и сады меняют цвет листьев. На место монотонной летней окраски выступает большое разнообразие ярких тонов. Листья грабов, кленов и берез становятся светло-желтыми, д

Влияние микроорганизмов на рост растений
Многие почвенные микроорганизмы обладают способностью стимулировать рост растений. Полезные бактерии могут оказывать свое влияние непосредственно‚ поставляя растениям фиксированный азот‚ хелатирова

Движения растений
Растения в отличие от животных прикреплены к месту своего обитания и не могут перемещаться. Однако и для них характерно движение. Движение растений - это изменение положения органов растений в прос

Фототропизмы
Среди факторов, вызывающих проявление тропизмов, свет был первым, на действие которого человек обратил внимание. В древних литературных источниках были описаны изменения положения органов растений

Геотропизмы
Наряду со светом на растения оказывает влияние сила тяжести, определяющая положение растений в пространстве. Присущую всем растениям способность воспринимать земное притяжение и реагировать на него

Холодостойкость растений
Устойчивость растений к низким температурам подразделяют на холодостойкость и морозоустойчивость. Под холодостойкостью понимают способность растений переносить положительные температуры несколько в

Морозоустойчивость растений
Морозоустойчивость - способность растений переносить температуру ниже 0оС, низкие отрицательные температуры. Морозоустойчивые растения способны предотвращать или уменьшать действие низки

Зимостойкость растений
Непосредственное действие мороза на клетки - не единственная опасность, угрожающая многолетним травянистым и древесным культурам, озимым растениям в течение зимы. Помимо прямого действия мороза рас

Влияние на растения избытка влаги в почве
Постоянное или временное переувлажнение характерно для многих районов земного шара. Оно нередко наблюдается также при орошении, особенно проводимом методом затопления. Избыток воды в почве может бы

Засухоустойчивость растений
Обычным явлением для многих регионов России и государств СНГ стали засухи. Засуха - это длительный бездождливый период, сопровождаемый снижением относительной влажности воздуха, влажности почвы и п

Влияние на растения недостатка влаги
Недостаток воды в тканях растений возникает в результате превышения ее расхода на транспирацию перед поступлением из почвы. Это часто наблюдается в жаркую солнечную погоду к середине дня. При этом

Физиологические особенности засухоустойчивости
Способность растений переносить недостаточное влагообеспечение является комплексным свойством. Она определяется возможностью растений отсрочить опасное уменьшение оводненности протоплазмы (избегани

Жароустойчивость растений
Жароустойчивость (жаровыносливость) - способность растений переносить действие высоких температур, перегрев. Это генетически обусловленный признак. По жароустойчивости выделяют две группы

Солеустойчивость растений
За последние 50 лет уровень Мирового океана поднялся на 10 см. Эта тенденция, по предсказаниям ученых, будет продолжаться и дальше. Следствием этого является возрастающий дефицит пресной воды, а до

Основные термины и понятия
Вектор – самореплицирующаяся молекула ДНК (например‚ бактериальная плазмида)‚ используемая в генной инженерии для переноса генов. vir-гены

Из Agrobacterium tumefaciens
Почвенная бактерия Agrobacterium tumefaciens - фитопатоген, который в процессе своего жизненного цикла трансформирует клетки растений. Эта трансформация приводит к образованию корончатого галла - о

Векторные системы на основе Тi-плазмид
Самый простой способ использования природной способности Тi-плазмид к генетической трансформации растений предполагает встраивание интересующей исследователя нуклеотидной последовательности в Т-ДНК

Физические методы переноса генов в растительные клетки
Системы переноса генов с помощью Agrobacterium tumefaciens эффективно работают только в случае некоторых видов растений. В частности, однодольные растения, включая основные зерновые культуры (рис,

Бомбардировка микрочастицами
Бомбардировка микрочастицами, или биолистика, - наиболее многообещающий метод введения ДНК в растительные клетки. Золотые или вольфрамовые сферические частицы диаметром 0,4-1,2 мкм покрывают ДНК, о

Вирусам и гербицидам
Растения, устойчивые к насекомым-вредителям Если бы хлебные злаки можно было изменять методами генной инженерии так, чтобы они продуцировали функциональные инсектициды, то мы получили бы к

Воздействиям и старению
В отличие от большинства животных, растения физически не могут защитить себя от неблагоприятных воздействий со стороны окружающей среды: высокой освещенности, ультрафиолетового облучения, высоких т

Изменение окраски цветков
Цветоводы все время стараются создавать растения, цветки которых имеют более привлекательный внешний вид и лучше сохраняются после того, как их срежут. С помощью традиционных методов скрещивания за

Изменение пищевой ценности растений
За многие годы агрономы и селекционеры достигли больших успехов в улучшении качества и повышении урожайности самых разных сельскохозяйственных культур. Однако традиционные методы выведения новых со

Растения как биореакторы
Растения дают большое количество биомассы, а выращивание их не составляет труда, поэтому разумно было попытаться создать трансгенные растения, способные синтезировать коммерчески ценные белки и хим