С чем реагирует угольная кислота. Угольная кислота: что нам о ней известно





Общие сведения Угольная кислота́ слабая двухосновная кислота. В чистом виде не выделена. Образуется в малых количествах при растворении углекислого газа в воде, в том числе и углекислого газа из воздуха. Образует ряд устойчивых неорганических и органических производных: соли (карбонаты и гидрокарбонаты), сложные эфиры, амиды и др.








Разложение При повышении температуры раствора и/или понижении парциального давления диоксида углерода равновесие в системе смещается влево, что приводит к разложению части угольной кислоты на воду и диоксид углерода. При кипении раствора угольная кислота разлагается полностью:


Получение Угольная кислота образуется при растворении в воде диоксида углерода. Содержание угольной кислоты в растворе увеличивается при понижении температуры раствора и увеличении давления углекислого газа. Также угольная кислота образуется при взаимодействии её солей (карбонатов и гидрокарбонатов) с более сильной кислотой. При этом бо́льшая часть образовавшейся угольной кислоты, как правило, разлагается на воду и диоксид углерода


Применение Угольная кислота всегда присутствует в водных растворах углекислого газа (газированная вода). В биохимии используется свойство равновесной системы изменять давление газа пропорционально изменению содержания ионов оксония (кислотности) при постоянной температуре. Это позволяет регистрировать в реальном времени ход ферментативных реакций, протекающих с изменением pH раствора


Органические производные Угольную кислоту формально можно рассматривать как карбоновую кислоту с гидроксильной группой вместо углеводородного остатка. В этом качестве она может образовывать все производные, характерные для карбоновых кислот. Некоторые представители подобных соединений перечислены в таблице. Класс соединений Пример соединения Сложные эфиры поликарбонаты Хлорангидридыфосген Амидымочевина Нитрилыциановая кислота Ангидридыпироугольная кислота

Углекислый газ в атмосфере Земли, по состоянию на 2011 год, представлен в количестве 392 ppm или 0,0392 %.Роль углекислого газа (CO2, двуокись или диоксид углерода) в жизнедеятельности биосферы состоит прежде всего в поддержании процесса фотосинтеза, который осуществляется растениями. Являясь парниковым газом, двуокись углерода в воздухе оказывает влияние на теплообмен планеты с окружающим пространством, эффективно блокируя переизлучамое тепло на ряде частот, и таким образом участвует в формировании климата планеты.
В связи с активным использованием человечеством ископаемых энергоносителей в качестве топлива, происходит быстрое увеличение концентрации этого газа в атмосфере. Впервые антропогенное влияние на концентрацию двуокиси углерода отмечается с середины XIX века. Начиная с этого времени, темп её роста увеличивался и в конце 2000-х происходил со скоростью 2,20±0,01 ppm/год или 1,7 % за год. Согласно отдельным исследованиям, современный уровень CO2 в атмосфере является максимальным за последние 800 тыс. лет и, возможно, за последние 20 млн лет.
Роль в парниковом эффекте
Отличительной особенностью парниковых свойств двуокиси углерода по сравнению с другими газами является её долговременное воздействие на климат, которое после прекращения вызвавшей её эмиссии остается в значительной степени постоянным на протяжении до тысячи лет. Другие парниковые газы, такие как метан и оксид азота, существуют в свободном состоянии в атмосфере на протяжении более короткого времени.
Несмотря на относительно небольшую концентрацию в воздухе, CO2 является важной компонентой земной атмосферы, поскольку он поглощает и переизлучает инфракрасное излучение на различных длинах волн, включая длину волны 4,26 мкм (вибрационный режим - асимметричное растяжение молекулы) и 14,99 мкм (изгибные колебания). Данный процесс исключает или снижает излучение Земли в космос на этих длинах волн, что приводит к парниковому эффекту.
Текущее изменение концентрации атмосферного CO2 сказывается в полосах поглощения, где его современное влияние на спектр переизлучения Земли приводит только к частичному поглощению.
Кроме парниковых свойств двуокиси углерода, также имеет значение тот факт, что она является более тяжелым газом по сравнению с воздухом. Так как средняя относительная молярная масса воздуха составляет 28,98 г/моль, а молярная масса CO2 - 44,01 г/моль, то увеличение доли углекислого газа приводит к увеличению плотности воздуха и, соответственно, к изменению профиля его давления в зависимости от высоты. В силу физической природы парникового эффекта, такое изменение свойств атмосферы приводит к увеличению средней температуры на поверхности.
Основным источником парникового эффекта в атмосфере Земли является газообразная вода или влажность воздуха.При отсутствии парниковых газов в атмосфере и значении солнечной постоянной, равной 1368 Вт м2, средняя температура на поверхности должна составлять -15°C. В действительности, средняя температура поверхности Земли составляет +15°C, то есть парниковый эффект приводит к её увеличению на 30°C, из которых 20,6°C объясняется наличием водяного пара в воздухе, наличие в нем углекислого газа считается ответственным за повышение температуры на 7,2°C.Так как при увеличении доли этого газа в атмосфере его бо льшая молярная масса приводит к росту плотности и давления, то при одной и той же температуре рост концентрации CO2 приводит к увеличению влагоёмкости воздуха и к усилению парникового эффекта, обусловленного бо льшим количеством воды в атмосфере. Увеличение доли воды в воздухе для достижения одного и того же уровня относительной влажности - в силу малой молярной массы воды (18 гр мол) - снижает плотность воздуха, что компенсирует увеличение плотности, вызванное наличием повышенного уровня углекислого газа в атмосфере.
Комбинация перечисленных факторов в целом приводит к тому, что увеличение концентрации с доиндустриального уровня 280 ppm до современного 392 ppm эквивалентно дополнительному выделению 1,8 Вт на каждый квадратный метр поверхности планеты.
Источники углекислого газа
К естественным источникам двуокиси углерода в атмосфере относятся вулканические извержения, сгорание органических веществ в воздухе и дыхание представителей животного мира (аэробные организмы). Также углекислый газ производится некоторыми микроорганизмами в результате процесса брожения, клеточного дыхания и в процессе перегнивания органических останков в воздухе. К антропогенным источникам эмиссии CO2 в атмосферу относятся: сжигание ископаемых и неископаемых энергоносителей для получения тепла, производства электроэнергии, транспортировки людей и грузов. К значительному выделению CO2 приводят некоторые виды промышленной активности, такие, например, как производство цемента и утилизация газов путем их сжигания в факелах.
Растения преобразуют получаемый углекислый газ в углеводы в ходе фотосинтеза, который осуществляется посредством пигмента хлорофилла, использующего энергию солнечного излучения. Получаемый газ, кислород, высвобождается в атмосферу Земли и используется для дыхания гетеротрофными организмами и другими растениями, формируя таким образом цикл углерода.
Естественные источники
Большинство источников эмиссии CO2 являются естественными. Перегнивание органического материала, такого как мертвые деревья и трава, приводит к ежегодному выделению 220 млрд тонн двуокиси углерода, земные океаны выделяют 330 млрд. В ходе индонезийских лесных и торфяных пожаров 1997 года было выделено 13–40 % от среднегодовой эмиссии CO2, получаемой в результате сжигания ископаемых топлив.Несмотря на то, что первоначально углекислый газ был представлен в атмосфере молодой Земли в результате вулканической активности, современные вулканы выделяют в среднем 130–230 млн тонн CO2 каждый год, что составляет величину менее 1 % от антропогенной эмиссии.
В обычном состоянии эти естественные источники находятся в равновесии с физическими и биологическими процессами, удаляющими двуокись углерода из атмосферы - часть CO2 растворяется в морской воде и часть удаляется из воздуха в процессе фотосинтеза. Так как обычно в ходе данного процесса поглощается 5,5·10в11степени т диоксида углерода, а его общая масса в земной атмосфере составляет 3,03 ·1012 т, то в среднем весь атмосферный CO2 участвует в углеродном цикле раз в шесть лет.Из-за наличия антропогенных выбросов, поглощение CO2 биосферой превосходило его выделение на 17 млрд тонн в середине 2000-х годов, скорость его поглощения имеет устойчивую тенденцию к увеличению вместе с ростом атмосферной концентрации.
Антропогенная эмиссия
С наступлением промышленной революции в середине XIX века происходило поступательное увеличение антропогенных выбросов двуокиси углерода в атмосферу, что привело к нарушению баланса углеродного цикла и росту концентрации CO2. В настоящее время около 57 % производимого человечеством углекислого газа удаляется из атмосферы растениями и океанами.Соотношени- е увеличения количества CO2 в атмосфере ко всему выделенному CO2 составляет постоянную величину порядка 45 % и претерпевает короткопериодически- е колебания и колебания с периодом в пять лет.
Сжигание ископаемых топлив, таких как уголь, нефть и природный газ, является основной причиной эмиссии антропогенного CO2, вырубка лесов является второй по значимости причиной. В 2008 году в результате сжигания ископаемого топлива в атмосферу было выделено 8,67 млрд тонн углерода (31,8 млрд тонн CO2), в то время как в 1990 году годовая эмиссия углерода составляла 6,14 млрд тонн. Сводка лесов под землепользование привела к увеличению содержания атмосферной двуокиси углерода эквивалентную сжиганию 1,2 млрд тонн угля в 2008 году (1,64 млрд тонн в 1990).Суммарное увеличение за 18 лет составляет 3 % от ежегодного естественного цикла CO2, что достаточно для выведения системы из равновесия и для ускоренного роста уровня CO2.Как результат, двуокись углерода постепенно аккумулировалась в атмосфере и в 2009 году её концентрация на 39 % превосходила доиндустриальное значение.
Таким образом, несмотря на то, что (по состоянию на 2011 год) суммарное антропогенное выделение CO2 не превосходит 8 % от его естественного годового цикла, наблюдается увеличение концентрации, обусловленное не только уровнем антропогенных выбросов, но и постоянным ростом уровня выбросов со временем.
Изменение температуры и углеродный цикл
К другим факторам, увеличивающим содержание CO2 в атмосфере, следует отнести рост средней температуры в XX веке, что должно было отражаться в ускорении перегнивания органических остатков и, в силу прогрева океанов, в снижении общего количества диоксида углерода, растворяемого в воде. Увеличение температуры происходило в том числе по причине исключительно высокой солнечной активности в этот период и в XIX веке (см., например, Событие Кэррингтона, 1859 г).
При переходе от условий холодного к теплому климату в течение последнего миллиона лет, естественное изменение концентрации атмосферного CO2 оставалось в пределах 100 ppm, то есть суммарное увеличение его содержания не превосходило 40 %. При этом, например, средняя температура планеты в период климатического оптимума 9000 5000 лет до н.э. была приблизительно на 1 - 2 °C выше современной, а из-за более сильно выраженного парникового эффекта в условиях теплого климата среднегодовая аномалия температуры в субарктических широтах достигала 9 °C.

Оксид углерода (IV), угольная кислота и ее соли

Диоксид углерода СО 2 (углекислый газ) - при обычных условиях это газ без цвета и запаха, слегка кисловатого вкуса, тяжелœее воздуха примерно в 1,5 раза, растворим в воде, достаточно легко сжижается (при комнатной температуре под давлением около 60 ∙ 10 5 Па его можно превратить в жидкость). При охлаждении до −56,2ºС жидкий диоксид углерода затвердевает и превращается в снегообразную массу.

Во всœех агрегатных состояниях состоит из неполярных линœейных молекул. Химическое строение молекулы СО 2 определяется sp-гибридизацией центрального атома углерода и образованием дополнительных π р-р -связей: О = С = О.

Некоторая часть растворенного в воле СО 2 взаимодействует с ней сообразованием угольной кислоты:

СО 2 + Н 2 О ↔ СО 2 ∙ Н 2 О ↔ Н 2 СО 3 .

Углекислый газ очень легко поглощается растворами щелочей с образованием карбонатов и гидрокарбонатов:

СО 2 + 2NaOH = Na 2 CO 3 + H 2 O; СО 2 + NaOH = NaHCO 3 .

Молекулы СО 2 очень устойчивы термически, распад начинается только при температуре 2000ºС. По этой причине диоксид углерода не горит и не поддерживает горения обычного топлива. Но в его атмосфере горят некоторые простые вещества, атомы которых проявляют большое сродство к кислороду, к примеру, магний при нагревании загорается в атмосфере СО 2 .

Угольная кислота H 2 CO 3 – соединœение непрочное, существует только в водных растворах. Большая часть растворенного в воде углекислого газа находится в виде гидратированных молекул CO 2 , меньшая – образует угольную кислоту.

Водные растворы, находящиеся в равновесии с CO 2 атмосферы, являются кислыми: = 0,04 М и рН ≈ 4.

Угольная кислота – двухосновная, относится к слабым электролитам, диссоциирует ступенчато (К 1 = 4, 4 ∙ 10 −7 ; К 2 = 4, 8 ∙ 10 −11). При растворении CO 2 в воде устанавливается следующее динамическое равновесие:

H 2 O + CO 2 ↔ CO 2 ∙ H 2 O ↔ H 2 CO 3 ↔ H + + HCO 3 −

При нагревании водного раствора углекислого газа растворимость газа понижается, CO 2 выделяется из раствора, и равновесие смещается влево.

Будучи двухосновной, угольная кислота образует два ряда солей: средние соли (карбонаты) и кислые (гидрокарбонаты). Большинство солей угольной кислоты бесцветны. Из карбонатов растворимы в воде лишь соли щелочных металлов и аммония.

В воде карбонаты подвергаются гидролизу, и в связи с этим их растворы имеют щелочную реакцию:

Na 2 CO 3 + H 2 O ↔ NaHCO 3 + NaOH.

Дальнейший гидролиз с образованием угольной кислоты в обычных условиях практически не идет.

Растворение в воде гидрокарбонатов также сопровождается гидролизом, но в значительно меньшей степени, и среда создается слабощелочная (рН ≈ 8).

Карбонат аммония (NH 4) 2 CO 3 отличается большой летучестью при повышенной и даже при обычной температуре, особенно в присутствии паров воды, которые вызывают сильный гидролиз.

Сильные кислоты и даже слабая уксусная кислота вытесняют из карбонатов угольную кислоту:

K 2 CO 3 + H 2 SO 4 = K 2 SO 4 + H 2 O + CO 2 .

В отличие от большинства карбонатов, всœе гидрокарбонаты в воде растворимы. Οʜᴎ менее устойчивы, чем карбонаты тех же металлов и при нагревании легко разлагаются, превращаясь в соответствующие карбонаты:

2KHCO 3 = K 2 CO 3 + H 2 O + CO 2 ;

Ca(HCO 3) 2 = CaCO 3 + H 2 O + CO 2 .

Сильными кислотами гидрокарбонаты разлагаются, как и карбонаты:

KHCO 3 + H 2 SO 4 = KHSO 4 + H 2 O + CO 2

Из солей угольной кислоты наибольшее значение имеют карбонат натрия (сода), карбонат калия (поташ), карбонат кальция (мел, мрамор, известняк), гидрокарбонат натрия (питьевая сода) и основной карбонат меди (CuOH) 2 CO 3 (малахит).

Основные соли угольной кислоты в воде практически нерастворимы и при нагревании легко разлагаются:

(CuOH) 2 CO 3 = 2CuO + CO 2 + H 2 O.

Термическая устойчивость карбонатов зависит от поляризационных свойств ионов, входящих в состав карбоната. Чем больше поляризующее действие оказывает катион на карбонат-ион, тем ниже температура разложения соли. В случае если катион способен легко деформироваться, то карбонат-ион сам также будет оказывать поляризующее действие на катион, что приведет к резкому снижению температуры разложения соли.

Карбонаты натрия и калия плавятся без разложения, а большинство остальных карбонатов при нагревании разлагаются на оксид металла и углекислый газ:

MgCO 3 = MgO + CO 2 .

Оксид углерода (II)

Молекула СО имеет следующую структуру

: СО:

Две связи образованы за счёт спаривания 2р-электронов атомов углерода и кислорода, третья связь образована по донорно-акцепторному механизму за счёт свободной 2р-орбитали углерода и 2р-электронной пары атома кислорода. Дипольный момент молекулы незначителœен, при этом эффективный заряд на атоме углерода отрицательный, а на атоме кислорода – положительный.

Поскольку строение молекулы СО сходно со строением молекулы азота͵ похожи их физические свойства. СО имеет очень низкие температуры плавления (- 204ºС) и кипения (- 191,5ºС), это бесцветный, очень ядовитый газ, без запаха, совсœем немного легче воздуха. Плохо растворим в воде, и с ней не взаимодействует.

СО считается несолеобразующим оксидом, т.к. при обычных условиях не взаимодействует ни с кислотами, ни со щелочами. Он образуется при горении угля и углеродистых соединœений при ограниченном доступе кислорода, также при взаимодействии углекислого газа с раскаленным углем: СО 2 + С = 2СО.

В лаборатории его получают из мурвьиной кислоты действием на нее концентрированной серной кислоты при нагревании:

НСООН + H 2 SO 4 (конц.) = CO + H 2 SO 4 ∙ H 2 O.

Можно использовать также и щавелœевую кислоту. Серная кислота в этих реакциях выступает как водоотнимающее средство.

В обычных условиях СО химически достаточно инœертен, но при нагревании проявляет восстановительные свойства, что широко используется в пирометаллургии для получения некоторых металлов: Fe 2 O 3 + 3CO = 2Fe + 3CO 2 .

На воздухе СО горит голубоватым пламенем с выделœением большого количества теплоты: 2СО + О 2 = 2СО 2 + 569 кДж.

Помимо кислорода на прямом солнечном свету или в присутствии катализатора (активного угля) СО соединяется с хлором, образуя фосген:

СО + Cl 2 = COCl 2 .

Фосген – бесцветный газ с характерным запахом. В воде он малорастворим, но как хлорангидрид угольной кислоты постепенно гидролизуется по схеме: COCl 2 + 2H 2 O = 2HCl + H 2 CO 3 . Вследствие высокой токсичности фосген применяли как боевое отравляющее средство в первую мировую войну. Обезвредить его можно с помощью гашеной извести.

При нагревании СО окисляется и серой: СО + S = COS.

Молекула СО может выступать в качестве лиганда в различных комплексных соединœениях. За счёт несвязывающей электронной пары углерода она проявляет σ-донорные свойства, а за счёт свободных π-разрыхляющих орбиталей проявляет π-акцепторные свойства. Особый интерес представляют карбонильные комплексы d-металлов, т.к. термическим разложением карбонилов получают металлы высокой чистоты.

Угольная кислота (формула Н2СО3) - слабая двухосновная кислота. При нагревании растворов разлагается на и воду. Эта кислота имеет огромное значение не только для животных, но и для растений. В организме человека Н2СО3, а также ее соли входят в состав крови. С помощью поддерживается кислотно-щелочной баланс в организме, что необходимо для нормальной жизнедеятельности. Диссоциация кислот в водной среде приводит к образованию анионов и катионов. Концентрация ионов имеет огромное значение для течения многих биохимических процессов в организме животных и растений. При некоторых заболеваниях активная реакция крови сдвигается в кислую (при язве двенадцатиперстной кишки и желудка) или щелочную (при сепсисе, пневмониях) стороны. При ацидозе увеличивается концентрация ионов водорода. Такие изменения в свою очередь провоцируют развитие что в конечном результате приводит к гибели самого животного. При алкалозе в крови возрастает концентрация катионов, что приводит столбнячному состоянию и гибели животного.

Угольная кислота образуется в процессе взаимодействия СО2 с Н2О. Большинство исследователей верит в то, что неимоверное развитие растительности в первобытном мире связано со значительной концентрацией угольной кислоты в атмосфере. Наиболее интенсивный рост отмечался у тех растений, которые выращивались с повышенной (5-10%) концентрацией угольной кислоты в атмосфере.

Следует отметить, что растения состоят наполовину из углерода. Угольная кислота питает растение, при этом способствует растворимости минеральных компонентов почвы. Поэтому в данном случае это необходимый компонент почвы. Поскольку угольна кислота ингибирует нитрифицирующие микроорганизмы, почва должна содержать минимальную ее концентрацию.

Поэтому для получения высоких урожаев необходимо сбалансировать концентрацию указанной кислоты. Ученые в своих опытах установили, что при ежедневном введении в почву угольной кислоты (400 см3) и воздуха (1200 см3) она производит вдвое больше растений по сравнению с той, которая не содержала в себе эти соединения.

Деревенская почва характеризуется обилием воздуха, поэтому в ней процессы нитрификации и гниения проходят очень интенсивно. Установлено, что листья в лесу полностью разлагаются в течение года. Такая энергичная нитрификация происходит и в степях. В процессе разложения выделяется значительное количество угольной кислоты. Последняя в полтора раза тяжелее воздуха, поэтому угольная кислота в почву проникает глубже, чем воздух, и там оказывает благотворное влияние на минеральные компоненты.

При глубокой вспашке органические остатки попадают в более глубокие слои почвы, где отсутствует О2, но наблюдается изобилие угольной кислоты. В данном случае нитрификация происходит чрезвычайно медленно. В этих условиях не разлагаются минеральные компоненты и не образуются азотистые соединения. Огромные куски навоза годами лежат в земле, не перегнивая. Землевладельцы вынуждены покупать синтетические удобрения (каинит, суперфосфат, Инновационные технологии обработки почвы позволяют повысить урожайность растений. Это связано в первую очередь с тем, что в процессе обработки земли в остаются органические остатки. Создаются оптимальные условия для развития и размножения нитрифицирующих микроорганизмов.

Фосфор, который находится в почве, не всегда усваивается растениями. Трехосновной фосфорнокислый кальций - труднорастворимое соединение. Поэтому почва, богатая фосфорнокислыми соединениями, превращается в неплодородную.