Какие вещества растворяются в воде химия. Растворимость твердых веществ в воде

Растворимость — это свойство вещества образовывать с различными растворителями гомогенные смеси. Как мы уже упоминали, количество растворяемого вещества, необходимое для получения насыщенного раствора и определяет этого вещества. В связи с этим растворимость имеет ту же меру, что и состав, например, массовая доля растворенного вещества в его насыщенном растворе или количество растворенного вещества в его насыщенном растворе.

Все вещества с точки зрения его растворимости можно классифицировать на:

  • Хорошо растворимые – в 100 г воды способно раствориться более 10 г. вещества.
  • Малорастворимые — в 100 г воды способно раствориться менее 1 г. вещества.
  • Нерастворимые — в 100 г воды способно раствориться менее 0,01 г. вещества.

Известно, что если полярность растворяемого вещества схожа с полярностью растворителя, то оно скорее всего растворится. Если же полярности разные, то с большой долей вероятности раствора не получится. Почему же так происходит?

Полярный растворитель – полярное растворяемое вещество.

Для примера опишем раствор поваренной соли в воде. Как мы уже знаем, молекулы воды имеют полярную природу с частичным положительным зарядом на каждом атоме водорода и частичным отрицательным – на атоме кислорода. А твердые ионные вещества, вроде хлорида натрия, содержат катионы и анионы. Поэтому, когда поваренную соль помещают в воду, частичный положительный заряд на атомах водорода молекул воды притягивается отрицательно заряженным ионом хлора в NaCl. Аналогично, частичный отрицательный заряд на атомах кислорода молекул воды притягивается положительно заряженным ионом натрия в NaCl. И, поскольку притяжение молекул воды для ионов натрия и хлора сильнее взаимодействия, удерживающего их вместе, соль растворяется.

Неполярный растворитель – неполярное растворяемое вещество.

Попробуем растворить кусочек тетрабромида углерода в тетрахлориде углерода. В твердом состоянии молекулы тетрабромида углерода удерживаются вместе благодаря очень слабому дисперсионному взаимодействию. При помещению его в тетрахлорид углерода его молекулы будут располагаться более хаотично, т.е. увеличивается энтропия системы и соединение растворится.

Равновесия при растворении

Рассмотрим раствор малорастворимого соединения. Для того, чтобы между твердым веществом и его раствором установилось равновесие, раствор должен быть насыщенным и соприкасаться с нерастворившейся частью твердого вещества.

Например, пусть равновесие установилось в насыщенном растворе хлорида серебра:

AgCl(тв)=Ag + (водн.) + Cl — (водн.)

Рассматриваемое соединение является ионным и в растворенном виде присутствует в виде ионов. Нам уже известно, что в гетерогенных реакциях концентрация твердого вещества остается постоянной, что позволяет включить ее в константу равновесия. Поэтому выражение для будет выглядеть следующим образом:

K = [ Cl — ]

Такая константа называется произведением растворимости ПР , при условии, что концентрации выражаются в моль/л.

ПР = [ Cl — ]

Произведение растворимости равно произведению молярных концентраций ионов, участвующих в равновесии, в степенях, равных соответствующим стехиометрическим коэффициентам в уравнении равновесия.
Следует отличать понятие растворимости и произведения растворимости. Растворимость вещества может меняться при добавлении в раствор еще какого-либо вещества, а произведение растворимости не зависит от присутствия в растворе дополнительных веществ. Хотя эти две величины взаимосвязаны, что позволяет зная одну величину, вычислить другую.

Зависимость растворимости от температуры и давления

Вода играет важную роль в нашей жизни, она способна растворять большое количество веществ, что имеет большое значение для нас. Поэтому основное внимание уделим именно водным растворам.

Растворимость газов повышается при росте давления газа над растворителем, а растворимость твердых и жидких веществ зависит от давления несущественно.

Уильям Генри впервые пришел к выводу, что количество газа, которое растворяется при постоянной температуре в заданном объеме жидкости, прямо пропорциональна его давлению . Данное утверждение известно как закон Генри и выражается оно следующим соотношением:

С = k·P ,

где С – растворимость газа в жидкой фазе

Р – давление газа над раствором

k – постоянная Генри

На следующем рисунке приведены кривые зависимости растворимости некоторых газов в воде от температуры при постоянном давлении газа над раствором (1 атм)

Как видно, растворимость газов уменьшается с ростом температуры, в отличие от большинства ионных соединений, растворимость которых растет с увеличением температуры.

Влияние температуры на растворимость зависит от изменения энтальпии, которое происходит при процессе растворения. При протекании эндотермического процесса происходит увеличение растворимости с ростом температуры. Это следует из уже известного нам : если изменить одно из условий, при котором система находится в состоянии равновесия – концентрацию, давление или температуру, - то равновесие сместится в направлении той реакции, которая противодействует этому изменению.

Представим, что мы имеем дело с раствором, находящимся в равновесии с частично растворившимся веществом. И этот процесс является эндотермическим, т.е. идет с поглощением теплоты из вне, тогда:

Вещество + растворитель + теплота = раствор

Согласно принципу Ле – Шателье, при эндотермическом процессе, равновесие смещается в направлении, способствующее уменьшению поступления теплоты, т.е. вправо. Таким образом, растворимость увеличивается. Если же процесс экзотермический , то повышение температуры приводит к уменьшению растворимости.


зависимость растворимости ионных соединеий от Температуры

Известно, что существуют растворы жидкостей в жидкостях . Некоторые из них могут растворяться друг в друге в неограниченных количествах, как вода и этиловый спирт, а другие — растворяются лишь частично. Так, если попробовать растворить четыреххлористый углерод в воде, то при этом образуются два слоя: верхний — насыщенный раствор воды в четыреххлористом углероде и нижний - насыщенный раствор четыреххлористого углерода в воде. При повышении температуры, в основном, взаимная растворимость таких жидкостей увеличивается. Это происходит до тех пор, пока не будет достигнута критическая температура, при которой обе жидкости смешиваются в любых пропорциях. От давления растворимость жидкостей практически не зависит.

При вводе в смесь, состоящую из двух несмешивающихся между собой жидкостей, вещества, которое может растворяться в любой из этих двух жидкостей, то его распределение между этими жидкостями будет пропорционально растворимости в каждой из них. Т.е. согласно закону распределения вещество, способное растворяться в двух несмешивающихся растворителях, распределяется между ними так, что отношение его концентраций в этих растворителях при постоянной температуре остается постоянным, независимо от общего количества растворенного вещества:

С 1 /С 2 = К,

где С 1 и С 2 – концентрации вещества в двух жидкостях

К – коэффициент распределения.

Категории ,

РАСТВОРИМОСТЬЮ называется способность вещества растворяться в том или ином растворителе. Мерой растворимости вещества при данных условиях является его содержание в насыщенном растворе. Если в 100 г воды растворяется более 10 г вещества, то такое вещество называют хорошо растворимым . Если растворяется менее 1 г вещества – вещество малорастворимо . Наконец, вещество считают практически нерастворимым , если в раствор переходит менее 0,01 г вещества. Абсолютно нерастворимых веществ не бывает. Даже когда мы наливаем воду в стеклянный сосуд, очень небольшая часть молекул стекла неизбежно переходит в раствор.

Растворимость, выраженная при помощи массы вещества, которое может раствориться в 100 г воды при данной температуре, называют также коэффициентом растворимости .

Растворимость некоторых веществ в воде при комнатной температуре.

Растворимость большинства (но не всех!) твердых веществ с увеличением температуры увеличивается, а растворимость газов, наоборот, уменьшается. Это связано прежде всего с тем, что молекулы газов при тепловом движении способны покидать раствор гораздо легче, чем молекулы твердых веществ.

Если измерять растворимость веществ при разных температурах, то обнаружится, что одни вещества заметно меняют свою растворимость в зависимости от температуры, другие – не очень сильно

При растворение тверд тел в воде объем системы обычно изменяется незначительно.Поэтому растворимость веществ, находящихся в тверд состоянии, практически не зависит от давления.

Жидкости так же могут растворятся жидкостях . Некоторые из них неограниченно растворимы одна в другой, т.е смешиваются друг с другом в любых пропорциях, как например, спирт и вода, другие –взаимно растворяются лишь до известного предела. Так если взболтать диэтиловый эфир с водой то образуется два слоя: верхний представляет собой насыщенный раствор воды в эфире, а нижний – насыщенный раствор эфира в воде. В большинстве подобных случаев с повышением температуры взаимная растворимость жидкостей увеличивается до тех пор, пока не будет достигнута температура, при которой обе жидкости смешиваются в любых пропорциях.

Растворение газов в воде представляет собой экзотермический процесс. Поэтому растворимость газов с повышением температуры уменьшается. Если оставить в теплом помещении стакан с холодной водой, то внутренние стенки его покрываются пузырьками газа-это воздух, который был растворен в воде, выделяется из нее вследствие нагревания. Кипячением можно удалить из воды весь растворенный в ней воздух.

Раствор – это гомогенная система, состоящая из двух или более веществ, содержание которых можно изменять в определенных пределах без нарушения однородности.

Водные растворы состоят из воды (растворителя) и растворенного вещества. Состояние веществ в водном растворе при необходимости обозначается нижним индексом (р), например, KNO 3 в растворе – KNO 3(p) .

Растворы, которые содержат малое количество растворенного вещества, часто называют разбавленными, а растворы с высоким содержанием растворенного вещества – концентрированными. Раствор, в котором возможно дальнейшее растворение вещества, называется ненасыщенным, а раствор, в котором вещество перестает растворяться при данных условиях, – насыщенным. Последний раствор всегда находится в контакте (в гетерогенном равновесии) с нерастворившимся веществом (один кристалл или более).

В особых условиях, например при осторожном (без перемешивания) охлаждении горячего ненасыщенного раствора твердого вещества, может образоваться пересыщенный раствор. При введении кристалла вещества такой раствор разделяется на насыщенный раствор и осадок вещества.

В соответствии с химической теорией растворов Д. И. Менделеева растворение вещества в воде сопровождается, во-первых, разрушением химических связей между молекулами (межмолекулярные связи в ковалентных веществах) или между ионами (в ионных веществах), и, таким образом, частицы вещества смешиваются с водой (в которой также разрушается часть водородных связей между молекулами). Разрыв химических связей совершается за счет тепловой энергии движения молекул воды, при этом происходит затрата энергии в форме теплоты.

Во-вторых, попав в воду, частицы (молекулы или ионы) вещества подвергаются гидратации. В результате образуются гидраты – соединения неопределенного состава между частицами вещества и молекулами воды (внутренний состав самих частиц вещества при растворении не изменяется). Такой процесс сопровождается выделением энергии в форме теплоты за счет образования новых химических связей в гидратах.

В целом раствор либо охлаждается (если затрата теплоты превосходит ее выделение), либо нагревается (в противном случае); иногда – при равенстве затраты теплоты и ее выделения – температура раствора остается неизменной.

Многие гидраты оказываются настолько устойчивыми, что не разрушаются и при полном выпаривании раствора. Так, известны твердые кристаллогидраты солей CuSO 4 5Н 2 O, Na 2 CO 3 10Н 2 O, KAl(SO 4) 2 12Н 2 O и др.

Содержание вещества в насыщенном растворе при Т = const количественно характеризует растворимость этого вещества. Обычно растворимость выражается массой растворенного вещества, приходящейся на 100 г воды, например 65,2 г КBr/100 г Н 2 O при 20 °C. Следовательно, если 70 г твердого бромида калия ввести в 100 г воды при 20 °C, то 65,2 г соли перейдет в раствор (который будет насыщенным), а 4,8 г твердого КBr (избыток) останется на дне стакана.

Следует запомнить, что содержание растворенного вещества в насыщенном растворе равно , в ненасыщенном растворе меньше и в пересыщенном растворе больше его растворимости при данной температуре. Так, раствор, приготовленный при 20 °C из 100 г воды и сульфата натрия Na 2 SO 4 (растворимость 19,2 г/100 г Н 2 O), при содержании

15,7 г соли – ненасыщенный;

19.2 г соли – насыщенный;

2O.3 г соли – пересыщенный.

Растворимость твердых веществ (табл. 14) обычно увеличивается с ростом температуры (КBr, NaCl), и лишь для некоторых веществ (CaSO 4 , Li 2 CO 3) наблюдается обратное.

Растворимость газов при повышении температуры падает, а при повышении давления растет; например, при давлении 1 атм растворимость аммиака составляет 52,6 (20 °C) и 15,4 г/100 г Н 2 O (80 °C), а при 20 °C и 9 атм она равна 93,5 г/100 г Н 2 O.

В соответствии со значениями растворимости различают вещества:

хорошо растворимые, масса которых в насыщенном растворе соизмерима с массой воды (например, КBr – при 20 °C растворимость 65,2 г/100 г Н 2 O; 4,6М раствор), они образуют насыщенные растворы с молярностью более чем 0,1М;

малорастворимые, масса которых в насыщенном растворе значительно меньше массы воды (например, CaSO 4 – при 20 °C растворимость 0,206 г/100 г Н 2 O; 0,015М раствор), они образуют насыщенные растворы с молярностью 0,1–0,001М;

практически нерастворимые, масса которых в насыщенном растворе пренебрежимо мала по сравнению с массой растворителя (например, AgCl – при 20 °C растворимость 0,00019 г на 100 г Н 2 O; 0,0000134М раствор), они образуют насыщенные растворы с молярностью менее чем 0,001М.

По справочным данным составлена таблица растворимости распространенных кислот, оснований и солей (табл. 15), в которой указан тип растворимости, отмечены вещества, не известные науке (не полученные) или полностью разлагающиеся водой.

Условные обозначения, используемые в таблице:

«р» – хорошо растворимое вещество

«м» – малорастворимое вещество

«н» – практически нерастворимое вещество

«-» – вещество не получено (не существует)

«» – вещество смешивается с водой неограниченно




Примечание. Данная таблица отвечает приготовлению насыщенного раствора при комнатной температуре путем внесения вещества (в соответствующем агрегатном состоянии) в воду. Следует учесть, что получение осадков малорастворимых веществ с помощью реакций ионного обмена возможно не всегда (подробнее см. 13.4).

13.2. Электролитическая диссоциация

Растворение любого вещества в воде сопровождается образованием гидратов. Если при этом в растворе не происходит формульных изменений у частиц растворенного вещества, то такие вещества относят к неэлектролитам. Ими являются, например, газ азот N 2 , жидкость хлороформ СНCl 3 , твердое вещество сахароза C 12 Н 22 О 11 , которые в водном растворе существуют в виде гидратов их молекул.

Известно много веществ (в общем виде МА), которые после растворения в воде и образования гидратов молекул MA nН 2 O претерпевают существенные формульные изменения. В результате в растворе появляются гидратированные ионы – катионы М + nН 2 O и анионы А nН 2 O:




Такие вещества относят к электролитам.

Процесс появления гидратированных ионов в водном растворе называется электролитической диссоциацией (С. Аррениус, 1887).

Электролитическая диссоциация ионных кристаллических веществ (М +)(А -) в воде является необратимой реакцией:



Такие вещества относятся к сильным электролитам, ими являются многие основания и соли, например:



Электролитическая диссоциация веществ MA, состоящих из полярных ковалентных молекул, является обратимой реакцией:



Такие вещества относят к слабым электролитам, ими являются многие кислоты и некоторые основания, например:





В разбавленных водных растворах слабых электролитов мы всегда обнаружим как исходные молекулы, так и продукты их диссоциации – гидратированные ионы.

Количественная характеристика диссоциации электролитов называется степенью диссоциации и обозначается? , всегда? > 0.

Для сильных электролитов? = 1 по определению (диссоциация таких электролитов полная).

Для слабых электролитов степень диссоциации – отношение молярной концентрации продиссоциировавшего вещества (с д) к общей концентрации вещества в растворе (с):



Степень диссоциации – это доля от единицы или от 100 %. Для слабых электролитов? « С 1 (100 %).

Для слабых кислот Н n А степень диссоциации по каждой следующей ступени резко уменьшается по сравнению с предыдущей:




Степень диссоциации зависит от природы и концентрации электролита, а также от температуры раствора; она растет при уменьшении концентрации вещества в растворе (т. е. при разбавлении раствора) и при нагревании .

В разбавленных растворах сильных кислот Н n А их гидроанионы Н n-1 А не существуют, например:




B концентрированных растворах содержание гидроанионов (и даже исходных молекул) становится заметным:



(суммировать уравнения стадий обратимой диссоциации нельзя!). При нагревании значения? 1 и? 2 возрастают, что способствует протеканию реакций с участием концентрированных кислот.

Кислоты – это электролиты, которые при диссоциации поставляют в водный раствор катионы водорода и никаких других положительных ионов не образуют:



Распространенные сильные кислоты:




В разбавленном водном растворе (условно до 10 %-ного или 0,1-молярного) эти кислоты диссоциируют полностью. Для сильных кислот Н n А в список вошли их гидроанионы (анионы кислых солей), также диссоциирующие полностью в этих условиях.

Распространенные слабые кислоты:




Основания – это электролиты, которые при диссоциации поставляют в водный раствор гидроксид-ионы и никаких других отрицательных ионов не образуют:



Диссоциация малорастворимых оснований Mg(OH) 2 , Cu(OH) 2 , Mn(OH) 2 , Fe(OH) 2 и других практического значения не имеет.

К сильным основаниям (щелочам ) относятся NaOH, КОН, Ва(ОН) 2 и некоторые другие. Самым известным слабым основанием является гидрат аммиака NH 3 Н 2 O.

Средние соли – это электролиты, которые при диссоциации поставляют в водный раствор любые катионы, кроме Н + , и любые анионы, кроме ОН - :



Речь идет только о хорошо растворимых солях. Диссоциация малорастворимых и практически нерастворимых солей значения не имеет.

Аналогично диссоциируют двойные соли:



Кислые соли (большинство из них растворимы в воде) диссоциируют полностью по типу средних солей:



Образующиеся гидроанионы подвергаются, в свою очередь, воздействию воды:

а) если гидроанион принадлежит сильной кислоте, то он сам диссоциирует также полностью:



и полное уравнение диссоциации запишется в виде:



(растворы таких солей обязательно будут кислыми, как и растворы соответствующих кислот);

б) если гидроанион принадлежит слабой кислоте, то его поведение в воде двойственно – либо неполная диссоциация по типу слабой кислоты:



либо взаимодействие с водой (называемое обратимым гидролизом):



При? 1 > ? 2 преобладает диссоциация (и раствор соли будет кислым), а при? 1 > ? 2 – гидролиз (и раствор соли будет щелочным). Так, кислыми будут растворы солей с анионами HSO 3 - , H 2 PO 4 - , H 2 AsO 4 - и HSeO 3 - , растворы солей с другими анионами (их большинство) будут щелочными. Другими словами, название «кислые» для солей с большинством гидроанионов не предполагает, что эти анионы будут вести себя в растворе как кислоты (гидролиз гидроанионов и расчет отношения между? 1 и а 2 изучаются только в высшей школе).

Оснoвные соли MgCl(OH), Cu 2 CO 3 (OH) 2 и другие в своем большинстве практически нерастворимы в воде, и обсуждать их поведение в водном растворе невозможно.

13.3. Диссоциация воды. Среда растворов

Сама вода – это очень слабый электролит:



Концентрации катиона Н + и аниона ОН - в чистой воде весьма малы и составляют 1 10 -7 моль/л при 25 °C.

Катион водорода Н + представляет собой простейшее ядро – протон р + (электронная оболочка катиона Н + – пустая, 1s 0). У свободного протона велики подвижность и проникающая способность, в окружении полярных молекул Н 2 O он не может оставаться свободным. Протон тут же присоединяется к молекуле воды:



В дальнейшем для простоты оставляется запись Н + (но подразумевается Н 3 O +).

Типы среды водных растворов:





Для воды при комнатной температуре имеем:



следовательно, в чистой воде:



Это равенство справедливо и для водных растворов:



Практическая шкала рН отвечает интервалу 1-13 (разбавленные растворы кислот и оснований):




В практически нейтральной среде с рН = 6–7 и рН = 7–8 концентрация Н + и ОН - очень мала (1 10 -6 – 1 10 -7 моль/л) и почти равна концентрации этих ионов в чистой воде. Такие растворы кислот и оснований считаются предельно разбавленными (содержат очень мало вещества).

Для практического установления типа среды водных растворов служат индикаторы – вещества, которые окрашивают в характерный цвет нейтральные, кислые и/или щелочные растворы.

Распространенные в лаборатории индикаторы – это лакмус, метилоранж и фенолфталеин.

Метилоранж (индикатор на кислотную среду) становится розовым в сильнокислом растворе (табл. 16), фенолфталеин (индикатор на щелочную среду) – малиновым в сильнощелочном растворе, а лакмус используется во всех средах.



13.4. Реакции ионного обмена

В разбавленных растворах электролитов (кислот, оснований, солей) химические реакции протекают обычно при участии ионов . При этом все элементы реагентов могут сохранять свои степени окисления (обменные реакции) или изменять их (окислительно-восстановительные реакции). Примеры, приводимые далее, относятся к обменным реакциям (о протекании окислительно-восстановительных реакций см. разд. 14).

В соответствии с правилом Бертолле, ионные реакции протекают практически необратимо, если образуются твердые малорастворимые вещества (они выпадают в осадок), легколетучие вещества (они выделяются в виде газов) или растворимые вещества – слабые электролиты (в том числе и вода). Ионные реакции изображаются системой уравнений - молекулярным, полным и кратким ионным. Ниже полные ионные уравнения опущены (читателю предлагается составить их самому).

При написании уравнений ионных реакций надо обязательно руководствоваться таблицей растворимости (см. табл. 8).

Примеры реакций с выпадением осадков:





Внимание! Указанные в таблице растворимости (см. табл. 15) малорастворимые («м») и практически нерастворимые («н») соли выпадают в осадок именно в том виде, как они представлены в таблице (СаF 2 v, PbI 2 v, Ag 2 SO 4 v, AlPO 4 v и т. д.).

В табл. 15 не указаны карбонаты – средние соли с анионом CO 3 2- . Следует иметь в виду, что:

1) К 2 СO 3 , (NH 4) 2 CO 3 и Na 2 CO 3 растворимы в воде;

2) Ag 2 CO 3 , ВаСO 3 и СаСO 3 практически нерастворимы в воде и выпадают в осадок как таковые, например:



3) соли остальных катионов, такие как MgCO 3 , CuCO 3 , FeCO 3 , ZnCO 3 и другие, хотя и нерастворимы в воде, но не осаждаются из водного раствора при проведении ионных реакций (т. е. их нельзя получить этим способом).

Например, карбонат железа (II) FeCO 3 , полученный «сухим путем» или взятый в виде минерала сидерит, при внесении в воду осаждается без видимого взаимодействия. Однако при попытке его получения по обменной реакции в растворе между FeSO 4 и К 2 СO 3 выпадает осадок основной соли (приведен условный состав, на практике состав более сложный) и выделяется углекислый газ:



Аналогично FeCO 3 , сульфид хрома (III) Cr 2 S 3 (нерастворимый в воде) не осаждается из раствора:



В табл. 15 не указаны также соли, которые разлагаются водой - сульфид алюминия Al 2 S 3 (а также BeS) и ацетат хрома (III) Cr(СН 3 СОО) 3:



Следовательно, эти соли также нельзя получить по обменной реакции в растворе:




(в последней реакции состав осадка более сложный; подробнее такие реакции изучают в высшей школе).

Примеры реакций с выделением газов:




Примеры реакций с образованием слабых электролитов:




Если реагенты и продукты обменной реакции не являются сильными электролитами, ионный вид уравнения отсутствует, например:


13.5. Гидролиз солей

Гидролиз соли – это взаимодействие ее ионов с водой, приводящее к появлению кислотной или щелочной среды, но не сопровождающееся образованием осадка или газа (ниже речь идет о средних солях).

Процесс гидролиза протекает только с участием растворимых солей и состоит из двух этапов:

1) диссоциация соли в растворе – необратимая реакция (степень диссоциации? = 1, или 100 %);

2) собственно гидролиз, т. е. взаимодействие ионов соли с водой, – обратимая реакция (степень гидролиза? < 1, или 100 %).

Уравнения 1-го и 2-го этапов – первый из них необратим, второй обратим – складывать нельзя!

Отметим, что соли, образованные катионами щелочей и анионами сильных кислот, гидролизу не подвергаются, они лишь диссоциируют при растворении в воде. В растворах солей КCl, NaNO 3 , Na 2 SO 4 и BaI 2 среда нейтральная .

В случае взаимодействия аниона гидролизом соли по аниону.



Диссоциация соли KNO 2 протекает полностью, гидролиз аниона NO 2 – в очень малой степени (для 0,1М раствора – на 0,0014 %), но этого оказывается достаточно, чтобы раствор стал щелочным (среди продуктов гидролиза присутствует ион ОН -), в нем рН = 8,14.

Гидролизу подвергаются анионы только слабых кислот (в данном примере – нитрит-ион NO 2 - , отвечающий слабой азотистой кислоте HNO 2). Анион слабой кислоты притягивает к себе катион водорода, имеющийся в воде, и образует молекулу этой кислоты, а гидроксид-ион остается свободным:



Список гидролизующихся анионов:









Обратите внимание, что в примерах (в – д) нельзя увеличивать число молекул воды и вместо гидроанионов (HCO 3 - , HPO 4 2- , HS -) писать формулы соответствующих кислот (Н 2 СO 3 , Н 3 РO 4 , H 2 S). Гидролиз – обратимая реакция, и протекать «до конца» (до образования кислоты Н n А) он не может.

Если бы такая неустойчивая кислота, как Н 2 СO 3 , образовалась в растворе своей соли Na 2 CO 3 , то наблюдалось бы выделение из раствора газа СO 2 (Н 2 СO 3 = СO 2 v + Н 2 O). Однако при растворении соды в воде образуется прозрачный раствор без газовыделения, что является свидетельством неполноты протекания гидролиза аниона СО| с появлением в растворе только гидроаниона угольной кислоты HCOg.

Степень гидролиза соли по аниону зависит от степени диссоциации продукта гидролиза – кислоты (HNO 2 , НClO, HCN) или ее гидроаниона (HCO 3 - , HPO 4 2- , HS -); чем слабее кислота, тем выше степень гидролиза. Например, ионы СО 3 2- , РО 4 3- и S 2- подвергаются гидролизу в большей степени (в 0,1 М растворах ~ 5 %, 37 % и 58 % соответственно), чем ион NO 2 , так как диссоциация Н 2 СO 3 и H 2 S по 2-й ступени, а Н 3 РO 4 по 3-й ступени (т. е. диссоциация ионов HCO 3 - , HS - и HPO 4 2-) протекает значительно меньше, чем диссоциация кислоты HNO 2 . Поэтому растворы, например, Na 2 CO 3 , К 3 РO 4 и BaS будут сильнощелочными (в чем легко убедиться по мылкости раствора соды на ощупь). Избыток ионов ОН в растворе легко обнаружить индикатором или измерить специальными приборами (рН-метрами).

Если в концентрированный раствор сильно гидролизующейся по аниону соли, например Na 2 CO 3 , внести алюминий, то последний (вследствие амфотерности) прореагирует с ОН -



и будет наблюдаться выделение водорода. Это – дополнительное доказательство протекания гидролиза иона СО 3 2- (ведь в раствор Na 2 CO 3 мы не добавляли щелочь NaOH!).

В случае взаимодействия катиона растворенной соли с водой процесс называется гидролизом соли по катиону:



Диссоциация соли Ni(NO 3) 2 протекает полностью, гидролиз катиона Ni 2+ – в очень малой степени (для 0,1 М раствора – на 0,001 %), но этого оказывается достаточно, чтобы раствор стал кислым (среди продуктов гидролиза присутствует ион Н +), в нем рН = 5,96.

Гидролизу подвергаются катионы только малорастворимых основных и амфотерных гидроксидов и катион аммония NH 4 + . Гидролизуемый катион притягивает к себе анион ОН - , имеющийся в воде, и образует соответствующий гидроксокатион, а катион Н + остается свободным:



Катион аммония в этом случае образует слабое основание – гидрат аммиака:



Список гидролизующихся катионов:




Примеры:





Обратите внимание, что в примерах (а – в) нельзя увеличивать число молекул воды и вместо гидроксокатионов FeOH 2+ , CrOH 2+ , ZnOH + писать формулы гидроксидов FeO(OH), Cr(OH) 3 , Zn(OH) 2 . Если бы гидроксиды образовались, то из растворов солей FeCl 3 , Cr 2 (SO 4) 3 и ZnBr 2 выпали бы осадки, чего не наблюдается (эти соли образуют прозрачные растворы).

Избыток катионов Н + легко обнаружить индикатором или измерить специальными приборами. Можно также

проделать такой опыт. В концентрированный раствор сильно гидролизующейся по катиону соли, например AlCl 3:



вносится магний или цинк. Последние прореагируют с Н + :



и будет наблюдаться выделение водорода. Этот опыт – дополнительное свидетельство протекания гидролиза катиона Al 3+ (ведь в раствор AlCl 3 мы не добавляли кислоту!).

Примеры заданий частей А, В

1. Сильный электролит – это

1) С 6 Н 5 ОН

2) СН 3 СООН

3) С 2 Н 4 (ОН) 2


2. Слабый электролит – это

1) иодоводород

2) фтороводород

3) сульфат аммония

4) гидроксид бария


3. В водном растворе их каждых 100 молекул образуется 100 катионов водорода для кислоты

1) угольной

2) азотистой

3) азотной


4-7. В уравнении диссоциации слабой кислоты по всем возможным ступеням

сумма коэффициентов равна


8-11. Для уравнений диссоциации в растворе двух щелочей набора

8. NaOH, Ва(ОН) 2

9. Sr(OH) 2 , Са(ОН) 2

10. КОН, LiOH

11. CsOH, Са(ОН) 2

общая сумма коэффициентов составляет


12. В известковой воде содержится набор частиц

1) СаОН+, Са 2+ , ОН -

2) Са 2+ , ОН - , Н 2 O

3) Са 2+ , Н 2 O, О 2-

4) СаОН + , О 2- , Н+


13-16. При диссоциации одной формульной единицы соли

14. К 2 Cr 2 O 7

16. Cr 2 (SO 4) 3

число образующихся ионов равно


17. Наибольшее количество иона РО 4 -3 можно обнаружить в растворе, содержащем 0,1 моль


18. Реакция с выпадением осадка – это

1) MgSO 4 + H 2 SO 4 >…

2) AgF + HNO 3 >…

3) Na 2 HPO 4 + NaOH >…

4) Na 2 SiO 3 + HCl >…


19. Реакция с выделением газа – это

1) NaOH + СН 3 СООН >…

2) FeSO 4 + КОН >…

3) NaHCO 3 + HBr >…

4) Pl(NO 3) 2 + Na 2 S >…


20. Краткое ионное уравнение ОН - + Н + = Н 2 O отвечает взаимодействию

1) Fe(OH) 2 + НCl >…

2) NaOH + HNO 2 >…

3) NaOH + HNO 3 >…

4) Ва(ОН) 2 + KHSO 4 >…


21. В ионном уравнении реакции

SO 2 + 2OН = SO 3 2- + Н 2 O

ион ОН - может отвечать реагенту

4) С 6 Н 5 ОН


22-23. Ионное уравнение

22. ЗСа 2+ + 2РO 4 3- = Са 3 (РO 4) 2 v

23. Са 2+ + НРO 4 2- = СаНРO 4 v

соответствует реакции между

1) Са(ОН) 2 и К 3 РO 4

2) СаCl 2 и NaH 2 PO 4

3) Са(ОН) 2 и Н 3 РО 4

4) СаCl и К 2 НРO 4


24-27. В молекулярном уравнении реакции

24. Na 3 PO 4 + AgNO 3 >…

25. Na 2 S + Cu(NO 3) 2 >…

26. Ca(HSO 3) 2 >…

27. K 2 SO 3 + 2HBr >… сумма коэффициентов равна


28-29. Для реакции полной нейтрализации

28. Fe(OH) 2 + HI >…

29. Ва(ОН) 2 + H 2 S >…

сумма коэффициентов в полном ионном уравнении составляет


30-33. В кратком ионном уравнении реакции

30. NaF + AlCl 3 >…

31. К 2 СO 3 + Sr(NO 3) 2 >…

32. Mgl 2 + К 3 РO 4 >…

33. Na 2 S + H 2 SO 4 >…

сумма коэффициентов равна


34-36. В водном растворе соли

34. Са(ClO 4) 2

36. Fe 2 (SO 4) 3

образуется среда

1) кислотная

2) нейтральная

3) щелочная


37. Концентрация гидроксид-иона увеличивается после растворения в воде соли


38. Нейтральная среда будет в конечном растворе после смешивания растворов исходных солей в наборах

1) ВаCl 2 , Fe(NO 3) 3

2) Na 2 CO 3 , SrS

4) MgCl 2 , RbNO 3


39. Установите соответствие между солью и ее способностью к гидролизу.




40. Установите соответствие между солью и средой раствора.




41. Установите соответствие между солью и концентрацией катиона водорода после растворения соли в воде.



Растворение - это самопроизвольный обратимый физико-химический процесс, включающий три основные стадии.

    Стадия атомизации - разрушение кристаллической решетки растворяемого о вещества; процесс эндотермический (D ат Н>О).

2) Стадия сольватации (гидратации) - образование сольватных (гидратных) оболочек вокруг частиц растворенного вещества; процесс экзотермический, (D сол Н<О).

3) Стадия диффузии - равномерное распределение растворенного вещества по всему объему раствора, (D диф Н ≈ О).

Таким образом, теплота растворения (D р Н) является величиной интегральной:

D p H = D ат Н + D сол Н +D диф Н

Теплота растворения – это тепловой эффект растворения 1 моль вещества в бесконечно большом объеме растворителя.

Растворение большинства твердых веществ в воде – процесс эндотермический (D p H > 0), т.к. теплота, поглощаемая на стадии атомизации, не компенсируется теплотой, выделяющейся на стадии сольватации. При растворении газов теплота выделяется (D p H < 0), т.к. их растворение не включает стадию атомизация (газообразные вещества не образуют кристаллических решеток). Растворение жидкостей друг в друге протекает без заметного теплового эффекта (D p H ≈ 0), т.к. главной стадией их растворения является диффузия.

Как любой обратимый процесс, растворение доходит до равновесия. Раствор, находящийся в равновесии с избытком растворяемого вещества, называется насыщенным. В состоянии равновесия скорость растворения равна скорости кристаллизации.

По степени насыщения растворы бывают:

    ненасыщенные : содержат меньше растворенного вещества, чем насыщенные,

    насыщенные,

    пересыщенные : содержат больше растворенного вещества, чем насыщенные (они неустойчивы).

4.3. Растворимость газов, жидкостей и твердых веществ в воде

Растворимость (S ) - это способность вещества растворяться в данном растворителе. Она равна содержанию растворенного вещества в его насыщенном растворе при данной температуре.

Растворимость зависит от природы веществ и термодинамических параметров системы. Влияние природы веществ на растворимость описывается правилом: «Подобное растворяется в подобном ». Другими словами, полярные вещества хорошо растворяются в полярных растворителях, а неполярные - в неполярных. Например: поваренная соль NaCl хорошо растворима в воде и плохо в бензоле; I 2 хорошо растворим в бензоле и плохо в воде.

Растворение газов в воде можно представить схемой:

А(газ) + Н 2 ОА(раствор), D р Н<О

В соответствии с принципом Ле Шателье при повышении температуры равновесие смещается влево, т.е. растворимость уменьшается, а при понижении температуры - вправо, растворимость увеличивается (таблица 3).

Таблица 3 - Растворимость газов (л/1л Н 2 О) при р = 1 атм.

В соответствии с принципом Ле Шателье при увеличении давления равновесие смещается вправо, т.е. растворимость газов растет. Количественная зависимость растворимости газа от давления описывается уравнением Генри (1803 г.):

где k - константа Генри,

p - давление газа над раствором.

Закон Генри позволяет вскрыть причины возникновения кессонной болезни. Она возникает у водолазов, летчиков и представителей других профессий, которые по роду деятельности быстро переходят из среды с высоким давлением в среду с низким давлением.

В период пребывания человека в среде с высоким давлением его кровь и ткани насыщаются азотом (N 2) и частично углекислым газом (СО 2). Накопления кислорода не происходит, так как он расходуется на физиологические процессы в организме. При быстром переходе человека в среду с низким давлением происходит выделение избыточных количеств растворенных газов, которые не успевают диффундировать через легкие и образуют газовые пробки в тканях и кровеносных сосудах. Это приводит к закупорке и разрыву кровеносных капилляров, накоплению пузырьков газа в подкожной жировой клетчатке, в суставах, в костном мозге. Симптомами кессонной болезни являются головокружение, зуд, мышечные и загрудинные боли, нарушение дыхания, паралич и смерть.

На растворимость газов влияет присутствие электролитов в растворе. Эта зависимость описывается уравнением Сеченова (1859 г.):

где S и S o - растворимость газа в растворе электролита и чистой воде,

с - концентрация электролита,

k - константа Сеченова.

Из уравнения Сеченова следует, что чем выше концентрация электролита в растворе, тем ниже растворимость газов. Вот почему растворимость газов в воде больше, чем в плазме (таблица 4).

Таблица 4 - Растворимость газов в чистой воде и плазме крови при 38ºС

Растворение жидкости в воде можно представить схемой:

А (ж) + Н 2 ОА (раствор)

Основной стадией растворения жидкости в жидкости является диффузия, скорость которой возрастает с увеличением температуры. Соответственно, взаимная растворимость жидкостей усиливается с ростом температуры.

Различают три типа жидкостей:

а) неограниченно растворимые друг в друге: Н 2 SO 4 / Н 2 О, С 2 Н 5 ОН / Н 2 О;

б) ограниченно растворимые: С 6 Н 6 / Н 2 О

в) абсолютно нерастворимые: Hg / H 2 O.

Если в систему из двух несмешивающихся жидкостей добавить третий компонент, то отношение его концентраций в каждой жидкости есть величина постоянная при данной температуре (закон распределения Нернста-Шилова) (рисунок 6).

Рисунок 6 - Закон распределения Нернста-Шилова

Закон Нернста-Шилова – теоретическая основа экстракции, одного из способов разделения смесей.

Растворение твердых веществ в воде описывается схемой:

А (к) + Н 2 ОА (раствор), Dр Н > О

Если растворяется труднорастворимый электролит (соль, основание или кислота), то гетерогенное равновесие между твердым веществом и его ионами в насыщенном растворе можно представить схемой:

A n B m (к) nA m+ (aq) + mB n- (aq).

Данное равновесие характеризуется при помощи константы растворимости K s , являющейся константой гетерогенного равновесия:

K s = n · m

Для бинарных электролитов n = m = 1, следовательно

K s = · .

Соответственно S 2 =К s , и S =

Например, при растворении труднорастворимой соли BaSO 4 в воде устанавливается гетерогенное равновесие между кристаллами вещества и его ионами в насыщенном растворе:

BaSO 4 (к) Ba 2+ (aq) + SO 4 2- (aq)

Согласно закону действующих масс, K S = = 1,1·10 -10 .

Отсюда S =
.

Чем меньше K s , тем ниже растворимость вещества и легче формируется осадок труднорастворимого электролита.

Условие образования осадка труднорастворимого электролита можно сформулировать следующим образом: осадок выпадает из насыщенных и пересыщенных растворов. В насыщенном растворе · = K s , а в пересыщенном растворе · > K s

Одним из наиболее важных гетерогенных процессов in vivo является образование костной ткани. Основным минеральным компонентом костной ткани является кальций гидроксофосфат (гидроксоаппатит) Са 5 (РО 4 ) 3 ОН .

Процесс формирование костной ткани можно представить следующим образом. В крови при рН = 7,4 в приблизительно равных количествах находятся анионы НРО 4 2– и Н 2 РО 4 – , а также катионы Са 2+ . После сравнения констант растворимости CаНРО 4 (К S = 2,7∙10 –7) и Cа(Н 2 РО 4) 2 (К S = 1∙10 –3), становится очевидным, что менее растворимой является соль СаНРО 4 . Вследствие этого, именно СаНРО 4 образуется на первой стадии формирования костной ткани:

Са 2+ + НРО 4 2– СаНРО 4 .

Дальнейшее формирование гидроксоаппатита протекает в соответствии с уравнениями:

3 СаНРО 4 + Са 2+ + 2 ОН – Са 4 Н(РО 4) 3 + 2 Н 2 О,

Са 4 Н(РО 4) 3 + Са 2+ + 2 ОН – Са 5 (РО 4) 3 ОН + Н 2 О.

Константа растворимости гидроксоаппатита очень мала (К S = 10 -58), что свидетельствует о высокой устойчивости костной ткани.

При избытке ионов Са 2+ в крови равновесие сдвигается вправо, что приводит к обызвествлению костей. При недостатке Са 2+ равновесие сдвигается влево; происходит разрушение костной ткани. У детей это приводит к рахиту, у взрослых развивается остеопороз.

При недостатке кальция в костной ткани его место могут занять ближайшие электронные аналоги: бериллий и стронций. Их накопление вызывает соответственно бериллиевый и стронциевый рахит (повышенная ломкость и хрупкость костей). При инкорпорации радиоизотопа Sr-90 в костную ткань происходит облучение костного мозга, что может привести к лейкозу и другим онкологическим заболеваниям. Кальций блокирует накопление организмом радиоактивного стронция.

Раствор – это гомогенная система, состоящая из двух или более веществ, содержание которых можно изменять в определенных пределах без нарушения однородности.

Водные растворы состоят из воды (растворителя) и растворенного вещества. Состояние веществ в водном растворе при необходимости обозначается нижним индексом (р), например, KNO 3 в растворе – KNO 3(p) .

Растворы, которые содержат малое количество растворенного вещества, часто называют разбавленными, а растворы с высоким содержанием растворенного вещества – концентрированными. Раствор, в котором возможно дальнейшее растворение вещества, называется ненасыщенным, а раствор, в котором вещество перестает растворяться при данных условиях, – насыщенным. Последний раствор всегда находится в контакте (в гетерогенном равновесии) с нерастворившимся веществом (один кристалл или более).

В особых условиях, например при осторожном (без перемешивания) охлаждении горячего ненасыщенного раствора твердого вещества, может образоваться пересыщенный раствор. При введении кристалла вещества такой раствор разделяется на насыщенный раствор и осадок вещества.

В соответствии с химической теорией растворов Д. И. Менделеева растворение вещества в воде сопровождается, во‑первых, разрушением химических связей между молекулами (межмолекулярные связи в ковалентных веществах) или между ионами (в ионных веществах), и, таким образом, частицы вещества смешиваются с водой (в которой также разрушается часть водородных связей между молекулами). Разрыв химических связей совершается за счет тепловой энергии движения молекул воды, при этом происходит затрата энергии в форме теплоты.

Во‑вторых, попав в воду, частицы (молекулы или ионы) вещества подвергаются гидратации. В результате образуются гидраты – соединения неопределенного состава между частицами вещества и молекулами воды (внутренний состав самих частиц вещества при растворении не изменяется). Такой процесс сопровождается выделением энергии в форме теплоты за счет образования новых химических связей в гидратах.

В целом раствор либо охлаждается (если затрата теплоты превосходит ее выделение), либо нагревается (в противном случае); иногда – при равенстве затраты теплоты и ее выделения – температура раствора остается неизменной.

Многие гидраты оказываются настолько устойчивыми, что не разрушаются и при полном выпаривании раствора. Так, известны твердые кристаллогидраты солей CuSO 4 5Н 2 O, Na 2 CO 3 10Н 2 O, KAl(SO 4) 2 12Н 2 O и др.

Содержание вещества в насыщенном растворе при Т = const количественно характеризует растворимость этого вещества. Обычно растворимость выражается массой растворенного вещества, приходящейся на 100 г воды, например 65,2 г КBr/100 г Н 2 O при 20 °C. Следовательно, если 70 г твердого бромида калия ввести в 100 г воды при 20 °C, то 65,2 г соли перейдет в раствор (который будет насыщенным), а 4,8 г твердого КBr (избыток) останется на дне стакана.

Следует запомнить, что содержание растворенного вещества в насыщенном растворе равно , в ненасыщенном растворе меньше и в пересыщенном растворе больше его растворимости при данной температуре. Так, раствор, приготовленный при 20 °C из 100 г воды и сульфата натрия Na 2 SO 4 (растворимость 19,2 г/100 г Н 2 O), при содержании

15,7 г соли – ненасыщенный;

19.2 г соли – насыщенный;

2O.3 г соли – пересыщенный.

Растворимость твердых веществ (табл. 14) обычно увеличивается с ростом температуры (КBr, NaCl), и лишь для некоторых веществ (CaSO 4 , Li 2 CO 3) наблюдается обратное.

Растворимость газов при повышении температуры падает, а при повышении давления растет; например, при давлении 1 атм растворимость аммиака составляет 52,6 (20 °C) и 15,4 г/100 г Н 2 O (80 °C), а при 20 °C и 9 атм она равна 93,5 г/100 г Н 2 O.

В соответствии со значениями растворимости различают вещества:

хорошо растворимые, масса которых в насыщенном растворе соизмерима с массой воды (например, КBr – при 20 °C растворимость 65,2 г/100 г Н 2 O; 4,6М раствор), они образуют насыщенные растворы с молярностью более чем 0,1М;

малорастворимые, масса которых в насыщенном растворе значительно меньше массы воды (например, CaSO 4 – при 20 °C растворимость 0,206 г/100 г Н 2 O; 0,015М раствор), они образуют насыщенные растворы с молярностью 0,1–0,001М;

практически нерастворимые, масса которых в насыщенном растворе пренебрежимо мала по сравнению с массой растворителя (например, AgCl – при 20 °C растворимость 0,00019 г на 100 г Н 2 O; 0,0000134М раствор), они образуют насыщенные растворы с молярностью менее чем 0,001М.

По справочным данным составлена таблица растворимости распространенных кислот, оснований и солей (табл. 15), в которой указан тип растворимости, отмечены вещества, не известные науке (не полученные) или полностью разлагающиеся водой.

Условные обозначения, используемые в таблице:

«р» – хорошо растворимое вещество

«м» – малорастворимое вещество

«н» – практически нерастворимое вещество

«–» – вещество не получено (не существует)

» – вещество смешивается с водой неограниченно

Примечание. Данная таблица отвечает приготовлению насыщенного раствора при комнатной температуре путем внесения вещества (в соответствующем агрегатном состоянии) в воду. Следует учесть, что получение осадков малорастворимых веществ с помощью реакций ионного обмена возможно не всегда (подробнее см. 13.4).

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Распространенные элементы. строение атомов. Электронные оболочки. Орбитали
Химический элемент – определенный вид атомов, обозначаемый названием и символом и характеризуемый порядковым номером и относительной атомной массой. В табл. 1 перечи

В каждой орбитали может разместиться не более двух электронов.
Один электрон на орбитали называется неспаренным, два электрона – электронной парой:

Свойства элементов находятся в периодической зависимости от порядкового номера.
Периодически повторяющийся характер изменения состава электронной оболочки атомов элементов объясняет периодическое изменение свойств элементов при движении по периодам и группам Пе

Молекулы. Химическая связь. Строение веществ
Химические частицы, образованные из двух или нескольких атомов, называются молекулами (реальными или условными формульными единицами многоатомных веществ). Атомы в мол

Кальций
Кальций – элемент 4‑го периода и IIA‑группы Периодической системы, порядковый номер 2O. Электронная формула атома 4s2, степени окислен

Алюминий
Алюминий – элемент 3‑го периода и IIIA‑группы Периодической системы, порядковый номер 13. Электронная формула атома 3s23p1,

Марганец
Марганец – элемент 4‑го периода и VIIB‑группы Периодической системы, порядковый номер 25. Электронная формула атома 3d54s2;

Общие свойства металлов. Коррозия
Элементы с металлическими свойствами расположены вIA – VIA группах Периодической системы (табл. 7).

Водород
Водород – первый элемент Периодической системы (1‑й период, порядковый номер 1). Не имеет полной аналогии с остальными химическими элементами и не принадлежит ни к како

Хлор. Хлороводород
Хлор – элемент 3‑го периода и VII А‑группы Периодической системы, порядковый номер 17. Электронная формула атома 3s23p5, ха

Хлориды
Хлорид натрия NaCl. Бескислородная соль. Бытовое название поваренная соль. Белый, слабогигроскопичный. Плавится и кипит без разложения. Умеренно раствори

Гипохлориты. Хлораты
Гипохлорит кальция Са(СlO)2. Соль хлорноватистой кислоты HClO. Белый, при нагревании разлагается без плавления. Хорошо растворим в холодной воде (обр

Бромиды. Иодиды
Бромид калия КBr. Бескислородная соль. Белый, негигроскопичный, плавится без разложения. Хорошо растворим в воде, гидролиза нет. Восстановитель (более слабый, ч

Кислород
Кислород – элемент 2‑го периода и VIA‑группы Периодической системы, порядковый номер 8, относится к халькогенам (но чаще рассматривается отдельно). Электронная фо

Сера. Сероводород. Сульфиды
Сера – элемент 3‑го периода и VIA‑группы Периодической системы, порядковый номер 16, относится к халькогенам. Электронная формула атома 3s

Диоксид серы. Сульфиты
Диоксид серы SO2. Кислотный оксид. Бесцветный газ с резким запахом. Молекула имеет строение незавершенного треугольника [: S(O)2] (sр

Серная кислота. Сульфаты
Серная кислота H2SO4. Оксокислота. Бесцветная жидкость, очень вязкая (маслообразная), весьма гигроскопичная. Молек

Азот. Аммиак
Азот – элемент 2‑го периода и VA‑группы Периодической системы, порядковый номер 7. Электронная формула атома 2s22p3, характе

Оксиды азота. Азотная кислота
Монооксид азота NO. Несолеобразующий оксид. Бесцветный газ. Радикал, содержит ковалентную σπ‑связь (N=O), в твердом состоянии димер N2

Нитриты. Нитраты
Нитрит калияKNO2. Оксосоль. Белый, гигроскопичный. Плавится без разложения. Устойчив в сухом воздухе. Очень хорошо растворим в воде (образуется бесцв

Углерод в свободном виде
Углерод – элемент 2‑го периода и IVA‑группы Периодической системы, порядковый номер 6. Химия углерода – это в основном химия органических соединений; неорганическ

Оксиды углерода
Монооксид углерода СО. Несолеобразующий оксид. Бесцветный газ, без запаха, легче воздуха. Молекула слабополярна, содержит ковалентную тройную σππ

Карбонаты
Карбонат натрия Na2CO3. Оксосоль. Техническое название кальцинированная сода. Белый, при нагревании плавится и разлагается. Чувстви

Кремний
Кремний – элемент 3‑го периода и IVA‑группы Периодической системы, порядковый номер 14. Электронная формула атома 3s23p2. Х

Алканы. Циклоалканы
Алканы (парафины) – это соединения углерода с водородом, в молекулах которых атомы углерода соединены между собой одинарной связью (предельные углеводоро

Алкены. Алкадиены
Алкены (олефины) – это углеводороды, в молекулах которых содержатся атомы углерода, соединенные между собой двойной связью (непредельные углеводороды ряд

Спирты. Простые эфиры. Фенолы
Спирты – производные углеводородов, содержащие функциональную группу ОН (гидроксил). Спирты, в которых имеется одна группа ОН, называются одноат

Альдегиды и кетоны
Альдегиды и кетоны – это производные углеводородов, содержащие функциональную карбонильную группу СО. В альдегидах карбонильная группа связана с а

Карбоновые кислоты. Сложные эфиры. Жиры
Карбоновые кислоты – это производные углеводородов, содержащие функциональную группу СООН (карбоксил). Формулы и названия некоторых распространенных ка

Углеводы
Углеводы (сахара) – важнейшие природные соединения, состоящие из углерода, водорода и кислорода. Углеводы подразделяются на моносахариды, дисахариды и полис

Нитросоединения. Амины
Очень важны в народном хозяйстве азотсодержащие органические вещества. Азот может входить в органические соединения в виде нитрогруппы NO2, аминогруппы NH2 и а

Аминокислоты. Белки
Аминокислоты – органические соединения, содержащие в своем составе две функциональные группы – кислотную СООН и аминную NH2

Скорость реакций
Количественной характеристикой быстроты течения химической реакции А + B → D + E является ее скорость, т. е. скорость взаимодействия частиц реагентов А

Скорость химической реакции прямо пропорциональна произведению молярных концентраций реагентов
если для реакции необходимо столкновение двух реагирующих молекул. Эта зависимость носит название кинетического закона действующих масс (К. Гулльберг, П. Вог

Энергетика реакций
Любая реакция сопровождается выделением или поглощением энергии в форме теплоты. В исходных веществах химические связи разрываются, и на это энергия затрачивается (т. е. она при это

Обратимость реакций
Химическая реакция называется обратимой, если в данных условиях протекает не только прямая реакция (→), но также и обратная реакция т. е. из исходных веществ образуются

При воздействии на равновесную систему химическое равновесие смещается в сторону, противодействующую этому воздействию.
Рассмотрим подробнее влияние таких факторов, как температура, давление, концентрация, на смещение равновесия. 1. Температура. Повышение температуры сме

Электролитическая диссоциация
Растворение любого вещества в воде сопровождается образованием гидратов. Если при этом в растворе не происходит формульных изменений у частиц растворенного вещества, то такие вещест

Диссоциация воды. Среда растворов
Сама вода – это очень слабый электролит:

Реакции ионного обмена
В разбавленных растворах электролитов (кислот, оснований, солей) химические реакции протекают обычно при участии ионов. При этом все элементы реагентов могут сохра

Гидролиз солей
Гидролиз соли – это взаимодействие ее ионов с водой, приводящее к появлению кислотной или щелочной среды, но не сопровождающееся образованием осадка или газа (ниже

Окислители и восстановители
Окислительно‑восстановительные реакции протекают с одновременным повышением и понижением степеней окисления элементов и сопровождаются передачей электронов:

Подбор коэффициентов методом электронного баланса
Метод состоит из нескольких этапов. 1. Записывают схему реакции; находят элементы, повышающие и понижающие свои степени окисления, и выпи

Ряд напряжений металлов
В ряду напряжений металлов стрелка отвечает уменьшению восстановительной способности металлов и увеличению окислительной способности их катионов в водном растворе (кислотная среда):

Электролиз расплава и раствора
Электролизом называется окислительно‑восстановительный процесс, протекающий на электродах при прохождении постоянного электрического тока через растворы или

Массовая доля растворенного вещества. Разбавление, концентрирование и смешивание растворов
Массовая доля растворенного вещества В (ω в) – это отношение массы вещества В (т в) к массе раствора (m (р)

Объемное отношение газов
Для химической реакции a A + b B = c C + d D выполняется соотношение

Масса (объем, количество вещества) продукта по реагенту в избытке или с примесями
Избыток и недостаток реагентов. Количества, массы и объемы (для газов) реагентов не всегда берутся стехиометрическими, т. е. в соответствии с уравнениями реакции. Ч

Нахождение молекулярной формулы органического соединения
При выведении формул веществ, особенно в органической химии, часто используют относительную плотность газа. Относительная плотность газа X – отношение абсолютной пло