Из какого вещества состоит белый карлик. Белый карлик, нейтронная звезда, черная дыра

Белый карлик - звезда, в нашем космосе довольно распространенная. Ученые называют ее результатом эволюции звезд, финальным этапом развития. Всего есть два сценария видоизменения звездного тела, в одном случае завершающий этап - нейтронная звезда, в другом - черная дыра. Карлики - это окончательный эволюционный шаг. Вокруг них есть планетарные системы. Ученые смогли определить это, изучив обогащенные металлами экземпляры.

История вопроса

Белые карлики - звезды, привлекшие внимание астрономов в 1919. Впервые удалось открыть такое небесное тело ученому из Нидерландов Маанену. Для своего времени специалист сделал довольно нетипичное и неожиданное открытие. Увиденный им карлик был похож на звезду, но имел нестандартные маленькие размеры. Спектр, однако, был таков, словно бы это массивное и большое небесное тело.

Причины такого странного явления привлекали ученых довольно долгое время, поэтому было приложено немало усилий для изучения строения белых карликов. Прорыв совершился, когда высказали и доказали предположение обилия в атмосфере небесного тела разнообразных металлических структур.

Необходимо уточнить, что металлы в астрофизике - это всевозможные элементы, молекулы которых тяжелее водородных, гелиевых, а химический состав их более прогрессивен, нежели эти два соединения. Гелий, водород, как удалось установить ученым, в нашей вселенной распространены шире, нежели любые другие вещества. Отталкиваясь от этого, было решено все прочее обозначать металлами.

Развитие темы

Хотя впервые сильно отличающиеся размерами от Солнца белые карлики были замечены в двадцатых годах, только через половину века люди выявили, что наличие металлических структур в звездной атмосфере не является типичным явлением. Как выяснилось, при включении в атмосферу помимо двух самых распространенных веществ более тяжелых происходит их смещение в глубокие слои. Тяжелые вещества, оказавшись среди молекул гелия, водорода, со временем должны переместиться в ядро звезды.

Причин такого процесса удалось обнаружить несколько. Радиус белого карлика мал, такие звездные тела очень компактные - не зря они получили свое название. В среднем радиус сравним с земным, в то время как вес сходен с весом звезды, освещающей нашу планетарную систему. Такое соотношение габаритов и веса становится причиной исключительно большого гравитационного поверхностного ускорения. Следовательно, оседание тяжелых металлов в водородной и гелиевой атмосфере происходит всего лишь за несколько земных дней после попадания молекулы в общую газовую массу.

Возможности и продолжительность

Иногда характеристики белых карликов таковы, что процесс оседания молекул тяжелых веществ может затянуться надолго. Наиболее благоприятные варианты, с точки зрения наблюдателя с Земли, - это процессы, на которые уходят миллионы, десятки миллионов лет. И все же такие временные промежутки исключительно малы в сравнении с продолжительностью существования самого звездного тела.

Эволюция белого карлика такова, что большая часть наблюдаемых человеком в настоящий момент формирований уже насчитывает несколько сотен миллионов земных лет. Если сравнить это с самым медленным процессом поглощения металлов ядром, разница получается более чем существенная. Следовательно, выявление металла в атмосфере определенной наблюдаемой звезды позволяет с уверенностью заключить, что изначально тело не имело такого состава атмосферы, иначе все металлические включения давно пропали бы.

Теория и практика

Описанные выше наблюдения, а также собранная за долгие десятилетия информация о белых карликах, нейтронных звездах, черных дырах позволила предположить, что атмосфера получает металлические включения из внешних источников. Ученые сперва решили, что таковой является среда между звездами. Небесное тело перемещается сквозь такое вещество, аккрецирует среду на свою поверхность, тем самым обогащая атмосферу тяжелыми элементами. Но дальнейшие наблюдения показали, что такая теория несостоятельна. Как уточнили специалисты, если бы изменение атмосферы происходило именно таким путем, преимущественно карлик извне получал бы водород, так как среда между звездами сформирована в своей основной массе именно водородными и гелиевыми молекулами. Лишь малый процент среды приходится на долю тяжелых соединений.

Если бы сформированная из первичных наблюдений за белыми карликами, нейтронными звездами, черными дырами теория оправдала бы себя, карлики состояли бы из водорода как самого легкого элемента. Это не допускало бы существования даже гелиевых небесных тел, ведь гелий тяжелее, а значит, водородная аккреция полностью скрыла бы его от глаза внешнего наблюдателя. Исходя из наличия гелиевых карликов, ученые пришли к выводу, что межзвездная среда не может служить единственным и даже основным источником металлов в атмосфере звездных тел.

Как объяснить?

Ученые, занимавшиеся в 70-х годах прошлого столетия черными дырами, белыми карликами, предположили, что металлические включения могут объясняться падением комет на поверхность небесного тела. Правда, в свое время такие идеи были признаны слишком экзотичными и поддержки не получили. Во многом это объяснялось тем, что люди еще не знали о наличии иных планетных систем - известна была только наша «домашняя» Солнечная.

Существенный шаг вперед в исследовании черных дыр, белых карликов был сделан в конце следующего, восьмого десятилетия прошлого века. Ученые получили в свое распоряжение особенно мощные инфракрасные приборы для наблюдения за глубинами космоса, что позволило вокруг одного из известных астрономам белого карлика обнаружить инфракрасное излучение. Таковое было выявлено именно вокруг карлика, атмосфера которого содержала металлические включения.

Инфракрасное излучение, позволившее оценить температуру белого карлика, также сообщило ученым, что звездное тело окружено некоторым веществом, способным поглощать звездное излучение. Это вещество нагрето до конкретного температурного уровня, меньшего присущего звезде. Это позволяет постепенно перенаправлять поглощенную энергию. Излучение происходит в инфракрасном диапазоне.

Наука движется вперед

Спектры белого карлика стали объектом изучения передовых умов мира астрономов. Как оказалось, из них можно получить довольно объемную информацию об особенностях небесных тел. Особенно интересными были наблюдения за звездными телами с избыточным инфракрасным излучением. В настоящее время удалось выявить около трех десятков систем такого типа. Основной их процент изучался посредством мощнейшего телескопа «Спитцер».

Ученые, наблюдая за небесными телами, установили, что плотность белых карликов существенно меньше этого параметра, свойственного гигантам. Также было выявлено, что избыточное инфракрасное излучение объясняется наличием дисков, сформированных специфическим веществом, способным поглощать энергетическое излучение. Именно оно затем излучает энергию, но уже в ином диапазоне волн.

Диски расположены исключительно близко и в некоторой степени влияют на массу белых карликов (которая не может превышать предела Чандрасекара). Внешний радиус получил название обломочного диска. Было высказано предположение, что таковой сформировался при разрушении некоторого тела. В среднем радиус по размеру сравним с Солнцем.

Если обратить внимание на нашу планетарную систему, станет ясно, что относительно недалеко от «дома» мы может наблюдать сходный пример - это окружающие Сатурн кольца, размер которых также сравним с радиусом нашего светила. Со временем ученые установили, что эта особенность - не единственная из тех, что роднит карлики и Сатурн. К примеру, и планета, и звезды обладают очень тонкими дисками, которым несвойственна прозрачность при попытке просвечивания светом.

Выводы и развитие теории

Поскольку кольца белых карликов сравнимы с теми, что окружают Сатурн, стало возможным сформулировать новые теории, объясняющие наличие металлов в атмосфере этих звезд. Астрономам известно, что вокруг Сатурна кольца сформированы приливным разрушением некоторых тел, оказавшихся достаточно близко от планеты, чтобы на них повлияло ее гравитационное поле. В такой ситуации внешнее тело не может сохранять собственную гравитацию, что приводит к нарушению целостности.

Около пятнадцати лет назад была представлена новая теория, объяснившая образование колец белых карликов сходным образом. Предположили, что первоначально карлик представлял собой звезду в центре системы планет. Небесное тело с течением времени эволюционирует, на что уходят миллиарды лет, разбухает, теряет оболочку, и это становится причиной формирования карлика, постепенно остывающего. Кстати говоря, цвет белых карликов объясняется именно их температурой. У некоторых она оценивается в 200 000 К.

Система планет в ходе такой эволюции может выжить, что приводит к расширению внешней части системы одновременно с уменьшением массы звезды. В результате формируется крупная система астероиды и многие другие элементы выживают при эволюции.

Что дальше?

Прогресс системы может привести к ее нестабильности. Это приводит к бомбардировке камнями окружающего планеты пространства, и астероиды частично вылетают из системы. Некоторые из них, однако, перемещаются на орбиты, рано или поздно оказываясь в пределах солнечного радиуса карлика. Столкновения не происходит, но приливные силы приводят к нарушению целостности тела. Скопление таких астероидов приобретает форму, сходную с окружающими Сатурн кольцами. Тем самым вокруг звезды формируется диск обломков. Существенно отличается плотность белого карлика (порядка 10^7 г/см3) и его обломочного диска.

Описанная теория стала достаточно полным и логичным объяснением ряда астрономических явлений. Посредством нее можно понять, почему диски компактны, ведь звезда не может все время своего существования окружаться диском, радиус которого сравним с солнечным, иначе первое время такие диски были бы внутри ее тела.

Объяснив формирование дисков и их размер, можно понять, откуда берется своеобразный запас металлов. Он может оказаться на звездной поверхности, загрязнив карлик металлическими молекулами. Описанная теория, не противореча выявленным показателям средней плотности белых карликов (порядка 10^7 г/см3), доказывает, по какой причине металлы наблюдаются в атмосфере звезд, почему измерение химического состава возможно доступными человеку средствами и по какой причине распределение элементов сходно с тем, что свойственно нашей планете и другим изученным объектам.

Теории: а есть ли польза?

Описанная идея получила широкое распространение как база для объяснения, по какой причине оболочки звезд загрязнены металлами, почему появились обломочные диски. Кроме того, из нее вытекает, что вокруг карлика существует планетная система. Удивительного в таком выводе мало, ведь человечество установило, что большая часть звезд имеет собственные системы планет. Это свойственно как тем, что сходны с Солнцем, так и тем, что значительно больше его габаритами - а именно из них и формируются белые карлики.

Темы не исчерпаны

Даже если считать описанную выше теорию общепринятой и доказанной, некоторые вопросы для астрономов и по сей день остаются открытыми. Особенный интерес вызывает специфика переноса вещества между дисками и поверхностью небесного тела. Как предполагают некоторые, это объясняется радиационным излучением. Теории, призывающие таким образом описать перенос вещества, основаны на эффекте Пойнтинга-Робертсона. Это явление, под влиянием которого частицы медленно перемещаются по орбите вокруг молодой звезды, постепенно спирально смещаясь к центру и пропадая в небесном теле. Предположительно, этот эффект должен проявляться на обломочных дисках, окружающих звезды, то есть молекулы, которые присутствуют в дисках, рано или поздно оказываются в исключительной близости от карлика. Твердые вещества подвержены испарению, формируется газ - таковой в виде дисков был зафиксирован вокруг нескольких наблюдаемых карликов. Рано или поздно газ доходит до поверхности карлика, перенося сюда металлы.

Выявленные факты оцениваются астрономами как существенный вклад в науку, поскольку позволяют предположить, как сформированы планеты. Это важно, так как объекты для исследований, привлекающие специалистов, зачастую недоступны. К примеру, планеты, вращающиеся вокруг превышающих Солнце габаритами звезд, крайне редко можно изучить - это слишком сложно на том техническом уровне, который доступен нашей цивилизацией. Вместо этого, люди получили возможность изучения систем планет после превращения звезд в карлики. Если удастся развиваться в этом направлении, наверняка можно будет выявить новые данные о наличии систем планет и их отличительных характеристиках.

Белые карлики, в атмосфере которых выявлены металлы, позволяют составить представление о химическом составе комет и иных космических тел. Фактически иного способа для оценки состава у ученых просто нет. К примеру, изучая планеты-гиганты, можно составить представление только о внешнем слое, но нет никакой достоверной информации о внутреннем содержании. Это касается и нашей «домашней» системы, поскольку химический состав можно изучить лишь у того небесного тела, которое упало на поверхность Земли либо того, куда удалось приземлить аппарат для исследований.

Как все происходит?

Рано или поздно наша планетарная система также станет «домом» белого карлика. Как говорят ученые, звездное ядро располагает ограниченным объемом вещества для получения энергии, и рано или поздно термоядерные реакции исчерпываются. Газ уменьшается в объемах, плотность повышается до тонны на кубический сантиметр, в то время как во внешних слоях реакция по-прежнему протекает. Звезда расширяется, становится красным гигантом, радиус которого сравним с сотнями звезд, равных Солнцу. Когда внешняя оболочка прекращает «горение», в течение 100 000 лет происходит рассеивание вещества в пространстве, что сопровождается формированием туманности.

Ядро звезды, освободившись от оболочки, понижает температуру, что и приводит к формированию белого карлика. Фактически такая звезда - это высокоплотный газ. В науке карлики нередко именуют вырожденными небесными телами. Если бы наше светило сжалось и его радиус насчитывал бы лишь несколько тысяч километров, но вес бы полностью сохранился, то здесь также имел бы место белый карлик.

Особенности и технические моменты

Рассматриваемый тип космического тела способен светиться, но этот процесс объясняется иными механизмами, отличными от термоядерных реакций. Свечение называют остаточным, оно объясняется понижением температуры. Карлик сформирован веществом, ионы которого иногда холоднее 15000 К. Элементам характерны колебательные движения. Постепенно небесное тело становится кристаллическим, его свечение ослабевает, и карлик эволюционирует в коричневый.

Ученые выявили предел массы для такого небесного тела - до 1,4 веса Солнца, но не больше этой границы. Если масса превышает этот предел, звезда существовать не может. Это объясняется давлением вещества, находящегося в сжатом состоянии - оно меньше гравитационного притяжения, сжимающего вещество. Происходит очень сильное сжатие, которое приводит к появлению нейтронов, вещество нейтронизируется.

Процесс сжатия может привести к вырождению. В этом случае формируется нейтронная звезда. Второй вариант - продолжение сжатия, рано или поздно приводящее к взрыву.

Общие параметры и особенности

Болометрическая светимость рассматриваемой категории небесных тел относительно свойственной Солнцу меньше приблизительно в десять тысяч раз. Радиус карлика меньше солнечного в сто раз, в то время как вес сравним со свойственным основной звезде нашей системы планет. Для определения границы массы для карлика был рассчитан предел Чандрасекара. При его превышении карлик эволюционирует в другую форму небесного тела. Фотосфера звезды в среднем состоит из плотного вещества, оцененного в 105-109 г/см3. В сравнении с главной звездной последовательностью это плотнее приблизительно в миллион раз.

Некоторые астрономы считают, что лишь 3% всех звезд в галактике - это белые карлики, а некоторые убеждены, что к такому классу принадлежит каждая десятая. Оценки столь сильно разнятся о причине сложности наблюдения за небесными телами - они удалены от нашей планеты и слишком слабо светятся.

Истории и имена

В 1785 в списке двойных звезд появилось тело, наблюдениями за которым занимался Гершель. Звезду назвали 40 Эридана B. Именно она считается первой увиденной человеком из категории белых карликов. В 1910 Расселл заметил, что этому небесному телу свойственен крайне низкий уровень свечения, хотя цветовая температура довольно высокая. Со временем было решено, что небесные тела такого класса необходимо выделять в отдельную категорию.

В 1844 Бессель, исследуя информацию, полученную при слежении за Проционом В, Сириусом В, решил, что обе они время от времени смещаются с прямой линии, а значит, там есть близкие спутники. Такое предположение научному сообществу показалось маловероятным, так как не удалось увидеть никакого спутника, в то время как отклонения могли бы объясниться только небесным телом, масса которого исключительно велика (аналогична Сириусу, Проциону).

В 1962 Кларк, работая с наиболее крупным телескопом из существовавших в тот момент, выявил вблизи Сириуса очень тусклое небесное тело. Именно его и назвали Сириусом В, тем самым спутником, который задолго до этого предположил Бессель. В 1896 исследования показали, что Процион также имеет спутника - он получил название Процион В. Следовательно, идеи Бесселя полностью подтвердились.

Если внимательно присмотреться к ночному небу, легко заметить, что звезды, глядящие на нас, различаются по цвету. Голубоватые, белые, красные, они светят ровно или мерцают, подобно елочной гирлянде. В телескоп различия в цвете становятся более очевидными. Причина, приведшая к такому разнообразию, кроется в температуре фотосферы. И, вопреки логичному предположению, самыми горячими являются не красные, а голубые, бело-голубые и белые звезды. Но обо всем по порядку.

Спектральная классификация

Звезды — громадные раскаленные шары, состоящие из газа. То, какими мы видим их с Земли, зависит от множества параметров. Например, звезды в действительности не мерцают. Убедиться в этом очень легко: достаточно вспомнить Солнце. Эффект мерцания возникает из-за того, что свет, идущий от космических тел к нам, преодолевает межзвездную среду, полную пыли и газа. Другое дело - цвет. Он является следствием нагрева оболочек (в особенности фотосферы) до определенных температур. Истинный цвет может отличаться от видимого, но разница, как правило, невелика.

Сегодня во всем мире используется гарвардская спектральная классификация звезд. Она является температурной и основывается на виде и относительной интенсивности линий спектра. Каждому классу соответствуют звезды определенного цвета. Разработана классификация была в обсерватории Гарварда в 1890-1924 гг.

Один Бритый Англичанин Финики Жевал Как Морковь

Основных спектральных классов семь: O—B—A—F—G—K—M. Эта последовательность отражает постепенное снижение температуры (от О к М). Для ее запоминания существуют специальные мнемонические формулы. На русском языке одна из них звучит так: «Один Бритый Англичанин Финики Жевал Как Морковь». К этим классам добавляются еще два. Буквами C и S обозначаются холодные светила с полосами окислов металла в спектре. Рассмотрим звездные классы подробнее:

  • Класс О характеризуется самой высокой температурой поверхности (от 30 до 60 тысяч Кельвинов). Звезды такого типа превышают Солнце по массе в 60, а по радиусу — в 15 раз. Их видимый цвет — голубой. По светимости они опережают нашу звезду более чем в миллион раз. Голубая звезда HD93129A, относящаяся к этому классу, характеризуется одним из самых больших показателей светимости среди известных космических тел. По этому показателю она опережает Солнце в 5 миллионов раз. Голубая звезда располагается на расстоянии в 7,5 тысяч световых лет от нас.
  • Класс В обладает температурой в 10-30 тысяч Кельвинов, массой, в 18 раз превышающей аналогичный параметр Солнца. Это бело-голубые и белые звезды. Их радиус больше, чем у Солнца, в 7 раз.
  • Класс А характеризуется температурой в 7,5-10 тысяч Кельвинов, радиусом и массой, превышающими в 2,1 и 3,1 раз соответственно аналогичные параметры Солнца. Это белые звезды.
  • Класс F: температура 6000-7500 К. Масса больше солнечной в 1,7 раз, радиус — в 1,3. С Земли такие звезды выглядят также белыми, их истинный цвет — желтовато-белый.
  • Класс G: температура 5-6 тысяч Кельвинов. К этому классу относится Солнце. Видимый и истинный цвет таких звезд — желтый.
  • Класс К: температура 3500-5000 К. Радиус и масса меньше солнечных, составляют 0,9 и 0,8 от соответствующих параметров светила. Видимый с Земли цвет этих звезд - желтовато-оранжевый.
  • Класс М: температура 2-3,5 тысячи Кельвинов. Масса и радиус — 0,3 и 0,4 от аналогичных параметров Солнца. С поверхности нашей планеты они выглядят красно-оранжевыми. К классу М принадлежат Бета Андромеды и Альфа Лисички. Яркая красная звезда, знакомая многим, — это Бетельгейзе (альфа Ориона). Лучше всего искать ее на небе зимой. Красная звезда расположена выше и чуть левее

Каждый класс делится на подклассы от 0 до 9, то есть от самых горячих до самых холодных. Номера звезд обозначают принадлежность к определенному спектральному типу и степень нагрева фотосферы по сравнению с другими светилами в группе. Например, Солнце относится к классу G2.

Визуальные белые

Таким образом, классы звезд с B по F с Земли могут выглядеть белыми. И только объекты, относящиеся к А-типу, имеют такую окраску на самом деле. Так, звезда Саиф (созвездие Орион) и Алголь (бета Персея) наблюдателю, не вооруженному телескопом, покажутся белыми. Они относятся к спектральному классу B. Их истинный цвет - бело-голубой. Также белыми кажутся Мифрак и Процион, самые яркие звезды в небесных рисунках Персей и Малый Пес. Однако их истинный цвет ближе к желтому (класс F).

Почему звезды белые для земного наблюдателя? Цвет искажается из-за огромного расстояния, отделяющего нашу планету от подобных объектов, а также объемных облаков пыли и газа, нередко встречающихся в космосе.

Класс А

Белые звезды характеризуются не столь высокой температурой, как представители класса О и В. Их фотосфера нагревается до 7,5-10 тысяч Кельвинов. Звезды спектрального класса А значительно крупнее Солнца. Их светимость также больше — примерно в 80 раз.

В спектрах А-звезд сильно выражены линии водорода серии Бальмера. Линии прочих элементов заметно слабее, однако они становятся более существенными по мере продвижения от подкласса А0 к А9. Для гигантов и сверхгигантов, относящихся к спектральному классу А, характерны чуть менее выраженные линии водорода, чем для звезд главной последовательности. В случае этих светил более заметными становятся линии тяжелых металлов.

К спектральному классу А относится немало пекулярных звезд. Таким термином обозначают светила, обладающие заметными особенностями в спектре и физических параметрах, что затрудняет их классификацию. Например, довольно редкие звезды типа лямбды Волопаса характеризуются недостатком тяжелых металлов и очень медленным вращением. В число пекулярных светил входят и белые карлики.

Классу А принадлежат такие яркие объекты ночного неба, как Сириус, Менкалинан, Алиот, Кастор и другие. Познакомимся с ними поближе.

Альфа Большого Пса

Сириус — самая яркая, хотя и не ближайшая, звезда на небе. Расстояние до него — 8,6 световых года. Для земного наблюдателя он кажется столь ярким потому, что имеет внушительные размеры и все-таки удален не так значительно, как многие другие крупные и яркие объекты. Ближайшая звезда к Солнцу — это Сириус в этом списке располагается на пятом месте.

Относится он к и представляет собой систему из двух компонентов. Сириус А и Сириус В разделены расстоянием в 20 астрономических единиц и вращаются с периодом чуть меньше 50 лет. Первый компонент системы — звезда главной последовательности, принадлежит спектральному классу А1. Его масса в два раза превышает солнечную, а радиус — в 1,7 раз. Именно его можно наблюдать невооруженным глазом с Земли.

Второй компонент системы — белый карлик. Звезда Сириус В практически равна нашему светилу по массе, что нетипично для таких объектов. Обычно белые карлики характеризуются массой в 0,6-0,7 солнечных. При этом размеры Сириуса В приближены к земным. Предполагается, что стадия белого карлика началась для этой звезды примерно 120 миллионов лет назад. Когда Сириус В располагался на главной последовательности, он, вероятно, представлял собой светило с массой в 5 солнечных и относился к спектральному классу В.

Сириус А, по подсчетам ученых, перейдет на следующую стадию эволюции примерно через 660 млн лет. Тогда он превратится в красного гиганта, а еще чуть позже — в белого карлика, как и его компаньон.

Альфа Орла

Как и Сириус, многие белые звезды, названия которых приведены ниже, из-за яркости и нередкого упоминания на страницах научно-фантастической литературы хорошо знакомы не только людям, увлекающимся астрономией. Альтаир — одно из таких светил. Альфа Орла встречается, например, у и Стивина Кинга. На ночном небе эта звезда хороша заметна из-за яркости и относительно близкого расположения. Расстояние, разделяющее Солнце и Альтаир, составляет 16,8 световых лет. Из звезд спектрального класса А ближе к нам только Сириус.

Альтаир по массе превышает Солнце в 1,8 раз. Его характерной особенностью является очень быстрое вращение. Один оборот вокруг оси звезда совершает меньше чем за девять часов. Скорость вращения в районе экватора — 286 км/с. Как результат «шустрый» Альтаир сплюснут с полюсов. Кроме того, из-за эллиптичной формы от полюсов к экватору снижается температура и яркость звезды. Этот эффект назван «гравитационным потемнением».

Еще одна особенность Альтаира в том, что его блеск со временем меняется. Он относится к переменным типа дельты Щита.

Альфа Лиры

Вега — самая изученная звезда после Солнца. Альфа Лиры — первая звезда, у которой определили спектр. Она же стала вторым после Солнца светилом, запечатленным на фотографии. Вега вошла и в число первых звезд, до которых ученые измерили расстояние методом парлакса. Длительный период яркость светила принималась за 0 при определении звездных величин других объектов.

Хорошо знакома альфа Лиры и астроному-любителю, и простому наблюдателю. Она является пятой по яркости среди звезд, входит в астеризм Летний треугольник вместе с Альтаиром и Денеб.

Расстояние от Солнца до Веги - 25,3 световых года. Ее экваториальный радиус и масса больше аналогичных параметров нашего светила в 2,78 и 2,3 раз соответственно. Форма звезды далека от идеального шара. Диаметр в районе экватора заметно больше, чем у полюсов. Причина — огромная скорость вращения. На экваторе она достигает 274 км/с (для Солнца этот параметр равен чуть больше двух километров в секунду).

Одна из особенностей Веги — окружающий ее пылевой диск. Предположительно, что он возник в результате большого числа столкновений комет и метеоритов. Пылевой диск вращается вокруг звезды и разогревается под действием ее излучения. В результате возрастает интенсивность инфракрасного излучения Веги. Не так давно в диске были обнаружены несимметричности. Вероятное их объяснение — наличие у звезды по крайней мере одной планеты.

Альфа Близнецов

Второй по яркости объект в созвездии Близнецов — это Кастор. Он так же, как и предыдущие светила, относится к спектральному классу А. Кастор — одна из самых ярких звезд ночного неба. В соответствующем списке он располагается на 23 месте.

Кастор представляет собой кратную систему, состоящую из шести компонентов. Два основные элемента (Кастор А и Кастор В) вращаются вокруг общего центра масс с периодом 350 лет. Каждая из двух звезд является спектральной-двойной. Компоненты Кастора А и Кастора В менее яркие и относятся предположительно к спектральному классу М.

Кастор С не сразу был связан с системой. Изначально он обозначался как самостоятельная звезда YY Близнецов. В процессе исследований этой области неба стало известно, что это светило физически связано с системой Кастора. Звезда вращается вокруг общего для всех компонентов центра масс с периодом в несколько десятков тысяч лет и также является спектральной-двойной.

Бета Возничего

Небесный рисунок Возничего включает примерно 150 «точек», многие из них — это белые звезды. Названия светил мало что скажут человеку, далекому от астрономии, но это не умаляет их значения для науки. Самым ярким объектом небесного рисунка, относящимся к спектральному классу А, является Менкалинан или бета Возничего. Имя звезды в переводе с арабского означает «плечо обладателя поводьев».

Менкалинан — тройная система. Два ее компонента — субгиганты спектрального класса А. Яркость каждого из них превышает аналогичный параметр Солнца в 48 раз. Они разделены расстоянием в 0,08 астрономические единицы. Третий компонент — это красный карлик, удаленный от пары на 330 а. е.

Эпсилон Большой Медведицы

Самая яркая «точка» в, пожалуй, наиболее известном созвездии северного неба (Большая Медведица) — это Алиот, также относящийся к классу А. Видимая величина — 1,76. В списке самых ярких светил звезда занимает 33 место. Алиот входит в астеризм Большой ковш и располагается ближе других светил к чаше.

Спектр Алиота характеризуется необычными линиями, колеблющимися с периодом в 5,1 дня. Предполагается, что особенности связаны с воздействием магнитного поля звезды. Колебания спектра, по последним данным, могут возникать из-за близкого расположения космического тела с массой в почти 15 масс Юпитера. Так ли это, пока загадка. Ее, как и другие тайны звезд, астрономы пытаются понять каждый день.

Белые карлики

Рассказ о белых звездах будет неполным, если не упомянуть о той стадии эволюции светил, которая обозначается как «белый карлик». Название свое такие объекты получили из-за того, что первые обнаруженные из них принадлежали спектральному классу А. Это был Сириус В и 40 Эридана В. На сегодняшний день белыми карликами называют один из вариантов финальной стадии жизни звезды.

Остановимся более подробно на жизненном цикле светил.

Звездная эволюция

За одну ночь звезды не рождаются: любая из них проходит несколько стадий. Сначала облако газа и пыли начинает сжиматься под действием собственных Медленно оно приобретает форму шара, при этом энергия гравитации превращается в тепло — растет температура объекта. В тот момент, когда она достигает величины в 20 миллионов Кельвинов, начинается реакция ядерного синтеза. Эта стадия и считается началом жизни полноценной звезды.

Большую часть времени светила проводят на главной последовательности. В их недрах постоянно идут реакции водородного цикла. Температура звезд при этом может различаться. Когда в ядре заканчивается весь водород, начинается новая стадия эволюции. Теперь топливом становится гелий. При этом звезда начинает расширяться. Ее светимость увеличивается, а температура поверхности, наоборот, падает. Звезда сходит с главной последовательности и становится красным гигантом.

Масса гелиевого ядра постепенно увеличивается, и оно начинает сжиматься под собственным весом. Стадия красного гиганта заканчивается гораздо быстрее, чем предыдущая. Путь, по которому пойдет дальнейшая эволюция, зависит от изначальной массы объекта. Маломассивные звезды на стадии красного гиганта начинают раздуваться. В результате этого процесса объект сбрасывает оболочки. Образуется и оголенное ядро звезды. В таком ядре завершились все реакции синтеза. Оно называется гелиевым белым карликом. Более массивные красные гиганты (до определенного предела) эволюционируют в углеродных белых карликов. В их ядрах присутствуют более тяжелые элементы, чем гелий.

Характеристики

Белые карлики — тела, по массе, как правило, очень близкие к Солнцу. При этом их размер соответствует земному. Колоссальная плотность этих космических тел и происходящие в их недрах процессы необъяснимы с точки зрения классической физики. Тайны звезд помогла раскрыть квантовая механика.

Вещество белых карликов представляет собой электронно-ядерную плазму. Сконструировать его даже в условиях лаборатории практически невозможно. Поэтому многие характеристики таких объектов остаются непонятными.

Даже если изучать всю ночь звезды, обнаружить хотя бы один белый карлик без специальной аппаратуры не получится. Их светимость значительно меньше солнечной. По подсчетам ученых, белые карлики составляют примерно от 3 до 10% всех объектов Галактики. Однако на сегодняшний день найдены лишь те из них, которые расположены не дальше, чем на расстоянии 200-300 парсек от Земли.

Белые карлики продолжают эволюционировать. Сразу после образования они имеют высокую температуру поверхности, но быстро остывают. Через несколько десятков миллиардов лет после образования, согласно теории, белый карлик превращается в черного карлика — не излучающее видимый свет тело.

Белая, красная или синяя звезда для наблюдателя отличаются прежде всего цветом. Астроном смотрит глубже. Цвет для него сразу многое рассказывает о температуре, размерах и массе объекта. Голубая или светлая синяя звезда — гигантский раскаленный шар, по всем параметрам сильно опережающий Солнце. Белые светила, примеры которых описаны в статье, несколько меньше. Номера звезд в различных каталогах также многое сообщают профессионалам, но далеко не все. Большое количество сведений о жизни далеких космических объектов либо еще не получили объяснения, либо остаются даже не обнаруженными.

2 Происхождение белых карликов

    2.1 Тройная гелиевая реакция и изотермические ядра красных гигантов 2.2 Потеря массы красными гигантами и сброс ими оболочки
3 Физика и свойства белых карликов
    3.1 Зависимость масса-радиус и предел Чандрасекара 3.2 Особенности спектров
4 Классификация белых карликов 5 Астрономические феномены с участием белых карликов

Примечания
Литература

Введение

Белые карлики - звезды низкой светимости с массами, сопоставимыми с массой Солнца, и высокими эффективными температурами. Название белые карлики связана с цветом первых открытых представителей этого класса - Сириуса B и 40 Эридана B. На диаграмме Герцшпрунга-Рассела они расположены на 10-12 m ниже зрение главной последовательности такого же спектрального класса .

Радиусы белых карликов примерно в 100 раз меньше солнечного, соответственно, их светимость в ~раз меньше солнечной. Плотность вещества белых карликов составляетг / см 3, в миллионы раз больше плотности вещества в звездах главной последовательности. По численности белые карлики составляют 3-10% зрение Галактики. Однако известна лишь небольшая их часть, потому что из-за низкой светимостью обнаружены лишь те, расстояние до которых не превышает 200-300 пк.

По современным представлениям белые карлики - конечный продукт эволюции нормальных звезд с массами от солнечной массы до 8-10 солнечных масс. Они образуются после исчерпания источников термоядерной энергии в недрах звезды и сброса оболочки.

1. История открытия

1.1. Открытия белых карликов

темный" спутник, причем период вращения обоих зрение вокруг общего центра масс должно быть около 50 лет. Сообщение было встречено скептически, поскольку темный спутник оставался невидимым, а его масса должна быть достаточно большой - сравнимой с массой Сириуса.

Я был у своего друга... профессора Э. Пикеринга с деловым визитом. Со свойственной для него добротой он предложил взять спектры всех звезд, Хинксом и я наблюдали с целью... определения их параллаксов. Эта часть работы, казавшейся медленно, оказалась весьма плодотворной - она привела к открытию того, что все звезды очень малой абсолютной величины (т. е. низкой светимости) имеют спектральный класс M (т. е. очень низкую поверхностную температуру). Я вспоминаю, как обсуждая этот вопрос, я спросил у Пикеринга о некоторых других слабые звезды, вспомнил числе 40 Эридана B. Поводя себя характерным для него образом, он сразу же послал запрос в офис (Гарвардской) обсерватории, и вскоре был получен ответ (я считаю, миссис Флеминг), что спектр этой звезды - A (т. е. высокая поверхностная температура). Даже в те "палеозойские" времена я знал об этих вещах достаточно, чтобы сразу же понять, что здесь есть существенное несоответствие между тем, что мы тогда назвали бы "возможными" значениями поверхностной яркости и плотности. Я, пожалуй, не скрыл, что не только удивлен, а просто поражен этим исключением из правила, которое казалось вполне нормальным для характеристики звезд. Пикеринг улыбнулся мне и сказал: "именно такие исключения и приводят к расширению наших знаний" - и белые карлики вошли в мир изучаемого "

Удивление Рассела вполне понятно: 40 Эридана B относится к сравнительно близких звезд, и за параллаксом можно достаточно точно определить расстояние до нее и, соответственно, светимость. Светимость 40 Эридана B оказалась аномально низкой для ее спектрального класса - белые карлики образовали новую область на диаграмме Герцшпрунга-Рассела. Такое сочетание светимости, массы и температуры было непонятным и не находило объяснения в рамках стандартной модели строения звезд главной последовательности, разработанную в 1920-х годах.

Высокая плотность белых карликов оставалась необъяснимой с точки зрения классической физики, однако нашла объяснение в квантовой механике после появления статистики Ферми-Дирака. 1926 года Фаулер в статье "Густая материя" ("Dense matter", Monthly Notices R. Astron. Soc . 87, 114-122 ) Доказал, что, в отличие от звезд главной последовательности, для которых уравнения состояния построено на модели идеального газа (стандартная модель Едингтона), для белых карликов плотность и давление вещества определяются свойствами вырожденного электронного газа (Ферми-газа).

Следующим этапом в объяснении природы белых карликов стали работы и Чандрасекара. 1928 года Френкель указал, что для белых карликов должен существовать верхний предел массы, и 1930 года Чандрасекар в работе "Максимальная масса идеального белого карлика" (" The maximum mass of ideal white dwarfs", Astroph. J. 74, 81-82 ) Доказал, что белые карлики с массой свыше 1,4 солнечной неустойчивые (предел Чандрасекара) и имеют коллапсировать .

2. Происхождение белых карликов

Решение Фаулера объяснил внутреннее строение белых карликов, но не объяснил механизма их происхождения. В объяснении генезиса белых карликов ключевую роль сыграли две идеи:

    мнение Е. Эпика, что красные гиганты образуются из звезд главной последовательности в результате выгорания ядерного топлива предположение, сделанное вскоре после Второй мировой войны, что звезды главной последовательности должны терять массу, и такая потеря массы должна существенно влиять на эволюцию звезд.

Эти предположения полностью подтвердились.

2.1. Тройная гелиевая реакция и изотермические ядра красных гигантов

В процессе эволюции звезд главной последовательности происходит "выгорание" водорода - нуклеосинтез с образованием гелия (см. цикл Бете). Такое выгорание приводит к прекращению энерговыделения в центральных частях звезды, сжатия и, соответственно, к повышению плотности и температуры в ее ядре. Рост плотности и температуры в звездном ядре приводит к условиям, в которых активизируется новый источник термоядерной энергии: выгорания гелия (тройная гелиевая реакция или тройной альфа-процесс), характерное для красных гигантов и сверхгигантов.

При температурах около 10 8 K кинетическая энергия ядер гелия становится достаточной для преодоления кулоновского барьера: два ядра гелия (альфа-частицы) могут сливаться с образованием нестабильного изотопа бериллия Be 8:

He 4 + He 4 = Be 8

Большая часть Be 8 еще распадается на две альфа-частицы, но если за короткое время существования ядро Be 8 зиткнется с высокоэнергетической альфа-частицей может образоваться стабильное ядро углерода C 12:

Be 8 + He 4 = C 12 + 7,3 м эВ.

Несмотря на довольно низкую равновесную концентрацию Be 8 (например, при температуре ~ 10 8 K отношение концентраций / ~, скорость такой тройной гелиевой реакции оказывается достаточной для достижения нового гидростатического равновесия в горячем ядре звезды. Зависимость энерговыделения от температуры в тройной гелиевой реакции чрезвычайно сильна, так, для диапазона температур ~ 1-2 ? 10 8 K энерговыделения http://*****/images/ukbase_2__1234.jpg" alt="\ Varepsilon _ {3 \ alpha} = 10 ^ 8 \ rho ^ 2 Y ^ 3 * \ left ({{T \ over {10 ^ 8}}} \ right) ^ {30}" width="210 height=46" height="46">

где выгорания" водорода она близка к единице).

Стоит, однако, отметить, что тройная гелиевая реакция характеризуется значительно меньшим энерговыделением, чем цикл Бете в пересчете на единицу массы: энерговыделения при "горении" гелия более чем в 10 раз ниже, чем при "горении" водорода. По мере выгорания гелия и исчерпания этого источника энергии в ядре становятся возможными сложные реакции нуклеосинтеза, однако, во-первых, для таких реакций требуются все более высокие температуры и, во-вторых, энерговыделение на единицу массы таких реакций падает с ростом массовых чисел ядер, вступающих в реакцию.

http://*****/images/ukbase_2__519.jpg" alt="\" width="84" height="20 src=">, Т. е. выполняются условия вырождения электронного газа. Расчеты показывают, что плотность изотермических ядер соответствует плотности белых карликов, то есть ядрами красных гигантов есть белые карлики.

нормальные" белые карлики с высоким содержанием углерода.

На фотографии шаровидного звездного скопления NGC 6397 (Рис. 5) идентифицируются белые карлики обоих типов: и гелиевые белые карлики, возникшие при эволюции менее массивных звезд, и углеродные белые карлики - результат эволюции звезд с большей массой.

2.2. Потеря массы красными гигантами и сброс ими оболочки

Ядерные реакции в красных гигантах происходят не только в ядре: по мере выгорания водорода в ядре, нуклеосинтез гелия распространяется на еще богатые водородом области звезды, образуя сферический слой на границе бедных и богатых водород областей. Аналогичная ситуация возникает и с утроенной гелиевой реакции: по мере выгорания гелия в ядре она также сосредотачивается в сферическом слое на границе между бедными и богатыми гелий областями. Светимость звезд с такими "двухслойными" областями нуклеосинтеза значительно возрастает, достигая нескольких тысяч светимости Солнца, звезда при этом "раздувается", увеличивая свой диаметр до размеров земной орбиты. Зона нуклеосинтеза гелия поднимается к поверхности звезды: доля массы внутри этой зоны составляет ~ 70% массы звезды. "Раздувание" сопровождается довольно интенсивным утечкой вещества с поверхности звезды, такие объекты наблюдаются как протопланетарного туманности (см. рис. 6).

Шклов" href="/text/category/shklov/" rel="bookmark">Шкловский предложил механизм образования планетарных туманностей путем сброса оболочек красных гигантов, при этом обнажение изотермических вырожденных ядер таких звезд приводит к образованию белых карликов. Точные механизмы потери массы и последующего сброса оболочки для таких звезд пока неизвестны, но можно предложить такие факторы, которые могут привести к потере оболочки:

    В протяженных звездных оболочках могут развиваться неустойчивости, приводящие к сильным колебательных процессов, сопровождающихся изменением теплового режима звезды. На Рис. 6 четко заметны волны плотности выброшенной звездной материи, которые могут быть последствиями таких колебаний. Вследствие ионизации водорода в областях, лежащих ниже фотосферы может развиться сильная конвективная неустойчивость. Аналогичную природу имеет солнечная активность, в случае красных гигантов мощность конвективных потоков имеет значительно превосходить солнечную. Из-за слишком высокой светимостью существенным становится световое давление потока излучения звезды на ее внешние слои, по расчетным данным, может привести к потере оболочки за несколько тысяч лет.

избытка массы" красных гигантов.

Предложенный Шкловским сценарий эволюции красных гигантов является общепризнанным и подкреплен данным многочисленных наблюдений.

3. Физика и свойства белых карликов

Как уже отмечалось, массы белых карликов близки к солнечной, но их размеры составляют лишь сотую (и даже меньше) часть солнечного, то есть плотность вещества в белых карликах чрезвычайно высока и составляет г / см 3. При такой плотности электронные оболочки атомов разрушаются и вещество становится электронно-ядерной плазмой, причем ее электронная составляющая является вырожденным электронным газом. Давление P такого газа подчиняется зависимости:

где http://*****/images/ukbase_2__17665.jpg" width="180" height="283 src=">

Рис. 8. Зависимость масса-радиус для белых карликов. Вертикальная асимптота соответствует пределу Чандрасекара.

Приведенное выше уравнение состояния действительно для холодного электронного газа, но температура даже в несколько миллионов градусов мала по сравнению с характерной ферми-энергией электронов (). Вместе с тем, при росте плотности вещества через запрет Паули (два электрона не могут иметь одинаковый квантовое состояние, то есть одинаковую энергию и спин), энергия и скорость электронов возрастают настолько, что начинают действовать эффекты теории относительности - вырожденный электронный газ становится релятивистским. Зависимость давления релятивистского вырожденного электронного газа от плотности уже другая:

Для такого уравнения состояния возникает интересная ситуация. Средняя плотность белого карлика http://*****/images/ukbase_2__270.jpg" width="21" height="14 src=">- Масса, а - Радиус белого карлика. Тогда давление http://*****/images/ukbase_2__716.jpg" alt="{P \ over R} \ sim {{M ^ {4/3}} \ over {R ^ 5}}" width="89 height=46" height="46">

Гравитационные силы, противодействующие давления:

есть, хотя перепад давления и гравитационные силы одинаково зависят от радиуса, но они по разному зависят от массы - как ~ и ~ disc"> DA - в спектре есть линии и нет линий гелия. Этот тип ~ 75% белых карликов, они встречаются во всем диапазоне температур; DB - линию ионизированного гелия сильные, линий водорода нет. Гелия в 10 раз больше, температуры - свыше? K; DC - непрерывный спектр, немее линий поглощения с интенсивностью менее 90% от интенсивности непрерывные спектра, температура - до? K; DF - есть линии кальция, нет линий водорода; DG - есть линии кальция, железа, нет линий водорода; DO - линии ионизированного гелия сильные, есть линии нейтрального гелия и (или) водорода. Это горячие белые карлики, их температуры достигает? K

5. Астрономические феномены с участием белых карликов

5.1. Рентгеновское излучение белых карликов

Температура поверхности молодых белых карликов - изотропных ядер звезд после сброса оболочек, очень высока - более 2 ? 10 5 K, однако довольно быстро падает благодаря нейтринных охлаждению и излучению с поверхности. Такие очень молодые белые карлики наблюдаются в рентгеновском диапазоне (например, наблюдения белого карлика HZ 43 спутником ROSAT).

Температура поверхности горячих белых карликов - 7 ? 10 4 K, холодных - ~ 5 ? 10 3 K.

Особенностью излучения белых карликов в рентгеновском диапазоне является то, что основным источником рентгеновского излучения в них фотосфера, что очень отличает их от "нормальных" звезд: в последних в рентгене излучает корона, разогретая до нескольких миллионов кельвинов, а температура фотосферы слишком низкая для образования рентгеновского излучения (см. рис. для них 9).

При отсутствии аккреции белых карликов есть запас тепловой энергии ионов в их недрах, поэтому их светимость зависит от возраста. Количественную теорию охлаждения белых карликов построил конце 1940-х гг.

5.2. Аккреция на белые карлики в двойных системах

disc"> Нестационарная аккреция на белые карлики в случае, если компаньоном является массивный красный карлик, приводит к образованию карликовых новых (звезд типа U Gem (UG)) или новоподобные переменных звезд. Аккреция на белые карлики, имеют сильное магнитное поле, направляется в район магнитных полюсов белого карлика, и циклотронный механизм излучения акрециюючои плазмы в приполярная областях вызывает сильную поляризацию излучения в видимой области спектра (поляры и промежуточные поляры). Аккреция на белые карлики богатой водородом вещества приводит к его накоплению на поверхности (состоящий преимущественно из гелия) и разогрева до температур реакции синтеза гелия, что в случае развития тепловой неустойчивости, приводит к взрыву, который наблюдается как вспышка новой звезды. Довольно длительная и интенсивная аккреция на массивный белый карлик приводит к превосходит его массой предела Чандрасекара и гравитационного коллапса, который наблюдается как вспышка сверхновой типа Ia (см. рис. 10).

См.. также

    Аккреция Идеальный газ Вырожденный газ Звезда Нуклеосинтез Планетарная туманность Сверхновая Сириус

Примечания

1. ^ а б в Белые карлики - www. franko. / publish / astro / bukvy / b. pdf / / Астрономический энциклопедический словарь - www. franko. / publish / astro / Под общей редакцией и. - Львов: ЛНУ-ГАО НАНУ, 2003. - С. 54-55. - ISBN -X, УДК

Литература

    Deborah Jean Warner. Alvan Clark and Sons: Artists in Optics, Smithsonian Press, 1968 Шкловский, И. С. О природе планетарных туманностей и их ядер / / Астрономический журнал. - Том 33, № 3, 1956. - Сс. 315-329. , . Физические основы строения и эволюции звезд, М., 1981 - nature. ***** / db / msg. html? mid = 1159166 & uri = index. html Звезды: их рождение, жизнь и смерть, М.: Наука, 1984 - shklovsky-ocr. *****/online/shklovsky. htm Киппенхан г. 100 млрд солнц. Рождение, жизнь и смерть звездах, М.: Мир, 1990 - . ru / astro / index. html Физика космоса. Маленькая энциклопедия, М.: Советская Энциклопедия, 1986 - www. *****/db/FK86/
Нейтронная звезда

Расчеты показывают, что при взрыве сверхновой с M ~ 25M остается плотное нейтронное ядро (нейтронная звезда) с массой ~ 1.6M . В звездах с остаточной массой M > 1.4M , не достигших стадии сверхновой, давление вырожденного электронного газа также не в состоянии уравновесить гравитационные силы и звезда сжимается до состояния ядерной плотности. Механизм этого гравитационного коллапса тот же, что и при взрыве сверхновой. Давление и температура внутри звезды достигают таких значений, при которых электроны и протоны как бы “вдавливаются” друг в друга и в результате реакции

после выброса нейтрино образуются нейтроны, занимающие гораздо меньший фазовый объем, чем электроны. Возникает так называемая нейтронная звезда, плотность которой достигает 10 14 - 10 15 г/см 3 . Характерный размер нейтронной звезды 10 - 15 км. В некотором смысле нейтронная звезда представляет собой гигантское атомное ядро. Дальнейшему гравитационному сжатию препятствует давление ядерной материи, возникающее за счет взаимодействия нейтронов. Это также давление вырождения, как ранее в случае белого карлика, но - давление вырождения существенно более плотного нейтронного газа. Это давление в состоянии удерживать массы вплоть до 3.2M .
Нейтрино, образующиеся в момент коллапса, довольно быстро охлаждают нейтронную звезду. Согласно теоретическим оценкам температура ее падает с 10 11 до 10 9 K за время ~ 100 с. Дальше темп остывания несколько уменьшается. Однако он достаточно высок по астрономическим масштабам. Уменьшение температуры с 10 9 до 10 8 K происходит за 100 лет и до 10 6 K - за миллион лет. Обнаружить нейтронные звезды оптическими методами довольно сложно из-за малого размера и низкой температуры.
В 1967 г. в Кембриджском университете Хьюиш и Белл открыли космические источники периодического электромагнит-ного излучения - пульсары. Периоды повторения импульсов боль-шинства пульсаров лежат в интервале от 3.3·10 -2 до 4.3 с. Согласно современным представлениям, пульсары - это вращающиеся нейтронные звезды, имеющие массу 1 - 3M и диаметр 10 - 20 км. Только компактные объекты, имеющие свойства нейтронных звезд, могут сохранять свою форму, не разрушаясь при таких скоростях вращения. Сохранение углового момента и магнитного поля при образовании нейтронной звезды приводит к рождению быстро вращающихся пульсаров с сильным магнитным полем B ~ 10 12 Гс.
Считается, что нейтронная звезда имеет магнитное поле, ось которого не совпадает с осью вращения звезды. В этом случае излучение звезды (радиоволны и видимый свет) скользит по Земле как лучи маяка. Когда луч пересекает Землю регистрируется импульс. Само излучение нейтронной звезды возникает за счет того, что заряженные частицы с поверхности звезды двигаются вовне по силовым линиям магнитного поля, испуская электромагнитные волны. Этот механизма радиоизлучения пульсара, впервые предложенный Голдом, показан на рис. 39.

Если пучок излучения попадает на земного наблюдателя, то радиотелескоп фиксирует короткие импульсы радиоизлучения с периодом, равным периоду вращения нейтронной звезды. Форма импульса может быть очень сложной, что обусловлено геометрией магнитосферы нейтронной звезды и является характерной для каждого пульсара. Периоды вращения пульсаров строго постоянны и точности измерения этих периодов доходят до 14-значной цифры.
В настоящее время обнаружены пульсары, входящие в двойные системы. Если пульсар вращается по орбите вокруг второго компонента, то должны наблюдаться вариации периода пульсара вследствие эффекта Допплера. Когда пульсар приближается к наблюдателю, регистрируемый период радиоимпульсов из-за допплеровского эффекта уменьшается, а когда пульсар удаляется от нас, его период увеличивается. На основе этого явления и были обнаружены пульсары, входящие в состав двойных звезд. Для впервые обнаруженного пульсара PSR 1913 + 16, входящего в состав двойной системы, орбитальный период обращения составил 7 часов 45 мин. Собственный период обращения пульсара PSR 1913 + 16 равен 59 мс.
Излучение пульсара должно приводить к уменьшению скорости вращения нейтронной звезды. Такой эффект также был обнару-жен. Нейтронная звезда, входящая в состав двойной системы, может быть и источником интенсивного рентгеновского излучения.
Структура нейтронной звезды массой 1.4M и радиусом 16 км показана на рис. 40.

I - тонкий внешний слой из плотно упакованных атомов. В областях II и III ядра расположены в виде объемно-центрированной кубической решетки. Область IV состоит в основном из нейтронов. В области V вещество может состоять из пионов и гиперонов, образуя адронную сердцевину нейтронной звезды. Отдельные детали строения нейтронной звезды в настоящее время уточняются.
Образование нейтронных звезд не всегда является следствием вспышки сверхновой. Возможен и другой механизм образования нейтронных звезд в ходе эволюции белых карликов в тесных двойных звездных системах. Перетекание вещества звезды-компаньона на белый карлик постепенно увеличивает массу белого карлика и по достижении критической массы (предела Чандрасекара) белый карлик превращается в нейтронную звезду. В случае, когда перетекание вещества продолжается и после образования нейтронной звезды, её масса может существенно увеличиться и в результате гравитационного коллапса она может превратиться в черную дыру. Это соответствует так называемому “тихому” коллапсу.
Компактные двойные звезды могут проявляться и как источники рентгеновского излучения. Оно также возникает за счет аккреции вещества, падающего с “нормальной” звезды на более компактную. При аккреции вещества на нейтронную звезду с B > 10 10 Гс вещество падает в район магнитных полюсов. Рентгеновское излучение модулируется её вращением вокруг оси. Такие источники называют рентгеновскими пульсарами.
Существуют рентгеновские источники (называемые барстерами), в которых периодически с интервалом от нескольких часов до суток происходят всплески излучения. Характерное время нарастания всплеска - 1 сек. Длительность всплеска от 3 до 10 сек. Интенсивность в момент всплеска может на 2 - 3 порядка превосходить светимость в спокойном состоянии. В настоящее время известно несколько сотен таких источников. Считается, что всплески излучения происходят в результате термоядерных взрывов вещества, накопившегося на поверхности нейтронной звезды в результате аккреции.
Хорошо известно, что на малых расстояниях между нуклонами (< 0.3·10 -13 см) ядерные силы притяжения сменяются силами оттал-кивания, т. е. противодействие ядерного вещества на малых расстояниях сжимающей силе тяготения увеличивается. Если плотность вещества в центре нейтронной звезды превышает ядерную плотность ρ яд и достигает 10 15 г/см 3 , то в центре звезды наряду с нуклонами и электронами образуются также мезоны, гипероны и другие более массивные частицы. Исследования поведения вещества при плотностях, превышающих ядерную плотность, в настоящее время находятся в начальной стадии и имеется много нерешенных проблем. Расчеты показывают, что при плотностях вещества ρ > ρ яд возможны такие процессы, как появление пионного конденсата, переход нейтронизованного вещества в твердое кристаллическое состояние, образование гиперонной и кварк-глюонной плазмы. Возможно образование сверхтекучего и сверхпроводящего состояний нейтронного вещества.
В соответствии с современными представлениями о поведении вещества при плотностях в 10 2 - 10 3 раз, превышающих ядерную (а именно о таких плотностях идет речь, когда обсуждается внутреннее строение нейтронной звезды), внутри звезды образуются атомные ядра вблизи границы устойчивости. Более глубокое понимание может быть достигнуто в результате исследования состояния вещества в зависимости от плотности, температуры, устойчивости ядерной материи при экзотических отношениях числа протонов к числу нейтронов в ядре n p /n n , учете слабых процессов с участием нейтрино. В настоящее время практически единственной возможностью исследования вещества при плотностях больших ядерной являются ядерные реакции между тяжелыми ионами. Однако, экспериментальные данные по столкновению тяжелых ионов дают пока недостаточно информации, т. к. достижимые значения n p /n n как для ядра - мишени, так и для налетающего ускоренного ядра невелики (~ 1 - 0.7).
Точные измерения периодов радиопульсаров показали, что скорость вращения нейтронной звезды постепенно замедляется. Это связано с переходом кинетической энергии вращения звезды в энергию излучения пульсара и с эмиссией нейтрино. Небольшие скачкообразные изменения периодов радиопульсаров объясняются накоплением напряжений в поверхностном слое нейтронной звезды, сопровождающимся “растрескиванием” и “разломами”, что и приводит к изменению скорости вращения звезды. В наблюдаемых временных характеристиках радиопульсаров содержится информация о свойствах “коры” нейтронной звезды, физических условиях внутри неё и о сверхтекучести нейтронного вещества. В последнее время обнаружено значительное число ра-диопульсаров с периодами меньшими 10 мс. Это требует уточнения представлений о процессах, происходящих в нейтронных звездах.
Другой проблемой является исследование нейтринных процессов в нейтронных звездах. Эмиссия нейтрино является одним из механизмов потери энергии нейтронной звездой в течении 10 5 - 10 6 лет после её образования.

Откуда берутся белые карлики?

Что станет со звездой в конце ее жизненного пути зависит от массы, которую звезда имела при рождении. Звезды, которые изначально имели большую массу, заканчивают свою жизнь как черные дыры и нейтронные звезды. Звезды малой или средней массы (с массами менее 8 масс Солнца) станут белыми карликами. Типичный белый карлик имеет приблизительно массу Солнца, а по размеру немного превосходит Землю. Белый карлик представляет собой одну из наиболее плотных форм материи, которую по плотности превосходят только нейтронные звезды и черные дыры.

Звезды средней массы, как наше Солнце, живут благодаря переработке водорода в их ядрах в гелий. Этот процесс происходит на Солнце в настоящий момент. Энергия, которую вырабатывает Солнце посредством термоядерного синтеза гелия из водорода, создает внутреннее давление. В следующие 5 миллиардов лет Солнце израсходует запас водорода в ядре.

Звезду можно сравнить со скороваркой. При нагревании герметичного контейнера в нем повышается давление. Похожая вещь происходит в Солнце, конечно, строго говоря, Солнце нельзя назвать герметичным контейнером. Гравитация действует на вещество звезды, пытаясь сжать его, а давление, создаваемое горячим газом в ядре пытается расширить звезду. Баланс между давлением и гравитацией очень тонкий.
Когда у Солнца закончится запас водорода, в этом балансе начнет доминировать гравитация и звезда начнет сжиматься. Однако при сжатии происходит нагревание и часть водорода, оставшаяся во внешних слоях звезды начинает гореть. Эта горящая оболочка водорода расширяет внешние слои звезды. Когда это произойдет, наше Солнце станет красным гигантом, оно станет таким большим, что Меркурий будет полностью поглощен. Когда звезда увеличивается в размерах, она охлаждается. Однако температура ядра красного гиганта увеличивается до тех пор, пока не станет достаточно высокой, чтобы загорелся гелий (синтезированный из водорода). В конце концов, гелий превратится в углерод и более тяжелые элементы. Стадия, в которой Солнце будет красным гигантом, займет 1 миллиард лет, в то время как стадия горения водорода занимает 10 миллиардов.

Шаровое скопление М4. Оптическое изображение с наземного телескопа(слева) и снимок телескопа Хаббла (справа). Белые карлики отмечены кружками. Ссылка:Harvey Richer (University of British Columbia, Vancouver, Canada), M. Bolte (University of California, Santa Cruz) and NASA/ESA

Мы уже знаем, что звезды средней массы как наше Солнце станут красными гигантами. Но что произойдет потом? Наш красный гигант будет производить углерод из гелия. Когда закончится гелий, ядро будет еще не достаточно горячим, чтобы запустить горение углерода. Что теперь?

Поскольку Солнце не будет достаточно горячим для того, чтобы пошел процесс горения углерода, за дело снова возьмется гравитация. При сжатии звезды высвободится энергия, которая приведет к дальнейшему расширению оболочки звезды. Теперь звезда станет еще больше, чем прежде! Радиус нашего Солнца станет больше, чем радиус орбиты Земли!

В этот период Солнце станет нестабильным и будет терять свое вещество. Это продолжится до тех пор, пока звезда полностью не сбросит свои внешние слои. Ядро звезды останется целым и станет белым карликом. Белый карлик будет окружен расширяющейся оболочкой из газа, которая называется планетарная туманность. Туманности называются планетарными, потому что первые наблюдатели считали их похожими на планеты Уран и Нептун. Существует несколько планетарных туманностей, которые можно увидеть в любительский телескоп. Примерно в половине из них в центре можно увидеть белый карлик, при использовании телескопа достаточно скромного размера.

Планетарная туманность является признаком перехода звезды средней массы из стадии красного гиганта в стадию белого карлика. Звезды, сравнимые по массе с нашим Солнцем, превратятся в белые карлики примерно за 75000 лет, постепенно сбрасываю свои оболочки. В конце концов, они, как и наше Солнце, будут постепенно охлаждаться и превратятся в черные глыбы углерода, это процесс займет примерно 10 миллиардов лет.

Наблюдения белых карликов

Существует несколько способов наблюдать белые карлики. Первый открытый белый карлик – звезда компаньон Сириуса, яркой звезды в созвездии большого пса. В 1844 году астроном Фридрих Бессель заметил у Сириуса слабые поступательные и попятные движения, как если бы вокруг него вращался невидимый объект. В 1863 оптики и конструктор телескопов Элван Кларк обнаружил этот таинственный объект. Звезда-компаньон была позже отождествлена с белым карликом. В настоящее время эта пара известна как Сириус А и Сириус B, где В – белый карлик. Орбитальный период этой системы 50 лет.

Стрелка указывает на белый карлик, Сириус B, рядом с большим Сириусом А. Ссылка:McDonald Observatory,NASA/SAO/CXC)

Поскольку белые карлики очень малы и, поэтому труднообнаружимы, двойные системы – один из способов их обнаружить. Как и в случае Сириуса, если звезда имеет необъяснимое движение определенного вида, можно обнаружить, что одиночная звезда на самом деле является кратной системой. При более подробном изучении можно определить, является ли звезда-компаньон белым карликом. Космический телескоп Хаббла с 2.4-метровым зеркалом и улучшенной оптикой успешно наблюдал белые карлики с помощью широкоугольной планетарной камеры. В августе 1995 с помощью этой камеры были проведены наблюдения более 75 белых карликов в шаровом скоплении M4 в созвездии Скорпиона. Эти белые карлики были настолько слабы, что самые яркие из них светили не ярче, чем лампочка 100 Вт находящаяся на расстоянии Луны. М4 находится на расстоянии 7000 световых лет от нас и является ближайшим к нам шаровым скоплением. Его возраст примерно 14 миллиардов лет, вот почему большая часть звезд этого скопления находится в завершающей стадии свой жизни.