Видеоурок «Периодичность в изменении свойств элементов. Периодический закон Д.И

Заряды ядер элементов в периодической системе непрерывно увеличиваются, а свойства простых веществ повторяются периодически. Как это объяснить?

Д. И. Менделеев заметил, что свойства элементов периодически повторяются с возрастанием значений их массовых чисел. Он расположил открытые к тому времени 63 элемента в порядке увеличения их атомных масс с учетом химических и физических свойств. Менделеев считал, что открытый им периодический закон является отражением глубоких закономерностей во внутреннем строении вещества, он констатировал факт периодических изменений свойств элементов, но причины периодичности не знал.

Дальнейшее изучение строения атома показало, что свойства веществ зависят от заряда ядра атомов, и элементы можно систематизировать, основываясь на их электронной структуре. Свойства простых веществ и их соединений зависят от периодически повторяющейся электронной конфигурации валентного подуровня атомов элемента. Потому «электронные аналоги» являются также и «химическими аналогами».

Распишем электронные формулы атомов элементов главных подгрупп второй и седьмой групп.

Элементы второй группы имеют общую электронную формулу валентных электронов ns 2 . Распишем их электронные формулы:

Be 1s 2 2s 2 ,

Mg 1s 2 2s 2 2p 6 3s 2 ,

Ca 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 ,

Sr 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 .

У элементов седьмой группы общая электронная формула валентных электронов ns 2 np 5 , а полные электронные формулы имеют вид:

F 1s 2 2s 2 2p 5 ,

Cl 1s 2 2s 2 2p 6 3s 2 3p 5 ,

Br 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 5 ,

I 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 5 .

Итак, электронные структуры атомов периодически повторяются у элементов одной группы, поэтому периодически повторяются и их свойства, так как они зависят в основном от электронной конфигурации валентных электронов. Элементы одной группы имеют общие свойства, но есть и отличия. Это можно объяснить тем, что хотя атомы и имеют одинаковую электронную структуру валентных электронов, но эти электроны расположены на разном расстоянии от ядра, сила притяжения их к ядру при переходе от периода к периоду ослабевает, атомный радиус увеличивается, валентные электроны становятся более подвижными, что отражается на свойствах веществ.

41. Исходя из положения германия, цезия и технеция в периодической системе, составьте формулы следующих соединений: мета и ортогерманиевой кислот, дигидрофосфата цезия и оксида технеция, отвечающего его высшей степени окислении. Изобразите структурные формулы этих соединений.

42. Что такое энергия ионизации? В каких единицах она выражается? Как изменяется восстановительная активность s- и p-элементов в группах периодической системы с увеличением порядкового номера? Почему?

43. Что такое электроотрицательность? Как изменяется электроотрицательность элементов во втором и третьем периодах, в группе периодической системы с увеличением порядкового номера?

44. Исходя из положения германия, молибдена и рения в периодической системе, составьте брутто формулы следующих соединений: водородного соединения германия, рениевой кислоты и оксида молибдена, отвечающего его высшей степени окисления. Изобразите структурные формулы этих соединений.

45. Что такое сродство к электрону? В каких единицах оно выражается? Как изменяется окислительная активность неметаллов в периоде и в группе периодической системы с увеличением порядкового номера? Ответ мотивируйте строением атома соответствующего элемента.

46. Составьте формулы оксидов и гидроксидов элементов третьего периода периодической системы, отвечающих их высшей степени окисления. Как изменяется химический характер этих соединений при переходе от натрия к хлору?

47. Какой из элементов четвертого периода – ванадий или мышьяк – обладает более выраженными металлическими свойствами? Какой из элементов образует газообразное соединение с водородом? Ответ мотивируйте, исходя из строения атомов данных элементов.

48. Какие элементы образуют газообразные соединения с водородом? В каких группах периодической системы находятся эти элементы? Составьте формулы водородных и кислородных соединений хлора, теллура и сурьмы, отвечающих их низшей и высшей степеням окисления.

49. У какого элемента четвертого периода – хрома или селена – сильнее выражены металлические свойства? Какой из этих элементов образует газообразное соединение с водородом? Ответ мотивируйте строением атомов хрома и селена.

50. Какую низшую степень окисления проявляют хлор, сера, азот и углерод? Почему? Составьте формулы соединений алюминия с данными элементами в этой их степени окисления. Как называются соответствующие соединения?

51. У какого из p-элементов пятой группы периодической системы – фосфора или сурьмы – сильнее выражены неметаллические свойства? Какой из водородных соединений данных элементов более сильный восстановитель? Ответ мотивируйте строением атома этих элементов.

52. Исходя из положения металла в периодической системе, дайте мотивированный ответ на вопрос; какой из двух гидроксидов более сильное основание: Ba(OH) 2 или Mg(OH) 2 ; Ca(OH) 2 или Fe(OH) 2 ; Сd(ОН) 2 или Sr(OH) 2 ?

53. Почему марганец проявляет металлические свойства, а хлор – неметаллические? Ответ мотивируйте электронным строением атомов этих элементов. Напишите формулы оксидов и гидроксидов хлора и марганца.

54. Какую низшую степень окисления проявляют водород, фтор, сера и азот? Почему? Составьте формулы соединений кальция с данными элементами в этой их степени окисления. Как называются соответствующие соединения?

55. Какую низшую и высшую степени окисления проявляют кремний, мышьяк, селен и хлор? Почему? Составьте формулы соединений данных элементов, отвечающих этим степеням окисления.

56. К какому семейству относятся элементы, в атомах которых последний электрон поступает на 4f- и 5f-орбитали? Сколько элементов включает каждое из этих семейств?

57. Атомные массы элементов в периодической системе непрерывно увеличиваются, тогда, как свойства простых тел изменяются периодически. Чем это можно объяснить?

58. Какова современная формулировка периодического закона? Объясните, почему в периодической системе элементов аргон, кобальт, теллур и торий помещены соответственно перед калием, никелем, йодом и протактинием, хотя и имеют большую атомную массу?

59. Какую низшую и высшую степени окисления проявляют углерод, фосфор, сера и йод? Почему? Составьте формулы соединений данных элементов, отвечающих этим степеням окисления.

Периодическая система химических элементов - это классификация химических элементов, созданная Д. И. Менделеевым на основе открытого им в 1869 г. периодического закона.

Д. И. Менделеев

Согласно современной формулировке этого закона, в непрерывном ряду элементов, расположенных в порядке возрастания величины положительного заряда ядер их атомов, периодически повторяются элементы со сходными свойствами.

Периодическая система химических элементов, представленная в виде таблицы, состоит из периодов, рядов и групп.

В начале каждого периода (за исключением первого) находится элементе ярко выраженными металлическими свойствами (щелочной металл).


Условные обозначения к цветной таблице: 1 - химический знак элемента; 2 - название; 3 - атомная масса (атомный вес); 4 - порядковый номер; 5 - распределение электронов по слоям.

По мере возрастания порядкового номера элемента, равного величине положительного заряда ядра его атома, постепенно ослабевают металлические и нарастают неметаллические свойства. Предпоследним элементом в каждом периоде является элемент с ярко выраженными неметаллическими свойствами (), а последним - инертный газ. В I периоде находятся 2 элемента, во II и III - по 8 элементов, в IV и V - по 18, в VI - 32 и в VII (не завершенном периоде) - 17 элементов.

Первые три периода называют малыми периодами, каждый из них состоит из одного горизонтального ряда; остальные - большими периодами, каждый из которых (исключая VII период) состоит из двух горизонтальных рядов - четного (верхнего) и нечетного (нижнего). В четных рядах больших периодов находятся только металлы. Свойства элементов в этих рядах с возрастанием порядкового номера изменяются слабо. Свойства элементов в нечетных рядах больших периодов меняются. В VI периоде за лантаном следуют 14 элементов, весьма сходных по химическим свойствам. Эти элементы, называемые лантаноидами, приведены отдельно под основной таблицей. Аналогично представлены в таблице и актиноиды - элементы, следующие за актинием.


В таблице имеется девять вертикальных групп. Номер группы, за редким исключением, равен высшей положительной валентности элементов данной группы. Каждая группа, исключая нулевую и восьмую, подразделяется на подгруппы. - главную (расположена правее) и побочную. В главных подгруппах с увеличением порядкового номера усиливаются металлические и ослабевают неметаллические свойства элементов.

Таким образом, химические и ряд физических свойств элементов определяются местом, которое занимает данный элемент в периодической системе.

Биогенные элементы, т. е. элементы, входящие в состав организмов и выполняющие в нем определенную биологическую роль, занимают верхнюю часть таблицы Менделеева. В голубой цвет окрашены клетки, занимаемые элементами, составляющими основную массу (более 99%) живого вещества, в розовый цвет - клетки, занимаемые микроэлементами (см.).

Периодическая система химических элементов является крупнейшим достижением современного естествознания и ярким выражением наиболее общих диалектических законов природы.

См. также , Атомный вес.

Периодическая система химических элементов - естественная классификация химических элементов, созданная Д. И. Менделеевым на основе открытого им в 1869 г. периодического закона.

В первоначальной формулировке периодический закон Д. И. Менделеева утверждал: свойства химических элементов, а также формы и свойства их соединений находятся в периодической зависимости от величины атомных весов элементов. В дальнейшем с развитием учения о строении атома было показано, что более точной характеристикой каждого элемента является не атомный вес (см.), а величина положительного заряда ядра атома элемента, равная порядковому (атомному) номеру этого элемента в периодической системе Д. И. Менделеева. Число положительных зарядов ядра атома равно числу электронов, окружающих ядро атома, поскольку атомы в целом электронейтральны. В свете этих данных периодический закон формулируется так: свойства химических элементов, а также формы и свойства их соединений находятся в периодической зависимости от величины положительного заряда ядер их атомов. Это значит, что в непрерывном ряду элементов, расположенных в порядке возрастания положительных зарядов ядер их атомов, будут периодически повторяться элементы со сходными свойствами.

Табличная форма периодической системы химических элементов представлена в ее современном виде. Она состоит из периодов, рядов и групп. Период представляет последовательный горизонтальный ряд элементов, расположенных в порядке возрастания положительного заряда ядер их атомов.

В начале каждого периода (за исключением первого) находится элемент с ярко выраженными металлическими свойствами (щелочной металл). Затем по мере увеличения порядкового номера постепенно ослабевают металлические и нарастают неметаллические свойства элементов. Предпоследним элементом в каждом периоде является элемент с ярко выраженными неметаллическими свойствами (галоген), а последним - инертный газ. I период состоит из двух элементов, роль щелочного металла и галогена здесь одновременно выполняет водород. II и III периоды включают по 8 элементов, названных Менделеевым типическими. IV и V периоды насчитывают по 18 элементов, VI-32. VII период еще не завершен и пополняется искусственно создаваемыми элементами; в настоящее время в этом периоде насчитывается 17 элементов. I, II и III периоды называют малыми, каждый из них состоит из одного горизонтального ряда, IV-VII- большими: они (за исключением VII) включают два горизонтальных ряда - четный (верхний) и нечетный (нижний). В четных рядах больших периодов находятся только металлы, и изменение свойств элементов в ряду слева направо выражено слабо.

В нечетных рядах больших периодов свойства элементов в ряду изменяются так же, как свойства типических элементов. В четном ряду VI периода после лантана следует 14 элементов [называемых лантанидами (см.), лантаноидами, редкоземельными элементами], сходных по химическим свойствам с лантаном и между собой. Перечень их приводится отдельно под таблицей.

Отдельно выписаны и приведены под таблицей элементы, следующие за актинием- актиниды (актиноиды).

В периодической системе химических элементов по вертикалям расположено девять групп. Номер группы равен высшей положительной валентности (см.) элементов этой группы. Исключение составляют фтор (бывает только отрицательно одновалентным) и бром (не бывает семивалентным); кроме того, медь, серебро, золото могут проявлять валентность больше +1 (Cu-1 и 2, Ag и Au-1 и 3), а из элементов VIII группы валентностью +8 обладают только осмий и рутений. Каждая группа, за исключением восьмой и нулевой, делится на две подгруппы: главную (расположена правее) и побочную. В главные подгруппы входят типические элементы и элементы больших периодов, в побочные - только элементы больших периодов и притом металлы.

По химическим свойствам элементы каждой подгруппы данной группы значительно отличаются друг от друга и только высшая положительная валентность одинакова для всех элементов данной группы. В главных подгруппах сверху вниз усиливаются металлические свойства элементов и ослабевают неметаллические (так, франций является элементом с наиболее ярко выраженными металлическими свойствами, а фтор - неметаллическими). Таким образом, место элемента в периодической системе Менделеева (порядковый номер) определяет его свойства, которые представляют собой среднее из свойств соседних элементов по вертикали и горизонтали.

Некоторые группы элементов носят особые названия. Так, элементы главных подгрупп I группы называют щелочными металлами, II группы - щелочноземельными металлами, VII группы - галогенами, элементы, расположенные за ураном,- трансурановыми. Элементы, которые входят в состав организмов, принимают участие в процессах обмена веществ и обладают явно выраженной биологической ролью, называют биогенными элементами. Все они занимают верхнюю часть таблицы Д. И. Менделеева. Это в первую очередь О, С, Н, N, Са, Р, К, S, Na, Cl, Mg и Fe, составляющие основную массу живого вещества (более 99%). Места, занимаемые этими элементами в периодической системе, окрашены в светло-голубой цвет. Биогенные элементы, которых в организме очень мало (от 10 -3 до 10 -14 %), называют микроэлементами (см.). В клетках периодической системы, окрашенных в желтый цвет, помещены микроэлементы, жизненно важное значение которых для человека доказано.

Согласно теории строения атомов (см. Атом) химические свойства элементов зависят в основном от числа электронов на внешней электронной оболочке. Периодическое изменение свойств элементов с увеличением положительного заряда атомных ядер объясняется периодическим повторением строения наружной электронной оболочки (энергетического уровня) атомов.

В малых периодах с увеличением положительного заряда ядра возрастает число электронов на внешней оболочке от 1 до 2 в I периоде и от 1 до 8 во II и III периодах. Отсюда изменение свойств элементов в периоде от щелочного металла до инертного газа. Внешняя электронная оболочка, содержащая 8 электронов, является завершенной и энергетически устойчивой (элементы нулевой группы химически инертны).

В больших периодах в четных рядах с ростом положительного заряда ядер число электронов на внешней оболочке остается постоянным (1 или 2) и идет заполнение электронами второй снаружи оболочки. Отсюда медленное изменение свойств элементов в четных рядах. В нечетных рядах больших периодов с увеличением заряда ядер идет заполнение электронами внешней оболочки (от 1 до 8) и свойства элементов изменяются так, как и у типических элементов.

Число электронных оболочек в атоме равно номеру периода. Атомы элементов главных подгрупп имеют на внешних оболочках число электронов, равное номеру группы. Атомы элементов побочных подгрупп содержат на внешних оболочках один или два электрона. Этим объясняется различие в свойствах элементов главной и побочной подгрупп. Номер группы указывает возможное число электронов, которые могут участвовать в образовании химических (валентных) связей (см. Молекула), поэтому такие электроны называют валентными. У элементов побочных подгрупп валентными являются не только электроны внешних оболочек, но и предпоследних. Число и строение электронных оболочек указано в прилагаемой периодической системе химических элементов.

Периодический закон Д. И. Менделеева и основанная на нем система имеют исключительно большое значение в науке и практике. Периодический закон и система явились основой для открытия новых химических элементов, точного определения их атомных весов, развития учения о строении атомов, установления геохимических законов распределения элементов в земной коре и развития современных представлений о живом веществе, состав которого и связанные с ним закономерности находятся в соответствии с периодической системой. Биологическая активность элементов и их содержание в организме также во многом определяются местом, которое они занимают в периодической системе Менделеева. Так, с увеличением порядкового номера в ряде групп возрастает токсичность элементов и уменьшается их содержание в организме. Периодический закон является ярким выражением наиболее общих диалектических законов развития природы.

Cтраница 1


Периодическое повторение свойств элементов с увеличением атомного номера становится особенно наглядным, если расположить элементы в виде таблицы, называемой периодической таблицей или периодической системой элементов. Было предложено и используется несколько форм периодической таблицы.  

Периодическое повторение свойств элементов с увеличением атомного номера можно наглядно показать, если расположить элементы в таблицу, называемую периодической таблицей, или периодической системой, элементов. Было предложено и находит применение много различных форм периодической системы.  

Принцип периодического повторения свойств элементов не мог допустить существования только одного, изолированно стоящего элемента аргона; такого рода простых веществ должно быть несколько или ни одного. Однако Рамзай твердо стоял на позициях периодического закона, и это, а также развитие лабораторной техники в конце прошлого века предопределили быстрое открытие остальных членов группы инертных газов.  

Чем объясняется периодическое повторение свойств элементов в периодической системе.  

Чем объясняется периодическое повторение свойств элементов.  

Принимая, что периодическое повторение свойств элементов обусловлено не только их массою (атомным весом), но и характером движения самих атомов как целых частиц (скоростью и направлением их движения), Флавицкий строит свою гипотезу на следующей основе: периодичность элементов объясняется не тем, что повторяется тип внутреннего Строения атомов, а тем, что периодически меняется характер движения атомов как целых частиц.  

Таким образом, причиной периодического повторения свойств элементов является периодическое повторение электронных конфигураций их атомов.  

Исследование электронной структуры атомов позволило доказать, что причиной периодического повторения свойств элементов с возрастанием порядкового номера является периодическое повторение процесса постройки новых электронных оболочек. К одной группе периодической системы всегда принадлежат те элементы, у атомов которых в наружных оболочках находится одинаковое число электронов. Так, атомы всех инертных газов, кроме гелия, содержат по 8 электронов в наружной оболочке и Труднее всех ионизируются, между тем как атомы щелочных металлов содержат по одному электрону в наружной оболочке и обладают наиболее низким ионизационным потенциалом. Щелочные металлы только с одним электроном во внешней оболочке могут легко его терять, переходя в устойчивую форму положительного иона с электронной конфигурацией, подобной ближайшему инертному газу с меньшим порядковым номером. Такие элементы, как фтор, хлор и др., по числу внешних электронов приближающиеся к конфигурации инертных газов, наоборот стремятся приобрести электроны и воспроизвести эту электронную конфигурацию, переходя в соответствующий отрицательный ион.  


Следующие за третьим периоды таблицы Д. И. Менделеева являются более длинными. Однако периодическое повторение свойств элементов сохраняется. Оно приобретает более сложный характер, обусловленный возрастающим многообразием физических и химических особенностей элементов по мере увеличения их атомных масс. Рассмотрение строения атомов первых периодов подтверждает, что ограниченность числа мест для электронов в каждой оболочке (запрет Паули), окружающей ядро, является причиной периодического повторения свойств элементов. Эта периодичность - великий закон природы, открытый Д. И. Менделеевым в конце прошлого века, в наше время стал одной из основ развития не только химии, но и физики.  

Значения / j постепенно увеличиваются с возрастанием Z до тех пор, Пока Z не достигает значения, характерного для благородного газа, а затем при переходе к следующему элементу падает примерно на одну четвертую значения для благородного газа. Периодичность изменения другого свойства - плотности элементов в твердом состоянии-показана на рис. 5.13. Такое периодическое повторение свойств элементов с увеличением порядкового номера становится особенно наглядным, если элементы расположить в виде таблицы, называемой периодической таблицейялж периодической системой элементов. Было предложено и находит применение много разных форм периодической системы.  

Одновременно с Ньюлендсом к открытию периодического закона приближался во Франции де Шанкуртуа. Но в отличие от чувственного музыкально-звукового образа, послужившего для Ньюлендса аналогией с частично выявленной им закономерностью химических элементов, французский натуралист использовал абстрактно-геометрический образ: он сравнивал периодическое повторение свойств элементов, расположенных по величине их атомных весов, с наматыванием спиральной линии (vis tellurique) а боковую поверхность цилиндра.  

Представление о величине заряда ядра как об определяющем свойстве атома легло в основу современной формулировки периодического закона Д. И. Менделеева: свойства химических элементов, а также формы и свойства соединений этих элементов находятся в периодической зависимости от величины заряда ядер их атомов. Она позволила объяснить причину периодического повторения свойств элементов, которая заключается в периодическом повторении строения электронных конфигураций атомов.  

Только после выяснения структуры атома стали понятны причины периодического повторения свойств элементов.  

Периодическая система химических элементов Д. И. Менделеева

Основные понятия:

1. Порядковый номер химического элемента - номер, данный элементу при его нумерации. Показывает общее число электронов в атоме и число протонов в ядре, определяет заряд ядра атома данного химического элемента.

2. Период – химические элементы, расположенные в строчку (периодов всего 7). Период определяет количество энергетических уровней в атоме.

Малые периоды (1 – 3) включают только s - и p - элементы (элементы главных подгрупп) и состоят из одной строчки; большие (4 – 7) включают не только s - и p - элементы (элементы главных подгрупп), но и d - и f - элементы (элементы побочных подгрупп) и состоят из двух строчек.

3. Группы – химические элементы, расположенные в столбик (групп всего 8). Группа определяет количество электронов внешнего уровня для элементов главных подгрупп, а так же число валентных электронов в атоме химического элемента.

Главная подгруппа (А) – включает элементы больших и малых периодов (только s - и p - элементы).

Побочная подгруппа (В) – включает элементы только больших периодов (только d - или f - элементы).

4. Относительная атомная масса (A r ) – показывает, во сколько раз данный атом тяжелее 1/12 части атома 12 С, это безразмерная величина (для расчётов берут округлённое значение).

5. Изотопы – разновидность атомов одного и того же химического элемента, отличающиеся друг от друга только своей массой, с одинаковым порядковым номером.

Строение атома

Основные понятия:

1. Электронное облако – это модель квантовой механики, описывающая движение электрона в атоме.

2. Орбиталь (s , p , d , f ) – часть атомного пространства, в котором вероятность нахождения данного электрона наибольшая (~ 90%).

3. Энергетический уровень – это энергетический слой с определённым уровнем энергии находящихся на нём электронов.

Число энергетических уровней в атоме химического элемента равно номеру периода, в котором этот элемент расположен.

4. Максимально возможное число электронов на данном энергетическом уровне определяется по формуле:

N = 2 n 2 , где n – номер периода

5. Распределение орбиталей по уровням представлено схемой:

6. Химический элемент – это вид атомов с определённым зарядом ядра.

7. Состав атома :

Частица

Заряд

Масса

Кл

условные единицы

а.е.м.

Электрон (ē)

1.6 ∙ 10 -19

9.10 ∙ 10 -28

0.00055

Протон (p )

1.6 ∙ 10 -19

1.67 ∙ 10 -24

1.00728

Нейтрон (n )

1.67 ∙ 10 -24

1.00866

8. Состав атомного ядра :

·В состав ядра входят элементарные частицы –

протоны (p ) и нейтроны (n ).

·Т.к. практически вся масса атома сосредоточена в ядре, то округлённое значение A r химического элемента равно сумме протонов и нейтронов в ядре.

9. Общее число электронов в электронной оболочке атома равно числу протонов в ядре и порядковому номеру химического элемента.

Порядок заполнения уровней и подуровней электронами

I . Электронные формулы атомов химических элементов составляют в следующем порядке:

· Сначала по номеру элемента в таблице Д. И. Менделеева определяют общее число электронов в атоме;

· Затем по номеру периода, в котором расположен элемент, определяют число энергетических уровней;

· Уровни разбивают на подуровни и орбитали, и заполняют их электронами в соответствии Принципом наименьшей энергии

· Для удобства электроны можно распределить по энергетическим уровням, воспользовавшись формулой N =2n 2 и с учётом того, что:

1. у элементов главных подгрупп (s -;p -элементы) число электронов на внешнем уровне равно номеру группы.

2. у элементов побочных подгрупп на внешнем уровне обычно два электрона (исключение составляют атомы Cu , Ag , Au , Cr , Nb , Mo , Ru , Rh , у которых на внешнем уровне один электрон, у Pd на внешнем уровне ноль электронов);

3. число электронов на предпоследнем уровне равно общему числу электронов в атоме минус число электронов на всех остальных уровнях.

II . Порядок заполнения электронами атомных орбиталей определяется :

1.Принципом наименьшей энергии

Шкала энергий :

1s<2s<2p<3s<3p<4s<3d<4p<5s<4d<5p<6s<4f<5d<6p<7s…

2. Состояние атома с полностью или наполовину заполненным подуровнем (т. е. когда на каждой орбитали имеется по одному неспаренному электрону) является более устойчивым.

Этим объясняется «провал» электрона. Так, устойчивому состоянию атома хрома соответствует следующее распределение электронов:

Cr : 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 3d 5 , ане 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 4 ,

т. е. происходит «провал» электрона с 4s -подуровня на 3d -подуровень.

III . Семейства химических элементов.

Элементы, в атомах которых происходит заполнение электронами s -подуровня внешнего s -элементами . Это первые 2 элемента каждого периода, составляющие главные подгруппы I иII групп.

Элементы, в атомах которых электронами заполняется p -подуровень внешнего энергетического уровня, называются p -элементами . Это последние 6 элементов каждого периода (за исключением I и VII ), составляющие главные подгруппы III - VIII групп.

Элементы, в которых заполняется d -подуровень второго снаружи уровня, называются d -элементами . Это элементы вставных декад IV , V , VI периодов.

Элементы, в которых заполняется f -подуровень третьего снаружи уровня, называются f -элементами . К f -элементам относятся лантаноиды и актиноиды.

Периодический закон Д. И. Менделеева

Свойства простых веществ, а также формы и свойства соединений элементов находятся в периодической зависимости от величины атомных весов элементов.

Современная формулировка периодического закона.

Свойства химических элементов и их соединений находятся в периодической зависимости от величины заряда ядер их атомов, выражающейся в периодической повторяемости структуры внешней валентной электронной оболочки.

Основные положения

1. В периоде слева направо:

2) Заряд ядра – увеличивается

3) Количество энергоуровней – постоянно

4) Количество электронов на внешнем уровне - увеличивается

5) Радиус атомов – уменьшается

6) Электроотрицательность – увеличивается

Следовательно, внешние электроны удерживаются сильнее, и металлические (восстановительные) свойства ослабевают, а неметаллические (окислительные) усиливаются.

2. В группе, в главной подгруппе сверху вниз:

1) Относительная атомная масса – увеличивается

2) Число электронов на внешнем уровне – постоянно

3) Заряд ядра – увеличивается

4) Количество энергоуровней – увеличивается

5) Радиус атомов - увеличивается

6) Электроотрицательность – уменьшается.

Следовательно, внешние электроны удерживаются слабее, и металлические (восстановительные) свойства элементов усиливаются, неметаллические (окислительные) - ослабевают.

3. Изменение свойств летучих водородных соединений:

1)в группах главных подгруппах с ростом заряда ядра прочность летучих водородных соединений уменьшается, а кислотные свойства их водных растворов усиливаются (основные свойства уменьшаются);

2)в периодах слева направо кислотные свойства летучих водородных соединений в водных растворах усиливаются (основные уменьшаются), а прочность уменьшается;

3)в группах с ростом заряда ядра в главных подгруппах валентность элемента в летучих водородных соединениях не изменяется, в периодах слева направо уменьшается от IV до I .

4. Изменение свойств высших оксидов и соответствующих им гидроксидов (кислородсодержащие кислоты неметаллов и основания металлов):

1) в периодах слева направо свойства высших оксидов и соответствующих им гидроксидов изменяются от основных через амфотерные к кислотным;

2)кислотные свойства высших оксидов и соответствующих им гидроксидов с ростом заряда ядра в периоде усиливаются, основные уменьшаются, прочность уменьшается;

3)в группах главных подгруппах у высших оксидов и соответствующих им гидроксидов с ростом заряда ядра прочность растёт, кислотные свойства уменьшаются, основные усиливаются;

4)в группах с ростом заряда ядра в главных подгруппах валентность элемента в высших оксидах не изменяется, в периодах слева направо увеличивается от I до VIII .

5. Завершенность внешнего уровня – если на внешнем уровне атома 8 электронов (для водорода и гелия 2 электрона)

6. Металлические свойства – способность атома отдавать электроны до завершения внешнего уровня.

7. Неметаллические свойства - способность атома принимать электроны до завершения внешнего уровня.

8. Электроотрицательность – способность атома в молекуле притягивать к себе электроны

9. Семейства элементов:

Щелочные металлы (1 группа «А») – Li , Na , K , Rb , Cs , Fr

Галогены (7 группа «А») – F , Cl , Br , I

Инертные газы (8 группа «А») – He , Ne , Ar , Xe , Rn

Халькогены (6 группа «А») – O , S , Se , Te , Po

Щелочноземельные металлы (2 группа «А») – Ca , Sr , Ba , Ra

10. Радиус атома – расстояние от ядра атома до внешнего уровня

Задания для закрепления:


  • План.

  • 1.Периодический закон Д.И. Менделеева и его общенаучное и философское значение.

  • 2.Периодическая система и порядковый номер элемента как его важнейшая характеристика. Периоды и группы.

  • 3.Изменение свойств элементов в периодической системе.

  • 4.Расположение металлов и неметаллов в периодической системе.


1. Периодический закон (Д.И. Менделеев, 1869)

  • Свойства элементов, а также формы и свойства их соединений находятся в периодической зависимости от величины заряда ядер их атомов


Почему свойства элементов периодически повторяются?

  • С увеличением заряда ядра у элементов периодически повторяется количество и распределение валентных электронов, от которых в большой степени зависят свойства элементов


2. Периодическая система элементов

  • Это графическое изображение периодического закона. В периодической системе выделяют горизонтальное (период) и вертикальное (группа) направления.


Период

    Горизонтальный ряд элементов, у которых заполняются электронами одинаковое число энергетических уровней. Ш период: Na, Mg, Al, Si, P, S, Cl, Ar – у атомов данных элементов заполняется 3 энергетических уровня. В периодической системе 7 периодов: 1,2,3 – малые (состоят из одного ряда); 4,5,6,7 – большие (имеют по два ряда); 7-й период – незаконченный.


Группа

  • Вертикальный ряд элементов, имеющих одинаковое, равное номеру группы, количество валентных электронов, одинаковую максимальную валентность. В системе 8 групп. В зависимости от того, как распределяются валентные электроны у элементов, группа делится на две подгруппы: главную и побочную.


Подгруппа

  • Вертикальный ряд элементов, имеющих одинаковое число и одинаковое распределение валентных электронов, а следовательно и сходные свойства.


Главная подгруппа – группа «А»

  • Вертикальный ряд элементов, у которых все валентные электроны расположены на последнем уровне. В состав главной подгруппы входят элементы больших и малых периодов.


Побочная подгруппа «В»

  • Вертикальный ряд элементов, у которых независимо от номера группы, на последнем, уровне находится не более 2-х электронов, остальные валентные электроны расположены на предпоследнем уровне. В состав побочных подгрупп входят элементы только больших периодов


Периодическая система и строение атома

  • 1. Порядковый номер элемента указывает на положительный заряд ядра, число протонов в ядре, число электронов в атоме.

  • 2. Номер периода указывает на число энергетических уровней в атоме.

  • 3. Номера групп для всех элементов, за некоторым исключе­нием, указывают на число валентных электронов, для элементов главных подгрупп – на количество внешних электронов.


3.

  • ИЗМЕНЕНИЕ СВОЙСТВ ЭЛЕМЕНТОВ В ПЕРИОДИЧЕСКОЙ СИСТЕМЕ


Радиус атома, r

  • В периоде слева направо радиус атома несколько уменьшается, т.к. при одинаковом количестве энергетических уровней в результате увеличения заряда ядра электроны притягиваются сильнее. В главной подгруппе сверху вниз, с увеличением числа энергетических уровней радиус атома возрастает. В побочной подгруппе он изменяется нелинейно.


Энергия ионизации, ЭИ

  • Это энергия, необходимая для отрыва электрона от атома. Выражается в электрон-вольтах. В периоде с увеличением заряда ядра, числа, внешних электронов, уменьшением радиуса атома слева направо она возрастает, в главной подгруппе с увеличением радиуса атома сверху вниз убывает.


Энергия сродства к электрону, ЭС

  • Энергия, которая выделяется при присоединении к атому од­ного электрона. В периоде слева направо она возрастает, в главной подгруппе сверху вниз убывает. Выражается в электрон-вольтах.


Электроотрицательность, ЭО

  • Это способность атома в молекуле притягивать к себе электроны. В периоде слева направо возрастает, в главной подгруппе – сверху вниз убывает. Наибольшее значение электроотрицательности имеет фтор.


Число электронов на внешнем уровне

    В периоде слева направо увеличивается от I до 8 (исключение составляет 1-й период, от I до 2). У элементов главных подгрупп равно номеру группы (исключение Н, Не), у элементов побочных подгрупп на внешнем уровне не более 2-х электронов. При образовании химических соединений атомы стремятся к устойчивому состоянию - 8 электронов на внешнем уровне (для первых элементов – 2е). Достигается это путем отдачи или присоединения электронов, в зависимости от того, что атому сделать легче.


4.

  • МЕТАЛЛЫ И НЕМЕТАЛЛЫ

  • В ПЕРИОДИЧЕСКОЙ СИСТЕМЕ


Металлы

  • Элементы, атомы которых на внешнем энергетическом уровне содержат небольшое число электронов: 1, 2, 3. При образовании соединений металлы всегда отдают ē и имеют только положительный заряд.


Неметаллы

  • Элементы, атомы которых на внешнем энергетическом уровне содержат 4-8 электронов. При образовании соединений неметаллы могут как принимать электроны (возникает заряд отрицательный), так и отдавать электроны (возникает заряд положительный).

  • Если в периодической системе провести диагональ от бора (Z = 5) до астата (Z = 85), то вниз от диагонали все элементы-металлы, а вверх - неметаллы, за исключением элементов побочных подгрупп. У элементов побочных подгрупп на внешнем уровне не более 2-х ē, они все относятся к металлам.

  • Четкой границы между металлами и неметаллами нет, более правильно говорить о металличности и неметалличности элемента.


Металличность

  • Способность атома отдавать электроны. В периоде слева направо с увеличением числа ē да внешнем уровне металличность ослабевает. В главных подгруппах сверху вниз металличность возрастает, т.к. увеличивается радиус атома, прочность связи внешних ē с ядром уменьшается, способность отдавать ē возрастает.


Неметалличность

  • Способность атома присоединять электроны.

  • В периоде слева направо с увеличением числа е на внешнем уровне возрастает; в главной подгруппе сверху вниз с увеличением радиуса атома ослабевает.


  • Таким образом, каждый период за исключением первого, начинается активным металлом (щелочным), заканчивается активным неметаллом (галогеном) и инертным газом. Самый активный металл – франций, самый активный неметалл – фтор.