Электронное строение атома n. Электронные формулы атомов и схемы

Понятие «атом» знакомо человечеству ещё со времен Древней Греции. Согласно высказыванию древних философов, атом представляет собой мельчайшую частицу, входящую в состав вещества.

Электронное строение атома

Атом состоит из положительно заряженного ядра внутри которого находятся протоны и нейтроны. Вокруг ядра по орбитам движутся электроны, каждый из которых можно охарактеризовать набором из четырех квантовых чисел: главного (n), орбитального (l), магнитного (m l) и спинового (m s или s).

Главное квантовое число определяет энергию электрона и размеры электронных облаков. Энергия электрона главным образом зависит от расстояния электрона от ядра: чем ближе к ядру находится электрон, тем меньше его энергия. Другими словами, главное квантовое число определяет расположение электрона на том или ином энергетическом уровне (квантовом слое). Главное квантовое число имеет значения ряда целых чисел от 1 до бесконечности.

Орбитальное квантовое число характеризует форму электронного облака. Различная форма электронных облаков обусловливает изменение энергии электронов в пределах одного энергетического уровня, т.е. расщепление её на энергетические подуровне. Орбитальное квантовое число может имеет значения от нуля до (n-1), всего n значений. Энергетические подуровни обозначают буквами:

Магнитное квантовое число показывает ориентацию орбитали в пространстве. Оно принимает любое целое числовое значение от (+l) до (-l), включая нуль. Число возможных значений магнитного квантового числа равна (2l+1).

Электрон, двигаясь в поле ядра атома, кроме орбитального момента импульса обладает также собственным моментам импульса, характеризующим его веретенообразное вращение вокруг собственной оси. Это свойства электрона получило название спина. Величину и ориентацию спина характеризует спиновое квантовое число, которое может принимать значения (+1/2) и (-1/2). Положительное и отрицательное значения спина связаны с его направлением.

До того, как все вышеописанное стало известно и подтверждено экспериментально существовало несколько моделей строения атома. Одна из первых моделей строения атома была предложена Э. Резерфордом, который в опытах по рассеянию α-частиц показал, что почти вся масса атома сосредоточена в очень малом объеме - положительно заряженном ядре. Согласно его модели, вокруг ядра на достаточно большом расстоянии движутся электроны, причем их число таково, что в целом атом электронейтрален.

Развивать модель строения атома Резерфорда стал Н. Бор, который в своем исследовании также объединил учения Эйнштейна о световых квантах и квантовую теорию излучения Планка. Завершили начатое и представили миру современную модель строения атома химического элемента Луи де Бройль и Шредингер.

Примеры решения задач

ПРИМЕР 1

Задание Укажите количество протонов и нейтронов, которые содержатся в ядрах азота (атомный номер 14), кремния (атомный номер 28) и бария (атомный номер 137).
Решение Количество протонов в ядре атома химического элемента определяется по его порядковому номеру в Периодической таблице, а количество нейтронов - это разница между массовым числом (М) и зарядом ядра (Z).

Азот:

n(N)= M -Z = 14-7 = 7.

Кремний:

n(Si)= M -Z = 28-14 = 14.

Барий:

n (Ba)= M -Z = 137-56 = 81.

Ответ Количество протонов в ядре азота равно 7, нейтронов - 7; в ядре атоме кремня протонов 14, нейтронов - 14; в ядре атоме бария протонов 56, нейтронов - 81.

ПРИМЕР 2

Задание Расположите энергетические подуровни в последовательности их заполнения электронами:

а) 3р, 3d, 4s, 4р;

б) 4d, 5s, 5р, 6s;

в) 4f, 5s, 6р; 4d, 6s;

г) 5d, 6s, 6р, 7s, 4f.

Решение Энергетические подуровни заполняются электронами в соответствии с правилами Клечковского. Обязательным условием является минимальное значение суммы главного и орбитального квантового чисел. Для s-подуровня характерно число 0, p - 1, d - 2 и f-3. Второе условие - первым заполняется подуровень с наименьшим значением главного квантового числа.
Ответ а) Орбиталям 3р, 3d, 4s, 4р будут соответствовать числа 4, 5, 4 и 5. Следовательно заполнение электронами будет происходить в следующей последовательности: 3p, 4s, 3d, 4p.

б) Орбиталям 4d, 5s, 5р, 6s будут соответствовать числа 7, 5, 6 и 6. Следовательно заполнение электронами будет происходить в следующей последовательности: 5s, 5p, 6s, 4d.

в) Орбиталям 4f, 5s, 6р; 4d, 6s будут соответствовать числа 7, 5, 76 и 6. Следовательно заполнение электронами будет происходить в следующей последовательности: 5s, 4d, 6s, 4f, 6р.

г) Орбиталям 5d, 6s, 6р, 7s, 4f будут соответствовать числа 7, 6, 7, 7 и 7. Следовательно заполнение электронами будет происходить в следующей последовательности: 6s, 4f, 5d, 6р, 7s.

Электронная конфигурация атома - это формула, показывающая расположение электронов в атоме по уровням и подуровням. После изучения статьи Вы узнаете, где и как располагаются электроны, познакомитесь с квантовыми числами и сможете построить электронную конфигурацию атома по его номеру, в конце статьи приведена таблица элементов.

Для чего изучать электронную конфигурацию элементов?

Атомы как конструктор: есть определённое количество деталей, они отличаются друг от друга, но две детали одного типа абсолютно одинаковы. Но этот конструктор куда интереснее, чем пластмассовый и вот почему. Конфигурация меняется в зависимости от того, кто есть рядом. Например, кислород рядом с водородом может превратиться в воду, рядом с натрием в газ, а находясь рядом с железом вовсе превращает его в ржавчину. Что бы ответить на вопрос почему так происходит и предугадать поведение атома рядом с другим необходимо изучить электронную конфигурацию, о чём и пойдёт речь ниже.

Сколько электронов в атоме?

Атом состоит из ядра и вращающихся вокруг него электронов, ядро состоит из протонов и нейтронов. В нейтральном состоянии у каждого атома количество электронов равно количеству протонов в его ядре. Количество протонов обозначили порядковым номером элемента, например, сера, имеет 16 протонов - 16й элемент периодической системы. Золото имеет 79 протонов - 79й элемент таблицы Менделеева. Соответственно, в сере в нейтральном состоянии 16 электронов, а в золоте 79 электронов.

Где искать электрон?

Наблюдая поведение электрона были выведены определённые закономерности, они описываются квантовыми числами, всего их четыре:

  • Главное квантовое число
  • Орбитальное квантовое число
  • Магнитное квантовое число
  • Спиновое квантовое число

Орбиталь

Далее, вместо слова орбита, мы будем использовать термин "орбиталь", орбиталь - это волновая функция электрона, грубо - это область, в которой электрон проводит 90% времени.
N - уровень
L - оболочка
M l - номер орбитали
M s - первый или второй электрон на орбитали

Орбитальное квантовое число l

В результате исследования электронного облака, обнаружили, что в зависимости от уровня энергии, облако принимает четыре основных формы: шар, гантели и другие две, более сложные. В порядке возрастания энергии, эти формы называются s-,p-,d- и f-оболочкой. На каждой из таких оболочек может располагаться 1 (на s), 3 (на p), 5 (на d) и 7 (на f) орбиталей. Орбитальное квантовое число - это оболочка, на которой находятся орбитали. Орбитальное квантовое число для s,p,d и f-орбиталей соответственно принимает значения 0,1,2 или 3.

На s-оболочке одна орбиталь (L=0) - два электрона
На p-оболочке три орбитали (L=1) - шесть электронов
На d-оболочке пять орбиталей (L=2) - десять электронов
На f-оболочке семь орбиталей (L=3) - четырнадцать электронов

Магнитное квантовое число m l

На p-оболочке находится три орбитали, они обозначаются цифрами от -L, до +L, то есть, для p-оболочки (L=1) существуют орбитали "-1", "0" и "1". Магнитное квантовое число обозначается буквой m l .

Внутри оболочки электронам легче располагаться на разных орбиталях, поэтому первые электроны заполняют по одному на каждую орбиталь, а затем уже к каждому присоединяется его пара.

Рассмотрим d-оболочку:
d-оболочке соответствует значение L=2, то есть пять орбиталей (-2,-1,0,1 и 2), первые пять электронов заполняют оболочку принимая значения M l =-2,M l =-1,M l =0, M l =1,M l =2.

Спиновое квантовое число m s

Спин - это направление вращения электрона вокруг своей оси, направлений два, поэтому спиновое квантовое число имеет два значения: +1/2 и -1/2. На одном энергетическом подуровне могут находиться два электрона только с противоположными спинами. Спиновое квантовое число обозначается m s

Главное квантовое число n

Главное квантовое число - это уровень энергии, на данный момент известны семь энергетических уровней, каждый обозначается арабской цифрой: 1,2,3,...7. Количество оболочек на каждом уровне равно номеру уровня: на первом уровне одна оболочка, на втором две и т.д.

Номер электрона


Итак, любой электрон можно описать четырьмя квантовыми числами, комбинация из этих чисел уникальна для каждой позиции электрона, возьмём первый электрон, самый низкий энергетический уровень это N=1, на первом уровне распологается одна оболочка, первая оболочка на любом уровне имеет форму шара (s-оболочка), т.е. L=0, магнитное квантовое число может принять только одно значение, M l =0 и спин будет равен +1/2. Если мы возьмём пятый электрон (в каком бы атоме он не был), то главные квантовые числа для него будут: N=2, L=1, M=-1, спин 1/2.

Алгоритм составления электронной формулы элемента:

1. Определите число электронов в атоме используя Периодическую таблицу химических элементов Д.И. Менделеева .

2. По номеру периода, в котором расположен элемент, определите число энергетических уровней; число электронов на последнем электронном уровне соответствует номеру группы.

3. Уровни разбить на подуровни и орбитали и заполнить их электронами в соответствии с правилами заполнения орбиталей :

Необходимо помнить, что на первом уровне находится максимум 2 электрона 1s 2 , на втором - максимум 8 (два s и шесть р: 2s 2 2p 6 ), на третьем - максимум 18 (два s , шесть p , и десять d: 3s 2 3p 6 3d 10 ).

  • Главное квантовое число n должно быть минимально.
  • Первым заполняется s- подуровень, затем р-, d- b f- подуровни.
  • Электроны заполняют орбитали в порядке возрастания энергии орбиталей (правило Клечковского).
  • В пределах подуровня электроны сначала по одному занимают свободные орбитали, и только после этого образуют пары (правило Хунда).
  • На одной орбитали не может быть больше двух электронов (принцип Паули).

Примеры.

1. Составим электронную формулу азота. В периодической таблице азот находится под №7.

2. Составим электронную формулу аргона. В периодической таблице аргон находится под №18.

1s 2 2s 2 2p 6 3s 2 3p 6 .

3. Составим электронную формулу хрома. В периодической таблице хром находится под №24.

1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 3d 5

Энергетическая диаграмма цинка.

4. Составим электронную формулу цинка. В периодической таблице цинк находится под №30.

1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10

Обратим внимание, что часть электронной формулы, а именно 1s 2 2s 2 2p 6 3s 2 3p 6 - это электронная формула аргона.

Электронную формулу цинка можно представить в виде.

Периодическая система элементов Менделеева. Строение атома.

ПЕРИОДИЧЕСКАЯ СИСТЕМА ЭЛЕМЕНТОВ МЕНДЕЛЕЕВА - классификация хим. элементов, созданная рус. учёным Д. И. Менделеевым на основе открытого им (в 1869) периодич. закона.

Совр. формулировка периодич. закона: св-ва элементов (проявляющиеся в простых в-вах и соединениях) находятся в периодич. зависимости от заряда ядер их атомов.

Заряд атомного ядра Z равняется атомному (порядковому) номеру хим. элемента в П. с. э. М. Если расположить все элементы в порядке возрастания Z. (водород Н, Z = 1; гелий Не, Z = 2; литий Li, Z == 3; бериллий Be, Z = 4 и т. д.), то они образуют 7периодов. В каждом из этих периодов наблюдается закономерное изменение св-в элементов, от первого элемента периода (щелочного металла) до последнего (благородного газа). Первый период содержит 2 элемента, 2-й и 3-й - по 8 элементов, 4-й и 5-й - по 18, 6-й - 32. В 7-м периоде известно 19 элементов. 2-й и 3-й периоды принято называть малыми, все последующие - большими. Если расположить периоды в виде горизонтальных рядов, то в получ. таблице обнаружатся 8 вертик. столбцов; это группы элементов, аналогичных по своим св-вам.

Св-ва элементов внутри групп также закономерно изменяются в зависимости от увеличения Z. Напр., в группе Li - Na - К - Rb - Cs - Fr возрастает хим. активность металла, усиливается осн. характер оксидов и гидроксидов.

Из теории строения атома следует, что периодичность св-в элементов обусловлена законами формирования электронных оболочек вокруг ядра. По мере увеличения Z элемента происходит усложнение атома - возрастает число электронов, окружающих ядро, и наступает момент, когда заканчивается заполнение одной электронной оболочки и начинается формирование следующей, наружной. В системе Менделеева это и совпадает с началом нового периода. Элементы с 1, 2, 3 и т. д. электронами в новой оболочке похожи по св-вам на те элементы, к-рые тоже имели 1, 2, 3 и т. д. наружных электрона, хотя число их внутр. электронных оболочек было на одну (или на неск.) меньше: Na похож на Li (один внеш. электрон), Mg - на Be (2 внеш. электрона); А1 - на В (3 внеш. электрона) и т. д. С положением элемента в П. с. э. М. связаны его хим. и мн. физ. св-ва.

Предложено множество (ок. 1000) вариантов графич. изображения П. с. э. М. Наиболее распространены 2 варианта П. с. э. М. - короткая и длинная таблицы; к.-л. принципиального различия между ними нет. В приложении помещён один из вариантов короткой таблицы. В таблице номера периодов приведены в первой колонке (обозначены арабскими цифрами 1 - 7). Номера групп обозначены сверху римскими цифрами I - VIII. Каждая группа делится на две подгруппы - а и б. Совокупность элементов, возглавляемых элементами малых периодов, иногда наз. главными подгрупп а-м и (Li возглавляет подгруппу щелочных металлов. F - галогенов, Не - инертных газов и т. д.). В этом случае остальные подгруппы элементов больших периодов наз. побочными.

Элементы с Z = 58 - 71 благодаря особой близости строения их атомов и сходства их хим. св-в составляют семейство лантаноидов, входящее в III группу, но для удобства помещаемое внизу таблицы. Элементы с Z = 90 - 103 по тем же причинам часто выделяют в семейство актиноидов. За ними следуют элемент с Z = 104 - курчатовий и элемент с Z = 105 (см. Нильсборий). В июле 1974 сов. физики сообщили об открытии элемента с Z = 106, а в янв. 1976 - элемента с Z = 107. Позднее синтезированы элементы с Z = 108 и 109. Ниж. граница П. с. э. М. известна - она задана водородом, т. к. не может быть элемента с зарядом ядра меньше единицы. Вопрос же о том, какова верхняя граница П. с. э. М., т. е. до какого предельного значения может дойти искусств. синтез элементов, остаётся нерешённым. (Тяжёлые ядра неустойчивы, поэтому америций с Z = 95 и последующие элементы не обнаруживают в природе, а получают в ядерных реакциях; однако в области более далёких трансурановых элементов ожидается появление т. н. островов устойчивости, в частности для Z = 114.) В искусств. синтезе новых элементов периодич. закон и П. с. э. М. играют первостепенную роль. Закон и система Менделеева принадлежат к числу важнейших обобщений естествознания, лежат в основе совр. учения о строении в-ва.

Электронное строение атома.

В этом и в следующем параграфах рассказывается о моделях электронной оболочки атома. Важно понимать, что речь идет именно о моделях . Реальные атомы, конечно, более сложны и мы пока знаем о них далеко не все. Однако современная теоретическая модель электронного строения атома позволяет успешно объяснить и даже предсказать многие свойства химических элементов, поэтому широко используется в естественных науках.

Для начала рассмотрим более подробно "планетарную" модель, которую предложил Н. Бор (рис. 2-3 в).

Рис. 2-3 в. "Планетарная" модель Бора.

Датский физик Н. Бор в 1913 году предложил модель атома, в которой электроны-частицы вращаются вокруг ядра атома примерно так же, как планеты обращаются вокруг Солнца. Бор предположил, что электроны в атоме могут устойчиво существовать только на орбитах, удаленных от ядра на строго определенные расстояния. Эти орбиты он назвал стационарными. Вне стационарных орбит электрон существовать не может. Почему это так, Бор в то время объяснить не мог. Но он показал, что такая модель позволяет объяснить многие экспериментальные факты (подробнее об этом рассказывается в параграфе 2.7).

Электронные орбиты в модели Бора обозначаются целыми числами 1, 2, 3, … n , начиная от ближайшей к ядру. В дальнейшем мы будем называть такие орбиты уровнями . Для описания электронного строения атома водорода достаточно одних только уровней. Но в более сложных атомах, как выяснилось, уровни состоят из близких по энергии подуровней . Например, 2-й уровень состоит из двух подуровней (2s и 2p). Третий уровень состоит из 3-х подуровней (3s, 3p и 3d), как показано на рис. 2-6. Четвертый уровень (он не поместился на рисунке) состоит из подуровней 4s, 4p, 4d, 4f. В параграфе 2.7 мы расскажем, откуда взялись именно такие названия подуровней и о физических опытах, которые позволили "увидеть" электронные уровни и подуровни в атомах.

Рис. 2-6. Модель Бора для атомов более сложных, чем атом водорода. Рисунок сделан не в масштабе - на самом деле подуровни одного уровня находятся гораздо ближе друг к другу.

В электронной оболочке любого атома ровно столько электронов, сколько протонов в его ядре, поэтому атом в целом электронейтрален. Электроны в атоме заселяют ближайшие к ядру уровни и подуровни, потому что в этом случае их энергия меньше, чем если бы они заселяли более удаленные уровни. На каждом уровне и подуровне может помещаться только определенное количество электронов.

Подуровни, в свою очередь, состоят из одинаковых по энергии орбиталей (на рис. 2-6 они не показаны). Образно говоря, если электронное облако атома сравнить с городом или улицей, где "живут" все электроны данного атома, то уровень можно сравнить с домом, подуровень - с квартирой, а орбиталь - с комнатой для электронов. Все орбитали какого-нибудь подуровня имеют одинаковую энергию. На s-подуровне всего одна "комната"-орбиталь. На p-подуровне 3 орбитали, на d-подуровне 5, а на f-подуровне - целых 7 орбиталей. В каждой "комнате"-орбитали могут "жить" один или два электрона. Запрещение электронам находиться более чем по двое на одной орбитали называют запретом Паули - по имени ученого, который выяснил эту важную особенность строения атома. Каждый электрон в атоме имеет свой "адрес", который записывается набором четырех чисел, называемых "квантовыми". О квантовых числах будет подробно рассказано в параграфе 2.7. Здесь мы упомянем лишь о главном квантовом числе n (см. рис. 2-6), которое в "адресе" электрона указывает номер уровня, на котором этот электрон существует.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-08-20

Так как при химических реакциях ядра реагирующих атомов остаются без изменений (за исключением радиоактивных превращений), то химические свойства атомов зависят от строения их электронных оболочек. Теория электронного строения атома построена на основе аппарата квантовой механики. Так, структура энергетических уровней атома может быть получена на основе квантовомеханических расчетов вероятностей нахождения электронов в пространстве вокруг атомного ядра (рис. 4.5 ).

Рис. 4.5 . Схема подразделения энергетических уровней на подуровни

Основы теории электронного строения атома сводятся к следующим положениям: состояние каждого электрона в атоме характеризуется четырьмя квантовыми числами: главным квантовым числом n = 1, 2, 3, ; орбитальным (азимутальным)l=0,1,2, n–1 ;  магнитнымm l = –l, –1,0,1, l ;  спиновымm s = -1/2, 1/2 .

Согласно принципу Паули , в одном и том же атоме не может быть двух электронов, обладающих одинаковой совокупностью четырех квантовых чиселn, l, m l , m s ; совокупности электронов с одинаковыми главными квантовыми числами n образуют электронные слои, или энергетические уровни атома, нумеруемые от ядра и обозначаемые какK, L, M, N, O, P, Q ,  причем в энергетическом слое с данным значениемn могут находиться не более, чем2n 2 электронов. Совокупности электронов с одинаковыми квантовыми числамиn иl ,  образуют подуровни, обозначаемые по мере удаления их от ядра какs, p, d, f .

Вероятностное нахождение положения электрона в пространстве вокруг атомного ядра соответствует принципу неопределенностей Гейзенберга. По квантовомеханическим представлениям, электрон в атоме не имеет определенной траектории движения и может находиться в любой части пространства вокруг ядра, а различные его положения рассматриваются как электронное облако с определенной плотностью отрицательного заряда. Пространство вокруг ядра, в котором наиболее вероятно нахождение электрона, называется орбиталью . В нем заключено порядка 90% электронного облака. Каждому подуровню1s, 2s, 2p и т.д. соответствует определенное количество орбиталей определенной формы. Например,1s - и2s- орбитали имеют сферическую форму, а2p -орбитали (2p x , 2p y , 2p z -орбитали) ориентированы во взаимно перпендикулярных направлениях и имеют форму гантели (рис. 4.6 ).

Рис. 4.6 . Форма и ориентация электронных орбиталей.

При химических реакциях атомное ядро не претерпевает изменений, изменяются лишь электронные оболочки атомов, строением которых объясняются многие свойства химических элементов. На основе теории электронного строения атома был установлен глубокий физический смысл периодического закона химических элементов Менделеева и создана теория химической связи.

Теоретическое обоснование периодической системы химических элементов включает в себя данные о строении атома, подтверждающие существование связи между периодичностью изменения свойств химических элементов и периодическим повторением сходных типов электронных конфигураций их атомов.

В свете учения о строении атома становится обоснованным разделение Менделеевым всех элементов на семь периодов: номер периода соответствует числу энергетических уровней атомов, заполняемых электронами. В малых периодах с ростом положительных заряда ядер атомов возрастает число электронов на внешнем уровне (от 1 до 2 в первом периоде, и от 1 до 8 во втором и третьем периодах), что объясняет изменение свойств элементов: в начале периода (кроме первого) находится щелочной металл, затем наблюдается постепенное ослабление металлических свойств и усиление неметаллических. Эта закономерность прослеживается для элементов второго периода в таблице 4.2.

Таблица 4.2.

В больших периодах с ростом заряда ядер заполнение уровней электронами происходит сложнее, что и объясняет более сложное изменение свойств элементов по сравнению с элементами малых периодов.

Одинаковый характер свойств химических элементов в подгруппах объясняется сходным строением внешнего энергетического уровня, как это показано в табл. 4.3 , иллюстрирующей последовательность заполнения электронами энергетических уровней для подгрупп щелочных металлов.

Таблица 4.3.

Номер группы, как правило, указывает на число электронов в атоме, которые могут участвовать в образовании химических связей. В этом заключается физический смысл номера группы. В четырех местах периодической системы элементы расположены не в порядке возрастания атомных масс:  Ar иK ,Co иNi ,T e иI ,Th иPa . Эти отступления считались недостатками периодической системы химических элементов. Учение о строении атома объяснило указанные отступления. Опытное определение зарядов ядер показало, что расположение этих элементов соответствует возрастанию зарядов их ядер. Кроме того, опытное определение зарядов ядер атомов дало возможность определить число элементов между водородом и ураном, а также число лантаноидов. Ныне все места в периодической системе заполнены в промежутке отZ=1 доZ=114 , однако периодическая система не закончена, возможно открытие новых трансурановых элементов.