Характеристика 6 группы главной подгруппы. Неметаллы VI группы

К главной подгруппе VI группы периодической системы относятся кислород, сера, селен, теллур и полоний. Неметаллические свойства у элементов VI-А группы выражены менее ярко, чем у галогенов. Валентными уних являются электроны ns 2 np 4 .

Так как атомы элементов VI-А группы содержат на внешнем слое шесть электронов, то они стремятся к заполнению электронами внешнего энергетического уровня и для них характерно образование анионов Э 2- . К образованию катионов атомы рассматриваемых элементов (кроме полония) не склонны.

Кислород и сера - типичные неметаллы, причем кислород относится к самым электроотрицательным элементам (на втором месте после фтора). Полоний - металл серебристо-белого цвета, напоминающий по физическим свойствам свинец, а по электрохимическим свойствам - благородные металлы. Селен и теллур занимают промежуточное положение между металлами и неметаллами, они являются полупроводниками. По химическим свойствам они стоят ближе к неметаллам. Кислород, серу, селен и теллур объединяют в группу "халькогенов", что в переводе с греческого языка означает "порождающие руды". Эти элементы входят в состав многочисленных руд. От кислорода к теллуру содержание элементов на Земле резко падает. Полоний не имеет стабильных изотопов и встречается в урановых и ториевых рудах, как один из продуктов распада радиоактивного урана.

По своим свойствам кислород и сера резко отличаются друг от друга, т.к. электронные оболочки предыдущего энергетического уровня построены у них различно. Теллур и полоний имеют одинаковое строение внешнего энергетического уровня (валентного слоя) и предпоследнего энергетического уровня, поэтому они в большей степени схожи по своим свойствам.

Кислород -- химически активный неметалл, является самым лёгким элементом из группы халькогенов. Простое вещество кислород при нормальных условиях -- газ без цвета, вкуса и запаха, молекула которого состоит из двух атомов кислорода (формула O 2), в связи с чем его также называют дикислород. Жидкий кислород имеет светло-голубой цвет, а твёрдый представляет собой кристаллы светло-синего цвета.Существуют и другие аллотропные формы кислорода, например, озон -- при нормальных условиях газ голубого цвета со специфическим запахом, молекула которого состоит из трёх атомов кислорода (формула O3).Слово кислород (именовался в начале XIX века ещё «кислотвором») своим появлением в русском языке до какой-то степени обязано М. В. Ломоносову, который ввёл в употребление, наряду с другими неологизмами, слово «кислота»; таким образом слово «кислород», в свою очередь, явилось калькой термина «оксиген» (фр. oxygиne), предложенного А. Лавуазье (от др.-греч. ?оэт -- «кислый» и геннЬщ -- «рождаю»), который переводится как «порождающий кислоту», что связано с первоначальным значением его -- «кислота», ранее подразумевавшим вещества, именуемые по современной международной номенклатуре оксидами. Кислород -- самый распространённый в земной коре элемент, на его долю (в составе различных соединений, главным образом силикатов) приходится около 47 % массы твёрдой земной коры. В атмосфере содержание свободного кислорода составляет 20,95 % по объёму и 23,10 % по массе (около 1015 тонн).В настоящее время в промышленности кислород получают из воздуха. Основным промышленным способом получения кислорода является криогенная ректификация. Также хорошо известны и успешно применяются в промышленности кислородные установки, работающие на основе мембранной технологии.

В лабораториях пользуются кислородом промышленного производства, поставляемым в стальных баллонах под давлением около 15 МПа.

Небольшие количества кислорода можно получать нагреванием перманганата калия KMnO4:

Используют также реакцию каталитического разложения пероксида водорода Н 2 О 2 в присутствии оксида марганца(IV):

Кислород можно получить каталитическим разложением хлората калия (бертолетовой соли) KClO 3:

К лабораторным способам получения кислорода относится метод электролиза водных растворов щелочей, а также разложение оксида ртути(II) (при t = 100 °C):

На подводных лодках обычно получается реакцией пероксида натрия и углекислого газа, выдыхаемого человеком:

Сильный окислитель, взаимодействует практически со всеми элементами, образуя оксиды. Степень окисления?2. Как правило, реакция окисления протекает с выделением тепла и ускоряется при повышении температуры. Пример реакций, протекающих при комнатной температуре:

Окисляет соединения, которые содержат элементы с не максимальной степенью окисления:

Окисляет большинство органических соединений:

При определённых условиях можно провести мягкое окисление органического соединения:

Кислород реагирует непосредственно (при нормальных условиях, при нагревании и/или в присутствии катализаторов) со всеми простыми веществами, кроме Au и инертных газов (He, Ne, Ar, Kr, Xe, Rn); реакции с галогенами происходят под воздействием электрического разряда или ультрафиолета. Косвенным путём получены оксиды золота и тяжёлых инертных газов (Xe, Rn). Во всех двухэлементных соединениях кислорода с другими элементами кислород играет роль окислителя, кроме соединений со фтором.

Кислород образует пероксиды со степенью окисления атома кислорода, формально равной?1.

Например, пероксиды получаются при сгорании щелочных металлов в кислороде:

Некоторые оксиды поглощают кислород:

По теории горения, разработанной А. Н. Бахом и К. О. Энглером, окисление происходит в две стадии с образованием промежуточного пероксидного соединения. Это промежуточное соединение можно выделить, например, при охлаждении пламени горящего водорода льдом, наряду с водой, образуется пероксид водорода:

В надпероксидах кислород формально имеет степень окисления?Ѕ, то есть один электрон на два атома кислорода (ион O ?2). Получают взаимодействием пероксидов с кислородом при повышенных давлении и температуре:

Калий K, рубидий Rb и цезий Cs реагируют с кислородом с образованием надпероксидов:

Неорганические озонидыы содержат ион O?3 со степенью окисления кислорода, формально равной?1/3. Получают действием озона на гидроксиды щелочных металлов:

Сера -- элемент главной подгруппы VI группы, третьего периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 16. Проявляет неметаллические свойства. Обозначается символом S (лат. sulfur). В водородных и кислородных соединениях находится в составе различных ионов, образует многие кислоты и соли. Многие серосодержащие соли малорастворимы в воде. Сера является шестнадцатым по химической распространённости элементом в земной коре. Встречается в свободном (самородном) состоянии и связанном виде.

Важнейшие природные минералы серы: FeS 2 -- железный колчедан или пирит, ZnS -- цинковая обманка или сфалерит (вюрцит), PbS -- свинцовый блеск или галенит, HgS -- киноварь, Sb 2 S 3 -- антимонит. Кроме того, сера присутствует в нефти, природном угле, природных газах и сланцах. Сера -- шестой элемент по содержанию в природных водах, встречается в основном в виде сульфат-иона и обуславливает «постоянную» жёсткость пресной воды. Жизненно важный элемент для высших организмов, составная часть многих белков, концентрируется в волосах. Слово «сера», известное в древнерусском языке с XV в., заимствовано из старославянского «с?ра» -- «сера, смола», вообще «горючее вещество, жир». Этимология слова не выяснена до настоящих времен, поскольку первоначальное общеславянское название вещества утрачено и слово дошло до современного русского языка в искаженном виде.

По предположению Фасмера, «сера» восходит к лат. sera -- «воск» или лат. serum -- «сыворотка».

Латинское sulfur (происходящее из эллинизированного написания этимологического sulpur) предположительно восходит к индоевропейскому корню swelp -- «гореть». На воздухе сера горит, образуя сернистый ангидрид -- бесцветный газ с резким запахом:

С помощью спектрального анализа установлено, что на самом деле процесс окисления серы в двуокись представляет собой цепную реакцию и происходит с образованием ряда промежуточных продуктов: моноокиси серы S 2 O 2 , молекулярной серы S 2 , свободных атомов серы S и свободных радикалов моноокиси серы SO.

Восстановительные свойства серы проявляются в реакциях серы и с другими неметаллами, однако при комнатной температуре сера реагирует только со фтором.

Расплав серы реагирует с хлором, при этом возможно образование двух низших хлоридов (дихлорид серы и дитиодихлорид)

При избытке серы также образуются разнообразные дихлориды полисеры типа SnCl 2 .

При нагревании сера также реагирует с фосфором, образуя смесь сульфидов фосфора, среди которых -- высший сульфид P 2 S 5:

Кроме того, при нагревании сера реагирует с водородом, углеродом, кремнием:

  • (сероводород)
  • (сероуглерод)

При нагревании сера взаимодействует со многими металлами, часто -- весьма бурно. Иногда смесь металла с серой загорается при поджигании. При этом взаимодействии образуются сульфиды:

Растворы сульфидов щелочных металлов реагируют с серой с образованием полисульфидов:

Из сложных веществ следует отметить прежде всего реакцию серы с расплавленной щёлочью, в которой сера диспропорционирует аналогично хлору:

Полученный сплав называется серной печенью.

С концентрированными кислотами-окислителями (HNO 3 , H 2 SO 4) сера реагирует только при длительном нагревании:

  • (конц.)
  • (конц.)

При увеличении температуры в парах серы происходят изменения в количественном молекулярном составе. Число атомов в молекуле уменьшается:

При 800--1400 °C пары состоят в основном из двухатомной серы:

А при 1700 °C сера становится атомарной:

Сера -- один из биогенных элементов. Сера входит в состав некоторых аминокислот (цистеин, метионин), витаминов (биотин, тиамин), ферментов. Сера участвует в образовании третичной структуры белка (формирование дисульфидных мостиков). Также сера участвует в бактериальном фотосинтезе (сера входит в состав бактериохлорофилла, а сероводород является источником водорода). Окислительно-восстановительные реакции серы -- источник энергии в хемосинтезе.

Человек содержит примерно 2 г серы на 1 кг своего веса

Селен -- химический элемент 16-й группы (по устаревшей классификации -- главной подгруппы VI группы), 4-го периода в периодической системе, имеет атомный номер 34, обозначается символом Se (лат. Selenium), хрупкий блестящий на изломе неметалл чёрного цвета (устойчивая аллотропная форма, неустойчивая форма -- киноварно-красная). Относится к халькогенам.

Название происходит от греч. уелЮнз -- Луна. Элемент назван так в связи с тем, что в природе он является спутником химически сходного с ним теллура (названного в честь Земли).Содержание селена в земной коре -- около 500 мг/т. Основные черты геохимии селена в земной коре определяются близостью его ионного радиуса к ионному радиусу серы. Селен образует 37 минералов, среди которых в первую очередь должны быть отмечены ашавалит FeSe, клаусталит PbSe, тиманнит HgSe, гуанахуатит Bi 2 (Se, S) 3, хастит CoSe 2 , платинит PbBi2(S, Se) 3 , ассоциирующие с различными сульфидами, а иногда также с касситеритом. Изредка встречается самородный селен. Главное промышленное значение на селен имеют сульфидные месторождения. Содержание селена в сульфидах колеблется от 7 до 110 г/т. Концентрация селена в морской воде 4·10?4 мг/л.

Селен -- аналог серы и проявляет степени окисления?2(H 2 Se), +4(SeO 2) и +6 (H 2 SeO 4). Однако, в отличие от серы, соединения селена в степени окисления +6 -- сильнейшие окислители, а соединения селена (-2) -- гораздо более сильные восстановители, чем соответствующие соединения серы.

Простое вещество селен гораздо менее активно химически, чем сера. Так, в отличие от серы, селен не способен гореть на воздухе самостоятельно. Окислить селен удаётся только при дополнительном нагревании, при котором он медленно горит синим пламенем, превращаясь в двуокись SeO 2 . Со щелочными металлами селен реагирует (весьма бурно), только будучи расплавленным.

В отличие от SO 2 , SeO 2 -- не газ, а кристаллическое вещество, хорошо растворимое в воде. Получить селенистую кислоту (SeO 2 + H 2 O > H 2 SeO 3) ничуть не сложнее, чем сернистую. А действуя на неё сильным окислителем (например, HClO 3), получают селеновую кислоту H 2 SeO 4 , почти такую же сильную, как серная.

Входит в состав активных центров некоторых белков в форме аминокислоты селеноцистеина. Микроэлемент, но большинство соединений достаточно токсично (селеноводород, селеновая и селенистая кислота) даже в средних концентрациях.

Одним из важнейших направлений его технологии, добычи и потребления являются полупроводниковые свойства как самого селена, так и его многочисленных соединений (селенидов), их сплавов с другими элементами, в которых селен стал играть ключевую роль. Эта роль селена постоянно растёт, растёт спрос и цены (отсюда дефицит этого элемента).

В современной технологии полупроводников применяются селениды многих элементов, например, селениды олова, свинца, висмута, сурьмы, селениды лантаноидов. Особенно важны свойства фотоэлектрические и термоэлектрические как самого селена, так и селенидов.

Стабильный изотоп селен-74 позволил на своей основе создать плазменный лазер с колоссальным усилением в ультрафиолетовой области (около миллиарда раз).

Радиоактивный изотоп селен-75 используется в качестве мощного источника гамма-излучения для дефектоскопии.

Селенид калия совместно с пятиокисью ванадия применяется при термохимическом получении водорода и кислорода из воды (селеновый цикл, Ливерморская национальная лаборатория им. Лоуренса, Ливермор, США).

Полупроводниковые свойства селена в чистом виде широко использовались в середине 20-го века для изготовления выпрямителей, особенно в военной технике по следующим причинам: в отличие от германия, кремния, селен малочувствителен к радиации, и, кроме того, селеновый выпрямительный диод обладает уникальным свойством самовосстанавливаться при пробое: место пробоя испаряется и не приводит к короткому замыканию, допустимый ток диода несколько снижается, но изделие остается функциональным. К недостаткам селеновых выпрямителей относятся их значительные габариты.

Шестая группа периодической системы элементов состоит из двух подгрупп: главной - кислород, сера, селен, теллур и полоний - и побочной - хром, молибден и вольфрам. В главной подгруппе выделяют подгруппу селена (селен, теллур и полоний), побочную подгруппу называют подгруппой хрома. Все элементы главной подгруппы, кроме кислорода, могут присоединять по два электрона, образуя электроотрицательные ионы.

Элементы главной подгруппы имеют на внешнем электронном

уровне по шесть электронов (s2р4). Атомы кислорода имеют два неспаренных электрона и не имеют d-уровня. Поэтому кислород проявляет в основном степень окисления -2 и только в соединениях со фтором +2. Сера, селен, теллур и полоний тоже имеют на внешнем уровне шесть электронов (s2p4), но у всех у них есть незаполненный d-уровень, поэтому они могут иметь до шести неспаренных электронов и в соединениях проявлять степень окисления - 2, +4 и +6.

Закономерность изменения активности этих элементов такая же, как и в подгруппе галогенов: легче всего окисляются теллуриды, затем селениды и сульфиды. Из кислородных соединений серы наиболее устойчивы соединения серы (VI), а для теллура - соединения теллура (IV). Соединения селена занимают промежуточное положение.

Селен и теллур, а также их соединения с некоторыми металлами (индием, таллием и др.) обладают полупроводниковыми свойствами и широко используются в радиоэлектронике. Соединения селена и теллура очень токсичны. Они применяются в стекольной промышленности для получения цветных (красных и коричневых) стекол.

В элементах подгруппы хрома идет заполнение d-уровня, поэтому на s-уровне их атомов - по одному (у хрома и молибдена) или два (у вольфрама) электрона. Все, они проявляют максимальную степень окисления +6, но для молибдена, и особенно для хрома, характерны соединения, в которых они имеют более низкую степень окисления (+4 для молибдена и +3 или +2 для хрома). Соединения хрома (III) очень устойчивы и похожи на соединения алюминия. Все металлы подгруппы хрома находят широкое применение.

Молибден был впервые получен К. В. Шееле в 1778 г. Он используется в производстве сталей высокой прочности и вязкости, применяющихся для изготовления оружейных стволов, брони, валов и др. Из-за способности испаряться при высокой температуре он мало пригоден для изготовления нитей накала, но обладает хорошей способностью сплавляться со стеклом, поэтому используется для изготовления держателей вольфрамовых нитей в лампах накаливания.

Вольфрам был открыт также К. В. Шееле в 178! г. Он применяется для получения специальных сталей. Добавка вольфрама к стали увеличивает ее твердость, эластичность и прочность. Вместе с хромом вольфрам придает стали свойство сохранять твердость при очень высоких температурах, поэтому такие стали применяются для изготовления резцов к быстрорежущим токарным станкам. Чистый вольфрам обладает наивысшей среди металлов температурой плавления (3370 °С), поэтому применяется для изготовления нитей в лампах накаливания. Карбид вольфрама отличается очень большой твердостью и термостойкостью и является основной составной частью тугоплавких сплавов.

72. Кислород

Кислород был открыт шведским химиком К. В. Шееле в 1769-1770 гг. и английским химиком Д. Ж. Пристли в 1774 г.

Нахождение в природе . Кислород является наиболее распространенным элементом в природе. Содержание его в земной коре составляет 47,00 % по массе. В свободном состоянии он содержится в атмосфере (около 23 % по массе), входит в состав воды (88,9 %), всех оксидов, из которых состоит земная кора, кислородсодержащих солей, а также многих органических веществ растительного и животного происхождения.

ЕЖОВНИК (анабазис) , род многолетних трав или полукустарничков семейства маревых. Ок. 30 видов, в Центр. Азии, на юге Европы, в Сев. Африке, но главным образом в Ср. Азии. Некоторые виды - пастбищный корм верблюдов, овец. Иногда ежовником называют также некоторые виды семейства злаков (пайзу, куриное просо).

НИЛЬСБОРИЙ (лат. Nielsbohrium), Ns, искусственно полученный радиоактивный химический элемент V гр. периодической системы, атомный номер 105. Наиболее устойчивый изотоп 262Ns (период полураспада 40 с). Получен в 1970 в СССР и США. Назван по предложению советских физиков по имени Нильса Бора; американские ученые предложили название "ганий" в честь О. Гана. Название окончательно не принято.

КОКОВ Валерий Мухамедович (р. 1941), российский государственный деятель, президент Кабардино-Балкарской Республики (1993). В 1990-91 председатель Верховного Совета Кабардино-Балкарской АССР, в 1991-92 первый заместитель председателя Совета Министров Кабардино-Балкарской Республики. В 1993-95 депутат Совета Федерации Федерального Собрания Российской Федерации, с 1995 член Совета Федерации. В 1997 избран президентом на второй срок.

Кислород, сера, селен, теллур и полоний составляют главную подгруппу шестой группы периодической системы и являются р-элементами. Их атомы имеют на внешнем электронном уровне по шесть электронов и общую электронную конфигурацию внешнего электронного слоя можно выразить формулой: ns2np4. Электронные формулы атомов и некоторые физические константы приведены в таблице.

электронная конфигурация атома

средняя атомная масса

кажущийся радиус нейтрального атома, А

сродство к электрону, эВ

относительная электро

отрицательность

кажущийся радиус иона

Из данных таблицы следуют такие выводы:

1. Кажущиеся радиусы нейтральных атомов и отрицательных ионов правильно растут с увеличением порядкового номера элемента.

2. Величина относительной электроотрицательности уменьшается с увеличением кажущихся радиусов нейтральных атомов. Следовательно, от кислорода к полонию ослабевают окислительные свойства и увеличиваются восстановительные свойства нейтральных атомов. Сильнейшим окислителем среди этих элементов является кислород:

O – S – Se – Te – Po

Усиление окислительных свойств

3. С увеличением порядковых номеров элементов наблюдается постепенное ослабление неметаллических свойств и усиление металлических свойств.

Распределение валентных электронов у р-элементов шестой группы по атомным орбиталям имеет следующий вид:

для кислорода

для серы, селена, теллура и полония

Наличие шести электронов на внешнем квантовом слое характеризует способность рассматриваемых элементов проявлять отрицательную степень окисления 2–. Все элементы способны образовывать отрицательно заряженные ионы с зарядом 2–. Склонность к образованию отрицательно заряженных ионов Э-2 ослабевает от кислорода к полонию.

У атома кислорода отсутствует d-подуровень. Поэтому, вследствие наличия у него двух неспаренных p-электронов, атом кислорода может образовать с атомами других элементов две химические связи. Отсюда ясно, что соединения, образованные кислородом с одновалентными элементами, имеют формулу Э2О. Кроме того, атом кислорода может образовывать связь по донорно-акцепторному механизму.

Атом кислорода может выступать как донор – за счет имеющейся у него не поделенной пары электронов, например, при образовании иона гидроксония (Н2О + Н+= Н3О+) и как акцептор – за счет свободной орбитали, появляющейся у него при возбуждении путем спаривания двух неспаренных электронов (что наблюдается, например, в молекуле азотной кислоты // О

Н – О – N.

В зависимости от природы того атома, с которым кислород вступает во взаимодействие, степень его окисления может быть различной:

2(Н2О); -1(Н2О2); 0(О2); +1(O2F2); +2(ОF2).

У атомов серы, селена, теллура и полония имеется свободный d-подуровень. При возбуждении этих атомов их электроны могут переходить на вакантные d-орбитали и поэтому эти элементы проявляют следующие степени окисления: -2, +2, +4, +6.

Простые вещества.

Особенностью этой группы является полиатомность молекул простых веществ Эn, где 2 ≤ n ≤ ∞.

кислород

состав молекул

S8 (комн. tº)

Se8; Se∞ (комн. tº)

Te∞(комн. tº)

Te2(>1400ºC)

аллотропические модификации

О2(кислород)

ромбическая (ниже 95,6ºC)

моноклинная

(выше 95,6ºC)

аморфная (пластическая)

красный (кристаллический

металлический (серый)

аморфный

металлический

аморфный

α - модифицир-ый

β- модифицир-ый

ρ, плотность г/см3

4,82 (металл.)

6,25 (металл.)

t плавления ºC

t кипения ºC

распространенность элемента

Кларк - 49%

Литосфера-47,3%

воздух -23,1%

Из данных, приведенных в таблице, можно сделать следующие выводы:

1. Молекулы простых веществ, образуемые атомами p-элементами VI группы, полиатомны.

2. Для всех элементов характерно наличие аллотропических модификаций.

3. Температуры кипения и плавления (кроме полония), плотности их с увеличением порядкового номера возрастают.

Сера была известна до 5000 лет до н. э.

Кислород был открыт четыре раза: в 1772 г. Шееле (HgO), в1774 г. Пьер Байен, Пристли (Pb3O4 прокаливал – получил PbO и О2), Лавуазье дал название кислороду и определил, что он входит в состав воздуха.


Теллур (земля) – 1798 г. Клапрот.

Селен (луна) – 1817 г. Берцелиус нашел в шламе

Полоний – 1898 г. открыт Марии Кюри – Складовской и назван в честь ее родины (Польша).

Кислород

Кислород – самый распространенный элемент на Земле (58,0 мол. доли). Его большая химическая активность и количественное преобладание в значительной мере предопределяет формы существования всех других элементов на Земле. Самым распространенным природными соединениями кислорода являются Н2О, SiO2, силикаты и алюмосиликаты. В воздухе кислород находится в свободном состоянии и на его долю приходится 20,99% (об.). В верхних слоях атмосферы кислород находится в виде газа – озона (О3). Озоновый слой задерживает жесткое солнечное излучение, которое, при длительном воздействии на живые организмы, является для них смертельным.

Природный кислород состоит из трех стабильных изотопов: 16О(99,795%), 17О(0,037%) и 18О (0,204%). Кроме того, получены три радиоактивных изотопа, время жизни которых ничтожно мало.

По значению относительной электроотрицательности (ОЭО = 3,5) кислород уступает только фтору. Кислород образует соединения почти со всеми элементами, исключая гелий, неон и аргон. В соединениях с другими элементами, кроме уже упомянутых степеней окисления (-2, -1, +1, +2), кислород проявляет степень окисления +4 в озоне.

Для кислорода известны две аллотропических модификации: 1) О2 – кислород; 2) О3 – озон.

Наиболее устойчива двухатомная молекула кислорода (О2). Порядок связи в данной молекуле равен 2. Из энергетической диаграммы следует, что кислород является веществом парамагнитным (в молекуле имеется два неспаренных электрона). Это положение полностью подтверждает опыт. Энергия диссоциации молекулы О2 равна 494 кДж/моль, что указывает на достаточную ее устойчивость. Химическая активность молекулы кислорода объясняется наличием неспаренных электронов на разрыхляющих π орбиталях. В обычных условиях О2 – бесцветный газ. Жидкий кислород имеет голубую окраску. Кристаллы твердого кислорода окрашены в светло-синий цвет и похожи на снег. Кислород несколько тяжелее воздуха (dвоз = 1,105). В воде кислород растворяется в очень небольшом количестве. В каждом и твердом состоянии кислород притягивается магнитом.

Получение кислорода

В промышленности кислород получают из жидкого воздуха, электролизом воды, в качестве побочного продукта при получении водорода высокой чистоты.

В лаборатории кислород получают при термическом разложении богатых кислородом соединений (KМnO4, KСlO3, KNO3 и др.).

Например: 2КMn+7O4-2 tº→ К2Мn+6О4 + Mn+4О2 + О20

Такие реакции относятся к реакциям внутримолекулярного окисления-восстановления.

Химические свойства

По реакционной способности О2 уступает только галогенам. Химическая активность его растет с повышением температуры. О2 взаимодействует почти со всеми химическими элементами, за исключением галогенов, благородных газов и благородных металлов (серебро, золото, платина). Иногда взаимодействию препятствует оксидная пленка на поверхности окисляемого вещества.

Скорость реакций окисления зависит от природы окисляемого вещества, температуры, катализатора и т. д. Большинство реакций окисления экзотермичны, например

С + О2 → СО2 ΔΗ = -382,5 кДж/моль

2Н2 + О2 → 2Н2О ΔΗ = -571,7 кДж/моль

Применение кислорода

Основная масса кислорода, получаемого промышленностью, расходуется в черной металлургии для интенсификации выплавки чугуна и стали. Кислород широко используется в нефтехимическая
промышленность" href="/text/category/himicheskaya_i_neftehimicheskaya_promishlennostmz/" rel="bookmark">химической промышленности при получении серной и азотной кислот, смазочных масел и т. д. В смеси с ацетиленом О2 используется для сварки и резки металлов (температура пламени около 3200ºC). Жидкий кислород применяется в ракетах, горнорудном деле.

Озон

Озон (О3) является второй аллотропической модификацией кислорода. Это синий газ с резким запахом (т. кип. -112ºC, т. пл. -193ºC). Жидкий озон представляет собой темно-синюю жидкость. Твердый озон - черного цвета. Озон очень токсичен и взрывоопасен. Образование молекул озона сопровождается поглощением энергии:

https://pandia.ru/text/78/050/images/image014_50.gif" width="50" height="51 src=">О

https://pandia.ru/text/78/050/images/image017_44.gif" width="38" height="38"> 126 Ǻ 116,5º

Получают озон действием тихого электрического разряда на кислород. Небольшое количество озона образуются в процессах, сопровождающихся выделением атомарного кислорода (радиолиз воды, разложение пероксидов и т. д.). В естественных условиях озон образуется из атмосферного кислорода при грозовых разрядах и под действием ультрафиолетовых солнечных лучей. Максимальная концентрация озона образуется на высоте ≈ 25 км. «Озоновый пояс» играет важнейшую роль в обеспечении жизни на Земле, так как задерживает вредное для живых организмов ультрафиолетовое излучение и поглощает инфракрасное излучение Земли, препятствуя ее охлаждению.

Озон более активный окислитель, чем кислород. Например, уже при обычных условиях он окисляет многие металлы и другие вещества

2Ag + O3 → Ag2O + O2

PbS + 4O3 → PbSO4 + 4O2

В реакциях с его участием обычно образуется кислород. Со многими веществами озон реагирует в таких условиях, когда кислород остается инертным. Так, реакция О3 + 2KI + H2O = I2+2KOH+O2 протекает количественно и ее можно использовать для количественного определения озона.

Кроме того, известны реакции, в которых молекула озона участвует всеми тремя атомами кислорода, например KI + O3 → KIO3.

3SnCl2 + O3 + 6HCl = 3 SnCl4 + 3H2O.

Применение озона обусловлено его окислительными свойствами. Он используется в качестве дезинфицирующего и бактерицидного средства, для очистки воды, в пищевой промышленности и т. д.

Пероксиды

Пероксиды - это кислородные соединения, в которых атомы кислорода непосредственно связаны между собой. Таким образом, в структуре пероксидов имеется группировка –O–O–, её называют пероксид-ион .

Пероксид- и надпероксид-ионы получаются при соединении электронов к молекуле O2

O20+e → O2- - надпероксидый

O20+2e → 2O2- -пероксидный

O2-пара O2--пара O22-диа -

уменьшение устойчивости

Соединения, содержащие в своём составе надпероксид-ион (O2-), называются надпероксидами, например, KO2. Наличие у них неспаренного электрона обуславливает их парамагнетизм. В пероксид-ионе (O2-2) неспаренные электроны отсутствуют и поэтому этот ион диамагнитен. В пероксидах атомы кислорода связаны между собой одной двух электронной связью. Образование пероксидов характерно для активных металлов (щелочных, щелочно-земельных). Наиболее практическое значение имеет пероксид водорода (H2O2).

Молекула H2O2-полярна(μ=0,70∙10-29Кл∙м.) Наличие водородных связей обуславливает высокую вязкость пероксида водорода. Из-за ассоциации молекул H2O2 в обычных условиях представляет собой жидкость (tпл.=-0,410C, tкип.=1500C). Пероксид водорода легко разлагается на атомарный водород и кислород, H2O2=t H2+O2

растворим в воде, водный раствор H2O2–слабая кислота. Константа диссоциации Kg(H2O2)=2,24∙10-12

Получить пероксид водорода можно по общему способу получения слабых кислот (вытеснение слабой кислоты из её соли более сильной кислотой)

BaO2+H2SO4=H2O2+BaSO4↓

В промышленности пероксид водорода получают электрохимическим окислением серной кислоты при низкой температуре на платиновом аноде .

H 2 O 2 в ОВР

Кислороду в пероксиде водорода приписывают степень окисления, равную –1 (эта степень окисления является промежуточной для кислорода). Поэтому может быть как окислителем, так и восстановителем. При восстановлении H2O2 образуется вода или OH-, например

2KJ+H2O2+H2SO4=J2+K2SO4+2H2O

PbS+H2O2=PbSO4+H2O

2K3+3H2O2=2K2CrO4+2KOH+8H2O

В этих случаях идёт процесс: H2O2-окислитель

При взаимодействии с сильными окислителями пероксид водорода проявляет свойства восстановителя

5H2O2+2KMnO4+3H2SO4→5O20+2MnSO4+K2SO4+8H2O

Данная реакция используется в химическом анализе для количественного определения содержания пероксида водорода в растворе.

Применение:

3% раствор в медицине в качестве антисептика ,

6%-12% раствор – для обесцвечивания волос,

более 30% конц. в химической промышленности.

Сера

Общая характеристика серы. В отличие от кислорода, у серы имеются в наружном квантовом слое вакантные 3d-орбитали.

Сера может иметь следующие степени окисления:

2 (H2S, H2S2O3 и сульфиды, тиосульфат натрия Na2S2O3·5H2O, где один атом серы имеет степень окисления –2, а другой +6.;

2 (S2Cl2, 3SO→SO2+S2O)

4 (SO2, H2S+4O3, её соли);

6 (SO3, H2SO4, её соли, H2S2O7 пиросерная кислота)

H2SO5-пероксомоносерная кислота

H2S2O8-пероксодисерная кислота

Сера – типичный неметалл (оэо=2,5), она химически активна и непосредственно соединяется почти со всеми элементами, за исключением азота, йода, золота, платины, и благородных газов. В природе встречается как в свободном состоянии (самородная сера), так и в виде различных соединений.

Самородная сера встречается редко, наиболее распространены минералы сульфидных (FeS2, CuS, ZnS, Sb2S3, AgS) и сульфатных соединений (CaSO4·2H2O, BaSO4, MgSO4·7H2O, Na2SO4·10H2O), SO2, H2S – содержат вулканические газы. Кроме, того сера входит в состав растительных и животных белков и соединений, входящих в нефть. Во всех твердых и жидких состояниях сера диамагнитна.

Простые вещества

Сера существует в нескольких аллотропных модификациях. При комнатной температуре устойчива, желтая ромбическая сера (α-S), состоящая из очень мелких кристаллов. Большие кристаллы этой формы можно получить при медленной кристаллизации серы из раствора серы в сероуглероде. Они получаются правильно ограненные и прозрачные.

Вторая аллотропная модификация - это моноклинная сера (β-S)-кристаллы игольчатой формы.

Аллотропные модификации α- и β- серы состоят из молекул S8, которые имеют циклическое «зубчатое» строение.

У ромбической серы кольца находятся на расстоянии 3,3 Ǻ друг от друга. Они связаны между собой силами Ван-дер-Ваальса. Эта модификация не проводит тепло и электричество.


Различие в физических свойствах ромбической и моноклинной серы обусловлено не разным составом молекул (обе состоят из S8), а неодинаковой структурой кристаллов.

Существуют и другие аллотропные модификации серы, которые образуются при изменении температуры. Изменение давления тоже дает различные аллотропные формы.

С повышением температуры сера меняет свою окраску, так как идет уменьшение длины цепей:

600ºC 900ºC 1500ºC

оранжевый красный желтый

Самой устойчивой модификацией является ромбическая, в нее самопроизвольно переходят все остальные модификации.

Сера хорошо растворима в органических растворителях, особенно в сероуглероде и бензоле (34%, t = 25ºC).

Химические свойства серы

Сера – элемент весьма активный. При взаимодействии с более сильными окислителями (O2, CI2 и т. д.) она может отдавать свои электроны, то есть быть восстановителем:

S + Cl2 ↔ SCl2 (S2Br2, S2Cl2)

S0 - 4ē → S+4

2O0 + 4ē → 2O-2

P4 + xS ↔P4Sx x ~ 3, x~ 7

При оплавлении или нагревании сера взаимодействует почти со всеми металлами с образованием нестехиометрических соединений (проявляет свойства окислителя).

Hg0 + S0 = Hg+2S-2

С большинством металлов сера реагирует при нагревании, а со ртутью – при комнатной температуре. Поэтому серой засыпают разлитую ртуть с целью обеззараживания помещения от ртутных паров.

Сера также склонна к реакциям диспропорционирования . Например, при кипячении порошкообразной серы в растворе щелочи идет реакция

S0 + 2S0 +6NaOH = Na2+4SO3 + 2Na2S-2 + 3H2O

Сера взаимодействует с кислотами

S + 2H2SO4(конц) = 3SO2 + 2H2O

S + 6HNO3(конц) = H2SO4 + 6NO2 +2H2O

Получение серы

В промышленности серу получают отделением ее от пустой породы с помощью горячей воды при повышенном давлении. Химическими методами серу получают так:

1. Из отходящих газов металлургических и коксовых печей

2H2S + SO2 → 3S + 2H2O

2. Из природных сульфатов прокаливанием их с углем (процесс идет в несколько стадий)

CaSO4 + 4C = 4CO + CaS

CaS + HOH + CO2 = CaCO3 + H2S

сероводород сжигают:

2H2S + O2 = 2S↓ + 2H2O

Применение серы

Серу используют для производства сернистых органических красителей (CS2), сероуглерода, в производстве искусственного волокна, взрывчатых веществ, в процессах получения серной кислоты.

Сульфиты и гидросульфиты используются как восстановители. Гидросульфит кальция Ca(HSO3)2 применяется при производстве целлюлозы.

Соединения серы со степенью окисления +6

Состояние окисления +6 сера проявляет в соединениях с кислородом, галогенами. Наиболее типичным соединением является триоксид серы SO3. В молекуле SO3 сера находится в состоянии sp2-гибридизации. Молекула представляет собой плоский треугольник. ∟O-S-O = 120º; молекула неполярна (μ = 0).

В молекуле SO3 на 3σ-связи приходится 3π- связи. Молекула прочная, но менее, чем SO2. Молекула SO3 легко полимеризуется. В обычных условиях SO3 – жидкость (т. кип. 44,8˚C), затвердевающая в прозрачную массу (т. пл. 16,8 ºC). SO3 – типичный кислотный оксид, энергично реагирует с основными оксидами. С водой SO3 энергично реагирует с образованием серной кислоты и выделением большого количества тепла.

SO3 + H2O = H2SO4, ΔH = -87,8 кДж

Применяется SO3 в качестве сульфирующего агента в органическом синтезе, в качестве дегидратирующего агента при получении HNO3, для приготовления олеума и т. д.

Серная кислота

H2SO4 – сильная двухосновная кислота. Она представляет собой производное тетраоксосульфат (VI) – иона 2-. В 2- - ионе сера находится в состоянии sp3-гибридизации (4 σ-связи + 2π-связи). Ион 2- имеет форму правильного тетраэдра. Длина связи S-O равна 1,49 Å. Эта связь прочная.

В воде H2SO4 хорошо растворима, при этом выделяется большое количество тепла вследствие образования гидратов состава H2SO4·H2O, H2SO4·2H2O, H2SO4·4H2O. В связи с этим при приготовлении растворов H2SO4 следует кислоту осторожно, тоненькой струйкой вливать в воду, а не наоборот. Концентрированная H2SO4 энергично притягивает влагу и поэтому применяется для осушки газов. Этим же объясняется и обугливание многих органических соединений (углеводов).

C12H22O11 + H2SO4 = 12C + H2SO4∙11H2O

Концентрированная серная кислота может в больших количествах поглощать SO3, образуя при этом пиросерную кислоту H2S2O7. Такие растворы называются олеум. В олеуме существует равновесие H2SO4 + SO3 H2S2O7.

Серная кислота образует два типа солей: средние (сульфаты) Me2+1SO4 и кислые (гидросульфаты) Me+1HSO4. Большинство сульфатов хорошо растворимо в воде. К труднорастворимым относятся сульфаты Ba(II), Ca(II), Sr(II), Pb(II).

Образование труднорастворимого белого осадка BaSO4 является аналитической реакцией на сульфат – ион.

SO42- + Ba2+ = BaSO4 (белый кристаллический осадок)

BaSO4 нерастворим в соляной кислоте.

Некоторые сульфаты, содержащие кристаллизационную воду, называют купоросами. К последним относятся CuSO4·5H2O (медный купорос – голубой цвет), FeSO4·7H2O (железный купорос – зеленый цвет).

Среди солей серной кислоты интересны кристаллогидраты ее двойных солей – квасцы общей формулы Me2+1SO4·Me2(SO4)3·24H2O, где Me+1(Na, K,NH4 и др.), Me+3(Al, Cr, Fe, Co и др.).

Наиболее широко известны: алюмо-калиевые квасцы KAl(SO4)2·12H2O, хромо-калиевые KCr(SO4)2·12H2O, железо-аммониевые (NH4)2·Fe2(SO4)3·24H2O. Применяются квасцы как дубящее средство в кожевенной промышленности, в качестве протравы при крашении тканей, в медицине и т. д.

Функция S (VI ) в окислительно-восстановительных реакциях

Состояние окисления +6 является для серы высшим, и поэтому S+6 функционирует в окислительно-восстановительных реакциях только в качестве окислителя.

Окислительные свойства серы (+6) проявляются только в концентрированной серной кислоте. В разбавленной серной кислоте окислителем является протон Н+. Концентрированная серная кислота является довольно сильным окислителем. Неметаллы (C, S, P) она окисляет до высших оксидов.

S+2H2SO4 = 3SO2 + 2H2O

C + 2H2SO4 = CO2 + 2SO2 +2H2O

HBr и HI серная кислота восстанавливает до свободных галогенов

8HI + H2SO4 = 4I2 + H2S + 4H2O

2HBr +H2SO4 = Br2 + SO2 +2H2O

Концентрированная серная кислота окисляет многие металлы (кроме золота и платины). Железо концентрированная серная кислота пассивирует и поэтому ее можно транспортировать в стальных баллонах. Продуктами восстановления концентрированной серной кислоты могут быть различные соединения серы. Последовательный ряд восстановления серной кислоты

H2S+6O4→S+2O2→S0→H2S-2

Характер продуктов восстановления будет зависеть от активности металла: чем активнее металл, тем глубже восстановление серы (VI).

5H2SO4конц + 4Mg = 4MgSO4 + H2S+ 4H2O

2H2SO4конц + Cu = CuSO4 + SO2 + 2H2O

Zn + 2H2SO4конц = ZnSO4 + SO2 + 2H2O

При действии разбавленной серной кислоты на металлы продуктом восстановления является Н2 и растворяются в разбавленной серной кислоте только металлы, стоящие в электрохимическом ряду до водорода.

H2SO4разб + Zn = ZnSO4 + H2

3Zn + 4H2SO4разб = S↓ + 3ZnSO4 + 4H2O

4Zn + 5H2SO4 очень разб = H2S + 4ZnSO4 + 4H2O

Получение серной кислоты

Сущность промышленного способа получения серной кислоты заключается в окислении диоксида серы SO2 до триоксида серы SO3 и превращением последнего в серную кислоту. Схему получения можно представить в следующем виде:

FeS2 SO2 SO3 H2SO4

Этот процесс осуществляется двумя способами: контактным и нитрозным. В контактном методе получения серной кислоты в качестве катализатора для окисления SO2 используют ванадиевый ангидрид V2O5 с добавлением K2SO4 или PbSO4. В нитрозном способе получения серной кислоты катализатором, ускоряющим окисление SO2 в SO3, служит оксид азота NO.

Применение серной кислоты

Серная кислота является одним из важнейших продуктов основной химической промышленности. Большинство химических соединений получается при прямом или косвенном участии серной кислоты. Широко используется серная кислота в производстве минеральных удобрений.

Она употребляется для получения многих минеральных кислот и солей, используется в органическом синтезе, при производствах взрывчатых веществ, красителей, в текстильной, кожевенной и других отраслях промышленности.

Пероксосерные кислоты – это кислородные кислоты серы, характеризующиеся наличием пероксо-группы – О-О. Хорошо известны две пероксокислоты серы: пероксомоносерная H2SO5 и пероксодисерная H2S2O8.

Пероксомоносерная кислота (кислота Каро) H2SO5 является пероксидной формой серной кислоты

H – O – O – S – O – H

H2SO5 относится к числу сильных одноосновных кислот. Подобно пероксиду водорода она неустойчива и является очень сильным окислителем.

2KI + H2SO5 = K2SO4 + I2 + H2O

Получают H2SO5 в качестве окислителя в органическом синтезе. Пероксодисерная кислота H2S2O8 имеет строение

H – O – S – O – O – S – O – H

Она также относится к производным пероксида водорода, является очень сильным окислителем (может окислять Cr+3 → Cr+6, Mn+2 → Mn+7, 2I - → I0)

2KI + H2S2O8 = 2KHSO4 + I2

H2SO5 и H2S2O8 гидролизуются с образованием пероксида водорода и поэтому их используют при промышленном получении растворов Н2О2

H2S2O8 + 2H2O = 2H2SO4 + H2O2

H2SO5 + H2O = H2SO4 + H2O2

Тиокислоты серы

Тиокислоты представляют собой производные кислородных кислот, в которых часть или все атомы кислорода замещены серой. Соли тиокислот называются тиосолями. Примером тиокислот является тиосерная кислота H2S2O3 представляющая собой производное серной кислоты, в которой один атом кислорода замещен атомом серы. Структурная формула ее имеет вид

Na2SO3S-2 + 4Cl2 + 5H2O = 2H2SO4 + 6HCl + 2NaCl

Na2S2O3 + Cl2 + H2O = S↓ + Na2SO4 + 2HCl.

При взаимодействии тиосульфата со слабыми окислителями (I2, Fe3+ и другие) образуется тетратионат–ион S4O62-. Реакция между тиосульфатом натрия и солями железа (III) используется для обнаружения тиосульфат-ионов. Реакция протекает следующим образом

2Na2S2O3 + I2 = Na2S4O6 + 2NaI

2FeCl3 + 2Na2S2O3 = 2FCl2 + Na2S4O6 + 2NaCl

При протекании этой реакции образуется промежуточное соединение, окрашено в темно-фиолетовый цвет - Cl. Это неустойчивый комплекс Fe3+, который быстро разлагается по реакции внутримолекулярного окисления-восстановления по схеме

2+ = 2Fe2+ + S4O62-

При этом окраска исчезает.

Кроме того, для H2S2O3 характерны реакции, протекающие по механизму внутримолекулярного окисления-восстановления

H2S2O3 = H2+4SO4 + S0

Этим объясняется неустойчивость тиосерной кислоты. Тиосульфат натрия применяется в фотографии (закрепитель), в текстильной промышленности, медицине.

    Соединение их характер

    О3- аллотропический вид изменения кислорода, получают из кислорода с помощью прибора так называемый - озонатор 3О2=2О3 - газ синего цвета.

    Дописать уравнения.

    Вода- Н2О- слабый электролит, чистая вода без цвета, запаха жидкость, температура кипения- 1000, температура замерзания- 00С, плотность равен 1 г/мл. В трех агрегатном состоянии бывает. Очищают воду с помощью возгонки в дистилляторе, полученная вода называется - дистиллированной водой.

    Оксид серы (IV)- SO2- с резким удушающим запахом, бесцветный газ.

    При растворении в оде образуется сернистая кислота:SO2 + H2O= H2SO3

    VI- SO3-сернистый ангидрид - бесцветная жидкость. При взаимодействии с водой образуется кислота серная.

    Серная кислота

    Н2 SО4- бесцветная, хорошо растворимая в воде жидкость.

Просмотр содержимого документа
«Общая характеристика неметаллов. Элементы VI А группы »

План учебного занятия № 15

Дата Предмет химия группа

Ф.И.О. преподавателя: Кайырбекова И.А.

І. Тема занятия: Общая характеристика неметаллов. Элементы VI А группы. Кислород. Вода. Сера. Сероводород. Серная кислота и сульфаты.

Тип занятия: урокусвоение новых знании

Цель: . Характеристика химических элементов V І А группы. Уметь описывать и доказывать на примере химические свойства серы. Познакомить учащихся со строением и общими свойствами неметаллов, исходя из положения их в периодической системе строения атомов. Знать некоторые способы получения неметаллов. Уметь давать общую характеристику неметаллов по положению в ПС и строениею атомов.

    Задачи:

    А) Образовательные: повторить и систематизировать знания учеников о свойствах химических элементов шестой группы, о строении атома о применении соединений;

    закрепить умение решать расчетные задачи по уравнениям реакций;

    Ә) Воспитательные : проводить экологическое воспитание на уроке химии.

    Б) Развивающие: продолжить развитие логического мышления, умения использовать теоретические знания в новых ситуациях;

    закрепить умения сравнивать, сопоставлять, анализировать;

ІІ. Ожидаемые результаты:

А) Учащиеся должны знать: Характеристику химических элементов V І А группы.

Ә) Учащиеся должны уметь: Уметь описывать и доказывать на примере химические свойства серы

б) учащиеся должны владеть: Познакомить учащихся со строением и общими свойствами неметаллов, исходя из положения их в периодической системе строения атомов

ІІІ. Метод и приемы каждого этапа занятия: проблемные, поисковые, лабораторная работа, самостоятельная работа учащихся.

IV . Средства: интерактивная доска

Ход урока

І. Организационная часть Проверить посещяемость учащихся. Озна комление с целью и задачами сегодняшнего занятия. Постановка цели урока.

ІІ. Актуализация опорных знании:

А) Проверить тетради

Д/з 153 стр №2

158 стр №6 упр

Задача Вычислите объем газа, который выделится при взаимодейтвии 19,5 г калия с фосфорной кислотой -

Б) Самостоятельная работа

ІІІ. Объяснения нового материала и закрепление нового материала

План:

Общая характеристика неметаллов- элементы VI А группы.

К ним относятся кислород, сера, селен, теллур, полоний. Полоний- радиоактивный металл, а остальные- халькогены- руда образующие. Особенно большое значение из них имеют кислород и сера. На последнем энергетическом уровне у них 6 электронов, высшая степень окисления+6, +2- постоянная у кислорода, наименьшая-2 сера. Общая оксидная формула RO 3 и водородные соединения с общей формулой RH 2

характеристика

кислород

сера

Положение в П.С.- 1- балл

2 малый период, элемент VI А группы

элементVI А группы, 3 малого периода.

Строение атома-1-балл

O (8p + ;8n 0)8e - 1s 2 2s 2 2p 4

S(16p + ;16n 0)16e - 1s 2 2s 2 2p 6 3s 2 3p 4

Нахождение в природе

Встречается в виде соединении и в свободном виде. Входит в состав атмосферного воздуха, образуется в результате фотосинтеза.

встречается в виде соединении и в свободном.

получение

В лаборатории:

2KMnO 4 = K 2 MnO 4 +MnO 2 +O 2

2KClO 3 =2KCl+3O 2

В промышленности жидкий кислород получают из воздуха.

физические свойства

Газ без цвета и запаха

Сера- желтого цвета, твердое, кристаллическое вещество. 3 вида аллотропических видоизменении: ромб, моноклинная и пластическая.

Химические свойства

При нагревании реагирует:

  • с углеродом

    с фосфором- при этом образуют оксиды.

    С водородом

    При t= 1500 0 С с азотом

С галогенами прямой не реагирует.

При нормальной температуре реагирует с активными металлами.

С малоактивными металлами реагирует при нагревании

Сложные вещества горят при этом образуется оксиды этих элементов.

Задание привести примеры и дописать уравнение реакциимак-8 баллов

С простыми веществами: кислородом, галогеном, металлами, с щелочью. Задание дописать уравнения реакции мак 4 балл

Соединение их характер

О 3 - аллотропический вид изменения кислорода, получают из кислорода с помощью прибора так называемый – озонатор 3О 2 =2О 3 – газ синего цвета.

Сероводород- ядовитый, бесцветный газ с запахом протухшего яйца. Подвергается к диссоциации, горит в воздухе, с кислотами.

Дописать уравнения.

Получают при взаимодействии сульфида железа с растворенной соляной кислотой.

Вода- Н 2 О- слабый электролит, чистая вода без цвета, запаха жидкость, температура кипения- 100 0 , температура замерзания- 0 0 С, плотность равен 1 г/мл. В трех агрегатном состоянии бывает. Очищают воду с помощью возгонки в дистилляторе, полученная вода называется – дистиллированной водой.

При обычной температуре реагирует с активными металлами, с оксидами основных и кислотных оксидов. А также с некоторыми солями, при этом образуется кристаллогидраты.

Оксид серы (IV)- SO 2 - с резким удушающим запахом, бесцветный газ.

При растворении в оде образуется сернистая кислота:SO 2 + H 2 O= H 2 SO 3

Получают при горении серы в воздухе, горении пирита.

VI- SO 3 -сернистый ангидрид - бесцветная жидкость. При взаимодействии с водой образуется кислота серная.

Серная кислота

Н 2 SО 4 - бесцветная, хорошо растворимая в воде жидкость.

Используют для получения соляной, фтороводородной, азотной, фосфорной кислоты.

Растворенная кислота реагирует с металлами до Н. Концентрированная кислота- реагирует с металлами, неметаллами

Закрепления: 177 стр № 12упр

Д/з 153 стр №2, 158 стр №6 упр, Реферат Роль кислорода природе. Применение кислорода

Кислород в своих соединениях проявляет, как правило, валентность равную двум. Но в принципе он может быть и четырех валентен, так как на внешнем слое кислород имеет 2 неспаренных электрона и 2 неподеленные электронные пары. Но поскольку атом кислорода имеет маленькой размер, то максимальная валентность кислорода равна трем, так как вокруг него может разместиться только три атома водорода.

Файлы: 1 файл

Общая характеристика элементов VI A подгруппы

К главной подгруппе VI группы периодической системы относятся кислород, сера, селен, теллур и полоний. Неметаллические свойства у элементов VI-А группы выражены менее ярко, чем у галогенов. Валентными уних являются электроны ns2 np4

Так как атомы элементов VI-А группы содержат на внешнем слое шесть электронов, то они стремятся к заполнению электронами внешнего энергетического уровня и для них характерно образование анионов Э2-.К образованию катионов атомы рассматриваемых элементов (кроме полония) несклонны. Кислород и сера – типичные неметаллы, причем кислород относится к самым электроотрицательным элементам (на втором месте после фтора). Полоний – металл серебристо-белого цвета, напоминающий по физическим свойствам свинец, а по электрохимическим свойствам – благородные металлы. Селен и теллур занимают промежуточное положение между металлами и неметаллами, они являются полупроводниками. По химическим свойствам они стоят ближе к неметаллам. Кислород, серу, селен и теллур объединяют в группу "халькогенов", что в переводе с греческого языка означает "порождающие руды". Эти элементы входят в состав многочисленных руд. От кислорода к теллуру содержание элементов на Земле резко падает. Полоний не имеет стабильных изотопов и встречается в урановых и ториевых рудах, как один из продуктов распада радиоактивного урана.

По своим свойствам кислород и сера резко отличаются друг от друга, т.к. электронные оболочки предыдущего энергетического уровня построены у них различно. Теллур и полоний имеют одинаковое строение внешнего энергетического уровня (валентного слоя) и предпоследнего энергетического уровня, поэтому они в большей степени схожи по своим свойствам.

Кислород в своих соединениях проявляет, как правило, валентность равную двум. Но в принципе он может быть и четырех валентен, так как на внешнем слое кислород имеет 2 неспаренных электрона и 2 неподеленные электронные пары. Но поскольку атом кислорода имеет маленькой размер, то максимальная валентность кислорода равна трем, так как вокруг него может разместиться только три атома водорода.

Кислород и его соединения

Свойства кислорода. Кислород О2 – газ без цвета, запаха и вкуса. Плохо растворим в воде: при 20оС в 100 объемах воды растворяется около 3 объемов кислорода. Жидкий кислород имеет светло-голубой цвет, он притягивается магнитом, так как его молекулы парамагнитны, имеют два неспаренных электрона. Энергия связи в молекуле О2 равна 493 кДж/моль, длина связи 0,1207 нм, порядок связи в молекуле равен двум. В природе кислород существует в виде трех изотопов16О, 17О, 18О и в виде двух аллотропных модификаций кислорода О2 и озона О3. В воздухе кислорода в свободном состоянии содержится около 21%.

Получение кислорода. В лаборатории кислород получают разложением соединений, богатых кислородом: а) 2 KClO3 = 2 KCl + 3 O2 (катализатор – MnO2) б) 2 KMnO4 = O2 + K2MnO4 + MnO2 в) Н2О2 = 2 Н2О + О2 (катализатор – MnO2) г) электролизом водных растворов кислородсодержащих кислот и щелочей с инертным анодом. В промышленности кислород получают разделением жидкого воздуха в ректификационных колоннах.

ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА

Термодинамика – наука о взаимопревращениях различных форм энергии и законах этих превращений. Термодинамика базируется только на экспериментально обнаруженных объективных закономерностях, выраженных в двух основных началах термодинамики.

Термодинамика изучает:

1. Переходы энергии из одной формы в другую, от одной части системы к другой;

2. Энергетические эффекты, сопровождающие различные физические и химические процессы и зависимость их от условий протекания данных процессов;

3. Возможность, направление и пределы самопроизвольного протекания процессов в рассматриваемых условиях.

Необходимо отметить, что классическая термодинамика имеет следующие ограничения:

1. Термодинамика не рассматривает внутреннее строение тел и механизм протекающих в них процессов;

2. Классическая термодинамика изучает только макроскопические системы;

3. В термодинамике отсутствует понятие "время".

ОСНОВНЫЕ ПОНЯТИЯ ТЕРМОДИНАМИКИ

Термодинамическая система – тело или группа тел, находящихся во взаимодействии, мысленно или реально обособленные от окружающей среды.

Гомогенная система – система, внутри которой нет поверхностей, разделяющих отличающиеся по свойствам части системы (фазы).

Гетерогенная система – система, внутри которой присутствуют поверхности, разделяющие отличающиеся по свойствам части системы.

Фаза – совокупность гомогенных частей гетерогенной системы, одинаковых по физическим и химическим свойствам, отделённая от других частей системы видимыми поверхностями раздела.

Изолированная система – система, которая не обменивается с окружающей средой ни веществом, ни энергией.

Закрытая система – система, которая обменивается с окружающей средой энергией, но не обменивается веществом.

Открытая система – система, которая обменивается с окружающей средой и веществом, и энергией.

Компонентами системы называются индивидуальные вещества, которые, будучи взяты в наименьшем количестве, достаточны для описания (образования) всех фаз системы. выделение компонентов обусловлено конкретным содержанием системы и зависит от тех химических реакций, которые протекают внутри системы и при ее взаимодействии с внешней средой.В сложных минеральных системах в качестве компонентов обычно выступают окислы или элементы.

Параметрами называются величины, при помощи которых может быть описано состояние системы. Фундаментальные параметры систем: температура (Т), энтропия (S), давление (р), объем (V), массы компонентов (m a ...m k) и их химические потенциалы (μ a ...μ k).

Экстенсивными называются парам етры, обладающие свойством аддитивности (слагаемости), т. е. экстенсивные параметры зависят от массы или числа частиц системы. К экстенсивным параметрам относятся объем, энтропия и массы компонентов. Экстенсивные параметры иногда называют параметрами емкости. Интенсивными параметрами, или параметрами напряженности, называются такие, которые не зависят от массы или числа частиц системы. К ним относятся температура, давление и химические потенциалы компонентов.

Существует примечательное свойство термодинамических параметров, которое можно назвать свойством симметричности и сопряженности. Свойство симметричности состоит в том, что любой термодинамический процесс в системе характеризуется парой параметров, один из которых интенсивный, другой - экстенсивный.

Первое начало термодинамики представляет собой закон сохранения энергии, один из всеобщих законов природы:Энергия неуничтожаема и несотворяема; она может только переходить из одной формы в другую в эквивалентных соотношениях.

Первое начало термодинамики представляет собой постулат

Полная энергия изолированной системы постоянна;

Невозможен вечный двигатель первого рода (двигатель, совершающий работу без затраты энергии).

Первое начало термодинамики устанавливает соотношение между теплотой Q, работой А и изменением внутренней энергии системы ΔU: Уравнение 1является математической записью 1-го начала термодинамики для конечного, уравнение 2 – для бесконечно малого изменения состояния системы.

Внутренняя энергия является функцией состояния; это означает, что изменение внутренней энергии ΔU не зависит от пути перехода системы из состояния 1 в состояние 2 и равно разности величин внутренней энергии U 2 и U 1 в этих состояниях:

Изохорическийй процесс (V = const; ΔV = 0).поглощение или выделение тепла связано только с выделением Е

Изотермический процесс (Т = const).это процесс квазистатического расширения или сжатия вещества, находящегося в контакте с тепловым резервуаром.

Изобарический процесс (Р = const).

Адиабатический процесс (Q = 0).Это процесс квазистатического расширения или сжатия газа в сосуде с теплонепроницаемыми оттенками. А=- U

ВНУТРЕННЯЯ ЭНЕРГИЯ термодинамич. ф-ция состояния системы, ее энергия, определяемая внутр. состоянием. Внутренняя энергия складывается в осн. из кинетич. энергии движения частиц (атомов, молекул, ионов, элект ронов) и энергии взаимод. между ними (внутри- и межмолекулярной).

При изотермическом процессевнутренняя энергия идеального газа не меняется. Все переданное газу количество теплоты идет на совершение работы:Q = A

Изменение внутренней энергии при изобарном процессе:ΔU=3/2 ·v·R·ΔT.

изменение внутренней энергии при адиабатном:Q=m·C p D·T/m.

Энтальпия-величина, пропорциональна кол-ву в-ва и измеряется в [КДж/моль] Н<0-экзотермический, Н>0 эндотермический.

При взаимодействии газообр. в-в образуется Н2О, которая может находится в различных состояниях.

Стандартное состояние энтальпий Т=298К, Р=101,325кПа