Из чего состоит солнце. Строение солнца

Солнце - всего лишь рядовая звезда, одна из 200 миллиардов в галактике Млечный Путь. Но для нас она особенная. С помощью целого флота космических зондов земляне следят за своим светилом в надежде разгадать его секреты. А их у Солнца еще очень много

текст: Клаус Бахманн

Фото: NASA/Goddard Space Flight Center/SDO

Мифическое адское пекло - уютный домашний очаг по сравнению с Солнцем. Там клокочет расплавленная материя, бьют в космос фонтаны раскаленного газа. Чудовищные разряды молний прошивают огненный шар. Дьявольское световое шоу не замирает ни на минуту.

Вплоть до конца двадцатого века астрономы могли изучать лишь поверхность Солнца - заглянуть глубже не позволяли технические возможности. Но в 1995 году НАСА совмест­но с Европейским космическим агентством (ЕКА) отправили в космос обсерваторию SOHO , к которой спустя пятнадцать лет присоединилась еще одна - американская SDO . И им удалось «просветить» нашу звезду насквозь.

«Благодаря гелиосейсмологии мы получили базовые представления о внутреннем строении Солнца», - говорит физик из ЕКА Бернхард Флек, который руководит «солнечной миссией» SOHO.

Мощные потоки материи заставляют толщу Солнца постоянно вибрировать, как раскачивающийся колокол. Космические зонды фиксируют различные типы вибраций, которые могут рассказать много интересного о солнечных недрах.

Например, выяснилось, что Солнце имеет трехслойное строение. В верхнем слое циркулирует плазма - раскаленная смесь элементарных частиц, в которой электроны отделены от своих атомов. Два внутренних слоя - ядро и зона лучи­стого переноса - вращаются настолько синхронно, что напоминают единый плотный шар типа земного. И совершают один полный оборот за 27 дней.

А над ними царит хаос. В конвективной зоне, которая начинается на глубине примерно 210 тысяч километров от поверх­ности, скорость вращения плазмы на разных широтах варьируется. Если на солнечном экваторе период обращения составляет 25 дней, то на 60-й широте - уже 31.

«Дифференциальная ротация» - так физики называют этот феномен. В глубине звезды, на границе между стабильным ядром и подвижной зоной конвекции, рождается главная движущая сила грандиозной поверхностной активности. Солнечный генератор, вырабатывающий мощное магнитное поле.

Что за неисчерпаемый источник энергии таится внутри Солнца? Из всех его загадок ученые пока разгадали только эту. Да и то не до конца.

Но скоро все может измениться. На подмогу SOHO и SDO в 2018 году будут запущены еще два зонда - Solar Orbiter и Solar Probe+. Собранные ими новые данные приблизят астрофизиков к ответу на многие во­просы.

Тем более что самая главная тайна уже раскрыта, уверен Бернхард Флек.

Почему Солнце светит?

«Самая большая загадка - как можно поддерживать горение столь неимоверной силы. Но одно открытие в области химии не дает нам ответ на этот вопрос». Джон Гершель, 1833 год

Солнечная печь вырабатывает и извергает в космос гигантское количество энергии. Свечение Солнца настолько мощное, что даже на отдалении в 150 миллионов километров тает земной снег и возникают ожоги на коже. Как это возможно?

Первое, что приходит на ум: звезда полыхает, как гигантский костер, и постепенно сгорает. Но температура на поверхности Солнца почти 5500 градусов Цельсия. Еще в XIX веке английский астроном Джон Гершель заявил, что «классическая» реакция горения древесины и угля никак не может дать столько тепла и поддерживать нагрев на таком уровне миллионы лет.

Простой математический расчет показывает, что если бы Солнце состояло из самого лучшего угля, оно бы полностью выгорело примерно за пять тысяч лет.

Ключом к разгадке стали два открытия, сделанные физиками в начале XX века. Первое: Альберт Эйнштейн установил, что масса эквивалентна энергии. И описал их зависимость в знаменитой формуле E=mc2. Второе: оказалось, что четыре атомных ядра водорода, состоящие из одного протона, обладают большей массой, чем ядро атома гелия из двух протонов и двух нейтронов.

В конце 1930-х физики-атомщики описали фундаментальные процессы, протекающие на Солнце. Температура в его ядре достигает 15 миллионов градусов Цельсия. В таких экстремальных условиях четыре ядра водорода, пройдя ряд промежуточных стадий, сливаются в ядро гелия. Из килограмма водорода получается 993 грамма гелия, а оставшиеся семь граммов, по формуле Альберта Эйнштейна, почти целиком превращаются в чистую энергию. И хотя на Солнце каждую секунду «плавится» 600 миллионов тонн водорода, этого топлива хватит на миллиарды лет.

Но есть ли гарантия, что эти выводы верны? Мы, конечно, не имеем возможности заглянуть в солнечное ядро. Но зато способны фиксировать идущие из его раскаленного центра сигналы в виде нейтрино. Эти электрически заряженные элементарные частицы выделяются при слиянии протонов водорода и практически беспрепятственно пролетают сквозь сверхплотную солнечную материю.

Хотя нейтрино почти не вступают в контакт с веществом, физики смогли зарегистрировать их с помощью гигантских подземных детекторов. А недавно в лаборатории под итальянским горным массивом Гран-Сассо удалось уловить солнечные нейтрино с минимальным энергетическим потенциалом. И это настоящий прорыв в изучении Солнца. По­следний пробел в наших представлениях о процессах его горения заполнен. Количество и энергетический заряд зафиксированных нейтрино полностью подтверждают теорию слияния водородных ядер.
А вот на следующий вопрос у ученых нет однозначного ответа.

Откуда пятна на Солнце?

«Я не думаю, что это настоящие пятна, скорее уж небесные тела, которые частично прикрывают собой солнце, то есть звезды, находящиеся между нами и Солнцем или же вращающиеся вокруг него». Кристоф Шейнер, 1612 год

Спор иезуита Кристофа Шейнера с астрономом Галилео Галилеем о происхождении пятен на Солнце - нечто большее, чем просто научный диспут. В эпоху Ренессанса небесное светило воспринималось как образец совершенного Божьего творения. А как вообще может существовать «запятнанный» идеал?!

Сейчас уже известно, что пятна на Солн­це - это участки более холодного веще­ства. Поэтому они и кажутся нам темнее. Иногда эти зоны по ширине в четыре раза превышают радиус Земли. И не исчезают неделями. Сами пятна находятся на поверхности, но их источник лежит под ней. Солнечные магнитные поля, в десять тысяч раз превосходящие по мощности магнитное поле Земли, мешают выходу раскаленной плазмы из глубины на поверхность. Температура в таких зонах падает.

Что именно происходит под солнечным пятном - пока загадка. Заглянуть туда даже с помощью самых передовых технологий мешают те же магнитные поля. Бернхард Флек говорит: «После анализа одних и тех же данных астрономы пришли к разным выводам. Так что толку от этой информации пока мало».

Передовой край исследований Солнца - компьютерное моделирование возникновения и изменения темных зон. В перспективе у этих экспериментов еще более амбициозная цель - выявить закономерности солнечного цикла. Количе­ство пятен уменьшается и возрастает с периодичностью, составляющей примерно 11 лет. Первые темные зоны в начале цикла возникают на средних широтах - около тридцатых параллелей южной и северной широт. Но затем они начинают появляться все ближе к экватору, растягиваясь поперек солнечного диска. Почему так происходит?

«Это одна из самых больших загадок», - считает Флек.

Что движет солнечными циклами?

«Пятна на Солнце видоизменяются, причем быстро и в такой последовательности, которая свидетельствует о влиянии какой-то мощной силы, действующей под его поверхностью». Уолтер и Эни Маундер, 1908 год

Английские астрономы и по совместитель­ству супруги Маундер были бы удивлены, если бы узнали, что именно удалось недавно выяснить ученым о силах, действующих в так называемой «подфотосферной» области Солнца. Оказалось, что разгадать секрет периодического изменения солнечной активности поможет понимание устройства его магнитного поля. Оно исходит из зоны конвекции, и его линии, ориентированные с севера на юг, в результате дифференциальной ротации все сильнее закручиваются. В местах их выхода на поверхность и образуются солнечные пятна.

Но одного этого для объяснения 11-годичного солнечного цикла недостаточно. По самому популярному сейчас научному сценарию, не менее важная роль в этом процессе принадлежит «меридиальной циркуляции». Так называют особое течение плазмы вдоль меридианов от экватора к северному и южному полюсам. Ее потоки увлекают за собой магнитное поле. Если с востока на запад плазма движется со скоростью 2000 метров в секунду, то в направлении полюсов она, судя по последним замерам, течет спокойно, преодолевая у поверхности примерно 20 метров в секунду. На высоких широтах плазма вновь погружается под поверхность. На глубине она устремляется обратно к экватору - вместе с магнитным полем.

«Многие специалисты считают, что продолжительность солнечного цикла с образованием пятен зависит как раз от циркуляции плазмы по оси «север - юг», - говорит Лоран Гизон, эксперт по гелиосейсмологии из Института Макса Планка по изучению Солнечной системы в Геттингене. - Это течение действует как ленточный конвейер. Если бы оно было быстрее, цикл был бы короче».

Что же происходит в недрах Солнца? Пока ученые представляют это лишь в общих чертах. Вот почему наука еще не в силах точно спрогнозировать интенсивность следующего солнечного цикла. Хотя жителям Земли со­всем не безразлично, что творится на самой близкой к нам звезде. Ведь в случае эксцессов на Солнце нам не поздоровится.

Как влияет на нас солнечная активность?

«Предположение о связи земных магнитных бурь с пятнами на Солнце не имеет под собой реальных оснований. Совпадение периодов - чистая случайность». Лорд Кельвин, 1892 год

Еще за тридцать с лишним лет до того, как английский физик лорд Кельвин высокомерно отверг предположение о влиянии солнечных циклов на Землю, Солнце продемонстрировало, что оно способно сделать с нашей планетой. В 1859 году произошла самая мощная в истории астрономии геомагнитная буря. «Событие Кэррингтона» - такое название она получила в честь британского астронома, наблюдавшего наиболее яркую вспышку на Солнце. В процессе так называемого коронального выброса массы (КВМ) наша звезда извергла в простран­ство гигантское облако протонов, электронов и других электрически заряженных частиц. Магнитный щит Земли обычно надежно защищает планету от космических частиц, отклоняя их поток от первоначальной траектории и направляя вокруг земного шара. Но тот «супершторм» его сильно потрепал. Полярное сияние видели даже на Кубе. Телеграфное сообщение в Америке и Европе было нарушено - линии передачи искрились.

А чем может грозить солнечная буря такой силы в наше время? Ведь зависимость от техники многократно возросла. Залп мощностью более десяти миллионов тонн плазмы просто опустошит Землю. Выжжет трансформаторы, вызовет короткие замыкания в электросетях и сбой в системах спутниковой навигации.

В 2012 году мы были на волосок от такого катаклизма: облако солнечных частиц пролетело совсем рядом с Землей. Сейчас для раннего предупреждения о КВМ американские и европейские специалисты организовали центры прогнозирования космической погоды. Их прогнозами пользуются авиакомпании, спутниковые операторы и военные.

«Хотя до Солнца 150 миллионов километров, не стоит забывать, что мы живем не просто рядом с магнитоактивной звездой, а в пределах ее внешней атмосферы, - говорит Бернхард Флек. - Мы все дети гелиосферы».

  • Перевод

Примеры телескопов (функционирующих на февраль 2013), работающих на длинах волн по всему электромагнитному спектру. Обсерватории расположены над или под той частью спектра, которую они обычно наблюдают.

Когда в 1990-м был запущен космический телескоп Хаббл, с его помощью мы собирались провести целый вагон измерений. Мы собирались увидеть отдельные звёзды в дальних галактиках, которых до этого не видели; измерить глубокую Вселенную так, как до этого не получалось; заглянуть в регионы звёздного формирования и увидеть туманности в беспрецедентном разрешении; поймать извержения на лунах Юпитера и Сатурна так подробно, как не получалось ранее. Но самыми крупными открытиями – тёмная энергия, сверхмассивные чёрные дыры, экзопланеты, протопланетные диски – стали непредвиденные. Продолжится ли эта тенденция с телескопами Джеймс Уэбб и WFIRST? Наш читатель спрашивает:

Без фантазий по поводу какой-то радикально новой физики, какие результаты от Уэбба и WFIRST смогут больше всего удивить вас?

Чтобы сделать подобное предсказание, нам необходимо знать, на какие измерения способны эти телескопы.



Законченный и выведенный в космос телескоп Джеймс Уэбб в представлении художника. Обратите внимание на пятислойную защиту телескопа от солнечного жара

Джеймс Уэбб – космический телескоп нового поколения, который запустят в октябре 2018 [С момента написания оригинала статьи дату запуска перенесли на март-июнь 2019 года – прим. перев.]. После полного ввода в строй и охлаждения он станет самой мощной обсерваторией в истории человечества. Его диаметр составит 6,5 м, светосила превысит Хаббловскую в семь раз, а разрешение – почти в три раза. Он будет покрывать длины олн от 550 до 30 000 нм – от видимого света до инфракрасного. Он сможет измерять цвета и спектры всех наблюдаемых объектов, доводя до предела пользу от практически каждого поступившего в него фотона. Его расположение в космосе позволит нам увидеть всё в пределах воспринимаемого им спектра, а не только те волны, для которых атмосфера оказывается частично прозрачной.


Концепция спутника WFIRST, запуск которого запланирован на 2024 год. Он должен будет снабдить нас самыми точными измерениями тёмной энергии и другими невероятными космическими открытиями

WFIRST – главная миссия НАСА на 2020-е года, и в данный момент её запуск назначен на 2024-й. Телескоп не будет крупным, инфракрасным, не будет покрывать что-то кроме того, что не может сделать Хаббл. Он просто будет делать это лучше и быстрее. Насколько лучше? Хаббл, изучая определённый участок неба, собирает свет со всего поля зрения, и способен фотографировать туманности, планетные системы, галактики, скопления галактик, просто собирая много изображений и сшивая их вместе. WFIRST будет делать то же самое, но с полем зрения в 100 раз больше. Иначе говоря, всё, что может делать Хаббл, WFIRST сможет сделать в 100 раз быстрее. Если мы возьмём те же наблюдения, что были сделаны во время эксперимента Hubble eXtreme Deep Field, когда Хаббл наблюдал за одним и тем же участком неба 23 дня и обнаружил там 5500 галактик, то WFIRST нашёл бы за это время больше полумиллиона.


Изображение с эксперимента Hubble eXtreme Deep Field, глубочайшего из наших наблюдений Вселенной на сегодня

Но нас больше всего интересуют не те, известные нам вещи, которые мы откроем при помощи двух этих прекрасных обсерваторий, а те, о которых мы пока ничего не знаем! Главное, что нужно для ожидания этих открытий – хорошее воображение, представление о том, что мы можем ещё найти, и понимание технической чувствительности этих телескопов. Для того, чтобы Вселенная произвела революцию в нашем мышлении, вовсе необязательно, чтобы открытые нами сведения радикально отличались от известных нам. И вот семь кандидатов на то, что могут открыть Джеймс Уэбб и WFIRST!


Сравнение размеров недавно открытых планет, вращающихся вокруг тусклой красной звезды TRAPPIST-1 с галилеевыми спутниками Юпитера и внутренней Солнечной системы. Все планеты, найденные у TRAPPIST-1, размерами схожи с Землёй, но звезда по размеру лишь приближается к Юпитеру.

1) Богатая кислородом атмосфера в потенциально обитаемом мире земного размера. Год назад поиск миров земного размера в обитаемых зонах солнцеподобных звёзд был на пике. Но открытие Проксимы b, и семи миров земного размера вокруг TRAPPIST-1, миры земного размера, вращающиеся вокруг небольших красных карликов, породили бурю острых разногласий. Если эти миры обитаемые, и если у них есть атмосфера, то сравнительно большой размер Земли по сравнению с размером их звёзд говорит о том, что во время транзита мы сможем измерить содержание их атмосферы! Поглощающий эффект молекул – диоксида углерода, метана и кислорода – может дать первые непрямые свидетельства наличия жизни. Джеймс Уэбб сможет увидеть это, и результаты могут потрясти мир!


Сценарий Большого разрыва разыграется, если мы обнаружим увеличение силы тёмной энергии во времени

2) Свидетельство непостоянности тёмной энергии и возможное наступление Большого разрыва. Одна из главных научных целей WFIRST – наблюдать за звёздами на очень больших расстояниях в поисках сверхновых типа Ia. Эти же события позволили нам открыть тёмную энергию, но вместо десятков или сотен он будет собирать информацию о тысячах событий, расположенных на огромных расстояниях. И он позволит нам измерить не только скорость расширения Вселенной но и изменение этой скорости во времени, с точностью, в десять раз превышающей сегодняшнюю. Если тёмная энергия отличается от космологической константы хотя бы на 1%, мы её найдём. А если она всего на 1% больше по модулю, чем отрицательное давление космологической константы, наша Вселенная закончится Большим разрывом. Это точно станет сюрпризом, но Вселенная у нас одна, и нам пристало слушать, что она готова сообщить о себе.


Самая удалённая из известных на сегодня галактик, подтверждённая Хабблом посредством спектроскопии, видна нам такой, какой она была, когда Вселенной было всего 407 млн лет

3) Звёзды и галактики с более ранних времён, чем предсказывают наши теории. Джеймс Уэбб своими инфракрасными глазами сможет заглянуть в прошлое, когда Вселенной было 200-275 млн лет – всего 2% от её текущего возраста. Это должно захватить большую часть первых галактик и поздний этап формирования первых звёзд, но мы можем найти и свидетельства того, что предыдущие поколения звёзд и галактик существовали ещё раньше. Если выйдет так, то это будет значить, что гравитационный рост со времени появления реликтового излучения (380 000 лет) до формирования первых звёзд проходил как-то не так. Это однозначно будет интересная проблема!


Ядро галактики NGC 4261, как и ядра огромного числа галактик, демонстрирует признаки наличия сверхмассивной чёрной дыры, как в инфракрасном, так и в рентгеновском диапазонах

4) Сверхмассивные чёрные дыры, появившиеся до первых галактик. До самых отдалённых моментов прошлого, которые нам удалось измерить, до тех времён, когда Вселенной было порядка миллиарда лет, галактики содержат в себе сверхмассивные чёрные дыры. Стандартная теория говорит о том, что эти чёрные дыры зародились из первых поколений звёзд, сливавшихся вместе и падавших в центр скоплений, а затем накопивших материю и превратившихся в сверхмассивные ЧД. Стандартная надежда состоит в том, чтобы найти подтверждения этой схеме, и находящиеся на ранних стадиях роста чёрные дыры, но неожиданностью будет, если мы найдём их уже полностью сформированными в этих очень ранних галактиках. Джеймс Уэбб и WFIRST смогут пролить свет на эти объекты, и обнаружение их в любом виде станет серьёзным научным прорывом!


Обнаруженные Кеплером планеты, отсортированные по размеру, по состоянию на май 2016 года, когда выпустили крупнейшую выборку новых экзопланет. Чаще всего встречаются миры чуть больше Земли и чуть меньше Нептуна, но миры малой массы просто могут быть не видны для Кеплера

5) Экзопланеты малой массы, всего 10% от земной, могут быть самыми распространёнными. Это специальность WFIRST: поиск микролинзирования на больших участков неба. Когда звезда проходит перед другой звездой, с нашей точки зрения, искривление пространства порождает увеличивающий эффект, с предсказуемым увеличением и последующим уменьшением яркости. Наличие планет в системе, находившейся на переднем плане, изменит световой сигнал и позволит нам распознать их с улучшенной точностью, распознающей массы меньшие, чем это может сделать любой другой из методов. При помощи WFIRST мы прозондируем все планеты вплоть до массы, составляющей 10% от земной – планеты размером с Марс. Чаще ли встречаются марсоподобные миры, чем землеподобные? WFIRST может помочь нам это выяснить!


Иллюстрация CR7, первой из обнаруженных галактик, содержащих звёзды населения III, первые из звёзд во Вселенной. Джеймс Уэбб может сделать реальную фотографию этой и других таких галактик

6) Первые звёзды могут оказаться более массивными, чем те, что существуют сейчас. Изучая первые звёзды, мы уже знаем, что они сильно отличаются от нынешних: они почти на 100% состояли из чистых водорода и гелия, без иных элементов. Но иные элементы играют важную роль в охлаждении, излучении и предотвращении появления слишком крупных звёзд на ранних этапах. Крупнейшая из известных сегодня звёзд находится в туманности Тарантул , и по массе превышает Солнце в 260 раз. Но в ранней Вселенной могли встречаться звёзды в 300, 500 и даже 1000 раз тяжелее Солнца! Джеймс Уэбб должен дать нам возможность это выяснить, и может рассказать нам что-нибудь удивительное по поводу самых ранних звёзд Вселенной.


Истечение газа в карликовых галактиках происходит во время активного формирования звёзд, из-за чего обычная материя улетает, а тёмная – остаётся

7) Тёмная материя может не так сильно доминировать в первых галактиках, как в сегодняшних. Мы, вероятно, наконец, сможем измерить галактики в отдалённых частях Вселенной и определить, меняется ли соотношение обычной материи и тёмной. При интенсивном формировании новых звёзд из галактики утекает обычная материя, если только галактика не очень крупная – а значит, в ранних, тусклых галактиках, должно быть больше нормальной материи по отношению к тёмной, чем в тусклых галактиках, находящихся недалеко от нас. Такое наблюдение подтвердит текущее представление о тёмной материи и ударит по теориям модифицированной гравитации; противоположное наблюдение может опровергнуть теорию тёмной материи. Джеймс Уэбб сможет с этим справиться, но по-настоящему всё прояснит накопленная статистика наблюдений WFIRST.


Представление художника о том, как может выглядеть Вселенная при формировании первых звёзд

Всё это – лишь возможности, и таких возможностей слишком много, чтобы их можно было тут перечислить. Весь смысл наблюдений, накопления данных и проведения научных изысканий состоит в том, что мы не знаем, как устроена Вселенная, пока не зададим правильные вопросы, которые помогут нам это выяснить. Джеймс Уэбб сконцентрируется на четырёх главных вопросах: первый свет и реионизация , сбор и рост галактик, рождение звёзд и формирование планет, а также поиск планет и происхождения жизни. WFIRST сконцентрируется на тёмной энергии, сверхновых, барионных акустических осцилляциях , экзопланетах – как с микролинзированием, так и с прямым наблюдением, и на наблюдениях за крупными участками неба в близком к инфракрасному диапазоне, которые сильно превзойдут возможности таких предыдущих обсерваторий, как 2MASS и WISE.


Инфракрасная карта всего неба, полученная космическим аппаратом WISE. WFIRST серьёзно превзойдёт пространственное разрешение и глубину резкости, доступные для WISE, что позволит нам заглянуть глубже и дальше

Мы потрясающе хорошо понимаем сегодняшнюю Вселенную, но вопросы, ответы на которые получат James Webb и WFIRST, задаются только сегодня, на основании уже изученного нами. Может оказаться, что на всех этих фронтах не окажется никаких сюрпризов, но более вероятно то, что мы не только обнаружим сюрпризы, но и то, что наши догадки об их природе окажутся совершенно неверными. Часть научного интереса состоит в том, что ты никогда не знаешь, когда или как Вселенная удивит тебя, открыв нечто новое. А когда она это делает, наступает величайшая возможность всего передового человечества: она позволяет нам узнать что-то совершенно новое, и меняет то, как мы понимаем нашу физическую реальность.

  • вселенная
  • Добавить метки

    Астрофизика достигла впечатляющих успехов в объяснении жизни и смерти звезд. Однако продолжаются проверка и уточнение теории звездной эволюции. Самое многообещающее научное направление в этой области - астросейсмология. Она исследует внутреннее строение звезд по дрожанию газа на поверхности этих гигантских плазменных шаров, иногда довольно сильному, но чаще едва уловимому.

    Теорию звездной эволюции можно считать вершиной развития современной астрофизики. Опираясь на предположение о термоядерном источнике энергии звезд, она уверенно описывает тончайшие нюансы их судеб. И все же червь сомнения точит некоторых исследователей. Ведь мы видим только тонкий поверхностный слой звезды, и никто никогда непосредственно не наблюдал, как в сердце звезды водород превращается в гелий.

    Шанс заглянуть в звездные недра дала возникшая в 1960-х годах нейтринная астрономия. Благодаря высочайшей проникающей способности рождающиеся в термоядерных реакциях нейтрино беспрепятственно покидают солнечное ядро, неся информацию о протекающих там процессах. Открывался путь подтверждения термоядерной гипотезы прямыми наблюдениями. Однако регистрируемый поток нейтрино оказался в несколько раз ниже, чем предсказывала «стандартная» модель Солнца. На решение «проблемы солнечных нейтрино» ушло больше 30 лет. И только в начале XXI века было экспериментально доказано, что на пути к Земле нейтрино постоянно перескакивают между тремя состояниями, а первые нейтринные телескопы регистрировали только одно из них. Проблема успешно разрешилась, но получилось так, что вместо уточнения представлений об источниках звездной энергии, нейтринные телескопы уточнили свойства самих нейтрино.

    Все это лишь усилило желание астрономов проникнуть в тайну звездных недр. Тем более что там помимо термоядерных реакций идут и другие интересные процессы, например вращение и конвективное перемешивание огромных масс вещества. Эти глубинные движения тесно связаны с генерацией магнитного поля, которое на Солнце служит главным источником поверхностной активности: вспышек, протуберанцев, корональных выбросов, непосредственно затрагивающих наши земные интересы. Но как проникнуть внутрь раскаленного плазменного шара и узнать, что происходит пусть даже не в ядре, а хотя бы на относительно небольшой глубине?

    Дыхание цефеид

    На первый взгляд эта задача кажется неразрешимой. Между тем методику исследования недоступных недр ученые применяют уже более столетия. Правда, ученые эти не астрономы, а геологи. Они наблюдают за сейсмическими волнами - колебаниями, которые распространяются в теле нашей планеты после естественных или искусственных встрясок. Скорость волн зависит от параметров среды. Систематически наблюдая за ними, можно построить карту распределения различных пород в земных недрах, которые, несмотря на относительную близость, столь же недоступны для непосредственного исследования, как и недра Солнца. Но раз уж твердая Земля буквально шевелится у нас под ногами, не может ли что-то подобное происходить с плазменными шарами - звездами?

    В 1894 году российский астроном Аристарх Белопольский изучал знаменитую звезду дельту Цефея, ту самую, по которой назван целый класс переменных звезд - цефеид. Оказалось, что синхронно с изменениями блеска меняется и положение линий в спектре звезды. Этот сдвиг естественно было объяснить эффектом Доплера: когда источник излучения приближается к нам, линии в его спектре «съезжают» в синюю сторону, а когда удаляется - в красную. Белопольский предположил, что цефеиды - это двойные звезды, у которых переменность блеска связана с периодическими взаимными затмениями, а переменность скорости вдоль луча зрения - с орбитальным движением звезд пары. Однако физик Николай Умов, который был оппонентом Белопольского на защите его диссертации, тогда же высказал мысль, что на самом деле движется не вся звезда, а только ее внешние слои.

    Догадка Умова блестяще подтвердилась благодаря исследованиям английского астрофизика Артура Эддингтона, а в 1958 году советский физик Сергей Жевакин построил теорию пульсации цефеид. Они действительно «дышат»: расширяются и сжимаются со скоростями, достигающими десятков километров в секунду. Так что дельту Цефея можно считать самым первым объектом, исследованным методами астросейсмологии. Самым первым, но не самым интересным. Дело в том, что пульсации цефеидного типа охватывают лишь незначительную часть массы звезды и для детального ее изучения не годятся. Да и возникают они только в звездах с подходящими параметрами (температурой, плотностью, химическим составом), в которых из любого случайного возмущения развиваются устойчивые автоколебания. Но к чему приведет такое же случайное возмущение в звезде с «неподходящими» параметрами, не способной к пульсации цефеидного типа?

    По такой звезде от места возмущения побежит во все стороны волна, часть которой уйдет вглубь звезды, часть пойдет наружу, отразится от поверхности звезды и снова устремится внутрь, пересечет звезду насквозь, опять отразится, смешается с волнами от других возмущений. А возмущений таких много: от конвективных течений, от вспышек на поверхности... В результате вся звезда гудит, подрагивает и становится желанным объектом для сейсмического исследования!

    Моды солнечной ряби

    На некоторое подрагивание спектральных линий Солнца еще в 1913 году обратил внимание канадский астроном Джон Пласкетт. Однако настоящая история сейсмических исследований дневного светила началась в 1962 году, когда выяснилось, что линии не просто подрагивают, а испытывают колебания с периодом около пяти минут и амплитудой, соответствующей разбросу скоростей в несколько сотен метров в секунду. То есть по поверхности Солнца постоянно гуляют волны высотой в десятки километров. Некоторое время им не придавали большого значения, считая локальным явлением, сопровождающим выход к поверхности конвективных потоков. Но к началу 1970-х годов появились детальные модели внутреннего строения Солнца, благодаря которым удалось увидеть (или услышать?) в этих колебаниях отзвуки глобальной вибрации солнечного вещества. Точнее, пятиминутные осцилляции оказались результатом сложения отдельных волн, или колебательных мод, полное число которых в спектре солнечных пульсаций составляет порядка 10 миллионов. Это акустические колебания, то есть обычные звуковые волны, представляющие собой уплотнения газовой среды. Амплитуды отдельных мод крайне малы, но, складываясь, они могут взаимно значительно усиливать друг друга.

    Акустические пульсации разделяются на радиальные, при которых меняется объем Солнца, и нерадиальные, порождающие волны на его поверхности. Радиальные пульсации родственны колебаниям цефеид. Они вызываются волнами, которые уходят вертикально вниз, проходят через центр Солнца, доходят до другой его стороны, отражаются от нее, снова проходят через центр и так далее. Тонкость, однако, в том, что цефеиды (да и то не все) колеблются в так называемой фундаментальной моде, то есть раздуваются и сжимаются как целое, а «спокойные» звезды вроде Солнца при таких же пульсациях разделяются по радиусу на множество слоев, в которых сжатие и расширение чередуются: колебания происходят в обертонах.

    Сложнее обстоит дело с нерадиальными пульсациями - тут уже речь идет о движении отдельных «пятен» на поверхности Солнца. Они связаны с волнами, которые ушли вниз не вертикально, а под углом. Из-за того что в недрах меняется скорость звука, такие волны, достигнув некоторой глубины, разворачиваются и возвращаются к поверхности звезды недалеко от исходной точки. Там волна снова отражается и описывает внутри Солнца очередную дугу. Чем сильнее исходная волна отклонилась от вертикали, тем меньше глубина ее погружения, чаще возвраты к поверхности и мельче вызываемая ею «рябь» на поверхности Солнца.

    Непрерывно следя за этой рябью, можно построить спектр акустических колебаний Солнца и сравнить его с предсказаниями различных теоретических моделей внутреннего строения нашего светила. Причем неглубокие моды «прочесывают» приповерхностные слои, а радиальные и близкие к ним колебания несут информацию не только об условиях в ядре Солнца, но и о событиях на его противоположной стороне. Благодаря этому удается фиксировать активные области до того, как они выйдут из-за края солнечного лимба, а также следить за ними уже после того, как они скроются из виду.

    Анатомия солнечного вихря

    За последние 30 лет гелиосейсмологи смогли получить детальные сведения о распределении плотности, температуры и содержании гелия в солнечных недрах. Содержание гелия характеризует степень переработки водородного топлива солнечным термоядерным реактором. По нему можно оценить, что возраст нашего светила составляет 4,65 миллиарда лет. Это прекрасно согласуется с данными о возрасте Земли, которые получены совершенно независимым методом - по распаду радиоактивных элементов. Одним из первых результатов телескопических наблюдений, сделанных еще в XVII веке, стало определение скорости вращения Солнца по движению пятен на его поверхности. Экваториальные области делают оборот за 25 суток. С ростом широты период увеличивается, достигая у полюсов 38 суток. Но о том, как вращается Солнце внутри, до появления гелиосейсмологии можно было только догадываться. Теперь же все стало ясно: движение вещества в солнечных недрах сносит (икажает) проходящие по нему акустические волны, причем по-разному на различных расстояниях до центра. И в общей картине колебаний на поверхности Солнца появляются дополнительные частоты, по которым и определяется скорость вращения на глубине, куда проникает соответствующая мода.

    Так, например, оказалось, что быстрее всего вращается вещество на глубине нескольких десятков тысяч километров под экватором. В конвективной зоне Солнца, где энергия выносится наверх за счет перемешивания газа, вращение носит сложный характер: с глубиной угловая скорость на экваторе убывает, а вблизи полюсов растет. Ядро Солнца вращается как твердое тело, то есть в нем угловая скорость от расстояния до центра уже не зависит. А на расстоянии в 500 тысяч километров от центра расположен узкий слой - тахоклин, исполняющий роль смазки между ядром и нижней границей конвективной зоны. Предполагается, что именно он отвечает за магнитную активность Солнца.

    О вращении вещества в самом центре Солнца, в радиусе менее 200 тысяч километров, пока толком сказать нечего. Акустические моды здесь мало что могут подсказать, и потому большие надежды возлагаются на еще один вид колебаний - так называемые гравитационные моды. В них роль движущей силы играет не давление, как в акустических модах, а подъем и опускание вещества в поле тяготения ядра звезды. В отличие от акустических мод, сосредоточенных в основном у поверхности, гравитационные моды «играют» в центре. Именно в них зашифрованы тайны солнечного ядра. К сожалению, с приближением к поверхности они быстро затухают. На сегодня есть лишь одно наблюдение, в котором их как будто удалось зафиксировать, и из него следует, что внутреннее ядро Солнца вращается чуть ли не в пять раз быстрее внешнего ядра. Но эти результаты еще нуждаются в дополнительной проверке.

    Спасибо экзопланетчикам

    Солнце, при всей его важности для нас, - лишь одна звезда, одна точка на графике. Для общей проверки теории звездной эволюции этого явно недостаточно. Однако изучение колебаний других звезд - очень сложная задача. На Солнце максимальная амплитуда колебаний скорости в одной моде составляет 15-20 см/с. Измерить столь крохотные сдвиги линий можно пока лишь в спектрах ближайших (и потому ярких) звезд, да и то при использовании лучших спектрографов. Впрочем, иногда можно обойтись и без спектров. Пульсации звезды сопровождаются не только «пляской» спектральных линий, но и небольшими вариациями блеска. Главенствующую роль в астросейсмологии играют частоты пульсаций, и порой не так важно, по какому именно наблюдаемому параметру звезды они определены. Поэтому вместо трудоемкой спектроскопии в некоторых случаях можно проводить более экономичную фотометрию, то есть вместо измерения отдельных линий в спектре контролировать лишь общую яркость звезды. Правда, и это нелегкая задача, так как колебания блеска очень малы - 0,1% и меньше, а значит, нужны очень чувствительные приемники излучения.

    К счастью, таких чувствительных приборов в последнее время становится все больше - они требуются для бурно развивающихся исследований планет, находящихся вне Солнечной системы (их тоже обнаруживают по небольшим колебаниям спектральных линий и блеска звезд). И хотя «общественную» славу таким приборам, как спектрографы HARPS (Европейская южная обсерватория, Чили) и HIRES (Обсерватория им. Кека, Гавайские о-ва, США) или космические фотометрические телескопы COROT и «Кеплер», принесли обнаруженные с их помощью экзопланеты, для специалистов не менее, а может быть, и более важен вклад этих инструментов в астросейсмические исследования. Так что неслучайно пульсации солнечного типа у другой звезды (субгиганта эты Волопаса) были впервые достоверно зарегистрированы в 1995 году - почти одновременно с открытием первой экзопланеты. Сегодня подобные пульсации зафиксированы уже у двух десятков звезд. Особенно важны астросейсмические наблюдения для исследования конвекции в звездах. В теории этого процесса есть пробелы, и в компьютерных моделях звезд его приходится запускать, так сказать, «руками», искусственно задавая параметры конвекции. Это, конечно, не лучший способ учитывать действие механизма, который «управляет» магнитным полем солнцеподобных звезд, а на более поздних стадиях эволюции полностью меняет их физическую и химическую структуру. Астросейсмология уже позволила приблизительно определять характер конвекции для одной разновидности голубых гигантов, которые в 10 раз массивнее и в тысячи раз ярче Солнца. Физическая основа возбуждения колебаний у этих звезд не солнечная, а примерно такая же, как у цефеид. У этих звезд также удалось определить зависимость скорости вращения от радиуса. Как и у Солнца, ядро у них вращается в несколько раз быстрее слоев, лежащих ближе к поверхности.

    Для обычных солнцеподобных звезд при помощи астросейсмологии удается пока измерить только базовые параметры - массу, радиус, возраст. Но в действительности и это очень много, ведь речь идет о характеристиках одиночных, то есть не входящих в двойные системы звезд, с которых прежде никакими способами нельзя было снять «мерку».

    Астросейсмические наблюдения не ограничиваются солнцеподобными звездами. Очень интересными обещают стать исследования пульсаций в бывших звездных ядрах - центральных звездах планетарных туманностей и белых карликах. В этих объектах недра могут находиться не просто в твердом, но даже в кристаллическом состоянии. И здесь астросейсмология открывает возможности для тестирования не только теории звездной эволюции, но и более общих разделов физики, описывающих свойства вещества в экстремальных состояниях.

    Дело о пропавших элементах

    На сегодня большая часть наблюдений звездных осцилляций хорошо согласуется с теорией строения и эволюции звезд. Но это, конечно, не означает, что в будущем нас не поджидают сюрпризы. В качестве примера можно привести наблюдения Проциона - альфы Малого Пса. Эта звезда, одна из самых ярких на земном небе, стала в 1991 году первой, у которой обнаружились признаки пульсаций солнечного типа (хотя и не сами пульсации). На протяжении следующих 10 лет Процион неоднократно наблюдался, его пульсации были сначала просто подтверждены, а потом и подробно изучены. В 2003 году он стал первой звездой в списке целей для космического астросейсмологического телескопа MOST. Наблюдатели непрерывно следили за Проционом в течение месяца... и никаких пульсаций не обнаружили. Лишь после организации дополнительной наблюдательной кампании с участием многих наземных телескопов было окончательно доказано, что Процион действительно пульсирует, но по каким-то причинам колебания в нем затухают гораздо быстрее, чем на Солнце. В результате их спектр усложняется, и для его наблюдений требуется гораздо больше усилий.

    Есть и еще одно темное облачко на чистом и ясном небосклоне гелиосейсмологии. Высококачественные спектры Солнца, полученные несколько лет назад, как будто бы указывают, что на Солнце гораздо меньше тяжелых элементов, чем принято думать. Если до 2005 года считалось, что суммарная масса углерода, азота, кислорода, неона и прочих более тяжелых элементов составляет примерно 2,7% от массы водорода, то теперь эта оценка сократилась до 1,6%. Казалось бы, какая разница, сколько там этих примесей: полтора процента или три? Однако в моделях Солнца с «новым» химическим составом нижняя граница конвективной зоны поднимается с 500 тысяч километров от центра звезды до 510 тысяч. Разница составляет около 1,5% от солнечного радиуса, но она приводит к полному рассогласованию с гелиосейсмическими данными. С 2005 года и по настоящее время не прекращаются попытки помирить гелиосейсмологию со спектроскопией, но результата они пока не принесли. Впрочем, сама величина этого рассогласования дает представление о том, на каком уровне точности происходит сейчас изучение строения Солнца.

    Несмотря на эти проблемы, а в чем-то и благодаря им, астросейсмология сейчас находится на подъеме. Практически ни одна крупная астрономическая конференция не обходится без астросейсмологической секции. У астросейсмологов есть свой научный журнал (Communications in Asteroseismology), свои космические телескопы, свои наземные наблюдательные сети. В астросейсмологии особенно наглядным становится истинно глобальный характер современной астрономии. Для надежного определения частот звездных колебаний необходимы многочасовые и даже многодневные сеансы наблюдений, что невозможно без согласованного использования телескопов, разбросанных по всему земному шару. Сейчас такие наблюдения проводятся при помощи консорциума Всеземного телескопа (Whole Earth Telescope), объединяющего телескопы «общего пользования» двух десятков обсерваторий. В России в его работе принимают участие телескопы обсерватории на пике Терскол (Кавказ). В ходе тщательно спланированной кампании при любой возможности проводятся наблюдения одного и того же объекта, которые затем «сшиваются» в один наблюдательный ряд. В разработке находятся планы создания специализированной сети телескопов SONG, которая будет состоять из восьми инструментов, по четыре в каждом полушарии. Подобная сеть для наблюдений Солнца (GONG) уже создана и активно работает.

    Чрезвычайно перспективна Антарктида, где наилучшие на Земле условия для длительных астрономических наблюдений. К ней давно уже присматриваются не только астросейсмологи, но и представители других отраслей астрономии. В Европе есть проект установки 40-сантиметрового астросейсмографа SIAMOIS на франко-итальянской станции Конкордия.

    Так что перспективы у гелио- и астросейсмологии самые радужные. Первую вдохновляют практические нужды, связанные с интересом к природе солнечной активности, вторую - стремление осуществить мечту одного из основоположников теории звездной эволюции, Артура Эддингтона, и понять, наконец, «такую простую вещь, как звезда».

    > Из чего состоит Солнце

    Узнайте, из чего состоит Солнце : описание структуры и состава звезды, перечисление химических элементов, количество и характеристика слоев с фото, диаграмма.

    С Земли, Солнце выглядит как гладкий огненный шар, и до открытия комическим кораблём Galileo пятен на Солнце, многие астрономы считали, что оно идеальной формы без дефектов. Теперь мы знаем, что Солнце состоит из нескольких слоёв, как и Земля, каждый из которых выполняет свою функцию. Эта структура Солнца, похожая на массивную печь, является поставщиком всей энергии на Земле, необходимой для земной жизни.

    Из каких элементов состоит Солнце?

    Если бы у вас получилось разложить звезду на части, и сравнить составные элементы, вы бы поняли, что состав представляет собою 74% водорода и 24% гелия. Также, Солнце состоит из 1% кислорода, и оставшийся 1% - это такие химические элементы таблицы Менделеева, как хром, кальций, неон, углерод, магний, сера, кремний, никель, железо. Астрономы полагают, что элемент тяжелее гелия – это металл.

    Как появились все эти элементы Солнца? В результате Большого Взрыва появились водород и гелий. В начале становления Вселенной, первый элемент, водород, появился из элементарных частиц. Из-за большой температуры и давления условия во Вселенной были как в ядре звезды. Позже, водород синтезировался в гелий, пока во Вселенной была высокая температура, необходимая для протекания реакции синтеза. Существующие пропорции водорода и гелия, которые есть во Вселенной сейчас, сложились после Большого Взрыва и не изменялись.

    Остальные элементы Солнца созданы в других звездах. В ядрах звезд постоянно происходит процесс синтеза водорода в гелий. После выработки всего кислорода в ядре, они переходят на ядерный синтез более тяжелых элементов, таких как литий, кислород, гелий. Многие тяжелые металлы, которые есть в Солнце, образовывались и в других звездах в конце их жизни.

    Образование самых тяжелых элементов, золота и урана, происходило, когда звезды, во много раз больше нашего Солнца, детонировали. За доли секунды образования черной дыры, элементы сталкивались на большой скорости и образовывались самые тяжелые элементы. Взрыв раскидал эти элементы по всей Вселенной, где они помогли образоваться новым звездам.

    Наше Солнце собрало в себя элементы, созданные Большим Взрывом, элементы от умирающих звезд и частицы появившихся в результате новых детонаций звезд.

    Из каких слоев состоит Солнце

    На первый взгляд, Солнце - просто шар, состоящий из гелия и водорода, но при более глубоком изучении видно, что оно состоит из разных слоев. При движении к ядру, температура и давление увеличиваются, в результате этого были созданы слои, так как при различных условиях водород и гелий имеют разные характеристики.

    Солнечное ядро

    Начнем наше движение по слоям от ядра к наружному слою состава Солнца. Во внутреннем слое Солнца – ядре, температура и давление очень высокие, способствующие для протекания ядерного синтеза. Солнце создает из водорода атомы гелия, в результате этой реакции образуется свет и тепло, которые доходят до . Принято считать, что температура на Солнце около 13,600,000 градусов по Кельвину, а плотность ядра в 150 раз выше плотности воды.

    Ученые и астрономы считают, что ядро Солнца достигает около 20% длины солнечного радиуса. И внутри ядра, высокая температура и давление способствуют разрыву атомов водорода на протоны, нейтроны и электроны. Солнце преобразовывает их в атомы гелия, не смотря на их свободно плавающее состояние.

    Такая реакция называется экзотермической. При протекании этой реакции выделяется большое количество тепла, равное 389 х 10 31 дж. в секунду.

    Радиационная зона Солнца

    Эта зона берет свое начало у границы ядра (20% солнечного радиуса), и достигает длины до 70% радиуса Солнца. Внутри этой зоны находится солнечное вещество, которое по своему составу достаточно плотное и горячее, поэтому тепловое излучение проходит через него, не теряя тепло.

    Внутри солнечного ядра протекает реакция ядерного синтеза – создание атомов гелия в результате слияния протонов. В результате этой реакции происходит большое количество гамма-излучения. В данном процессе испускаются фотоны энергии, затем поглощаются в радиационной зоне и испускаются различными частицами вновь.

    Траекторию движения фотона принято называть «случайным блужданием». Вместо движения по прямой траектории к поверхности Солнца, фотон движется зигзагообразно. В итоге, каждому фотону необходимо примерно 200.000 лет для преодоления радиационной зоны Солнца. При переходе от одной частицы к другой частице происходит потеря энергии фотоном. Для Земли это хорошо, ведь мы бы могли получать лишь гамма-излучение, идущее от Солнца. Фотону, попавшему в космос необходимо 8 минут для путешествия к Земле.

    Большое количество звезд имеют радиационные зоны, и их размеры напрямую зависит от масштаба звезды. Чем меньше звезда, тем меньше будут зоны, большую часть которой будет занимать конвективная зона. У самых маленьких звезд могут отсутствовать радиационные зоны, а конвективная зона будет достигать расстояние до ядра. У самых больших звезд ситуация противоположная, радиационная зона простирается до поверхности.

    Конвективная зона

    Конвективная зона находится снаружи радиационной зоны, где внутреннее тепло Солнца перетекает по столбам горячего газа.

    Почти все звезды имеют такую зону. У нашего Солнца она простирается от 70% радиуса Солнца до поверхности (фотосферы). Газ в глубине звезды, у самого ядра, нагреваясь, поднимается на поверхность, как пузырьки воска в лампадке. При достижении поверхности звезды, происходит потеря тепла, при охлаждении газ обратно погружается к центру, за возобновлением тепловой энергии. Как пример, можно привезти, кастрюля с кипящей водой на огне.

    Поверхность Солнца похожа на рыхлую почву. Эти неровности и есть столбы горячего газа, несущие тепло к поверхности Солнца. Их ширина достигает 1000 км, а время рассеивания достигает 8-20 минут.

    Астрономы считают, что звезды маленькой массы, такие как красные карлики, имеющие только конвективную зону, которая простирается до ядра. У них отсутствует радиационная зона, что нельзя сказать о Солнце.

    Фотосфера

    Единственный видимый с Земли слой Солнца – . Ниже этого слоя, Солнце становится непрозрачным, и астрономы используют другие методы для изучения внутренней части нашей звезды. Температуры поверхности достигает 6000 Кельвин, светится желто-белым цветом, видимым с Земли.

    Атмосфера Солнца находится за фотосферой. Та часть Солнца, которая видна во время солнечного затмения, называется .

    Строение Солнца в диаграмме

    NASA специально разработало для образовательных потребностей схематическое изображение строения и состава Солнца с указанием температуры для каждого слоя:

    • (Visible, IR and UV radiation) – это видимое излучение, инфракрасное излучение и ультрафиолетовое излучение. Видимое излучение – это свет, которые мы видим приходящим от Солнца. Инфракрасное излучение – это тепло, которое мы ощущаем. Ультрафиолетовое излучение – это излучение, дающее нам загар. Солнце производит эти излучения одновременно.
    • (Photosphere 6000 K) – Фотосфера – это верхний слой Солнца, поверхность его. Температура 6000 Кельвин равна 5700 градусов Цельсия.
    • Radio emissions (пер. Радио эмиссия) – Помимо видимого излучения, инфракрасного излучения и ультрафиолетового излучения, Солнце отправляет радио эмиссию, которую астрономы обнаружили с помощью радиотелескопа. В зависимости от количества пятен на Солнце, эта эмиссия возрастает и снижается.
    • Coronal Hole (пер. Корональная дыра) – Это места на Солнце, где корона имеет небольшую плотность плазмы, в результате она темнее и холоднее.
    • 2100000 К (2100000 Кельвин) – Радиационная зона Солнца имеет такую температуру.
    • Convective zone/Turbulent convection (пер. Конвективная зона/Турбулентная конвекция) – Это места на Солнце, где тепловая энергия ядра передается с помощью конвекции. Столбы плазмы доходят до поверхности, отдают своё тепло, и вновь устремляются вниз, чтоб вновь нагреться.
    • Coronal loops (пер. Корональные петли) – петли, состоящие из плазмы, в атмосфере Солнца, движущиеся по магнитным линиям. Они похожи на огромные арки, простирающиеся от поверхности на десятки тысяч километров.
    • Core (пер. Ядро) – это солнечное сердце, в котором происходит ядерный синтез, при помощи высокой температуры и давления. Вся солнечная энергия происходит из ядра.
    • 14,500,000 К (пер. 14,500,000 Кельвин) – Температура солнечного ядра.
    • Radiative Zone (пер. Радиационная зона) – Слой Солнца, где энергия передается при помощи радиации. Фотон преодолевает радиационную зону за 200.000 и выходит в открытый космос.
    • Neutrinos (пер. Нейтрино) – это ничтожно маленькие по массе частицы, исходящие из Солнца в результате реакции ядерного синтеза. Сотни тысяч нейтрино проходят через тело человека ежесекундно, но никакого вреда нам не приносят, мы их не чувствуем.
    • Chromospheric Flare (пер. Хромосферная вспышка) – Магнитное поле нашей звезды может закручиваться, а потом резко разрывается в различных формах. В результате разрывов магнитных полей появляются мощные рентгеновские вспышки, исходящие из поверхности Солнца.
    • Magnetic Field Loop (пер. Петля магнитного поля) – Магнитное поле Солнца находится над фотосферой, и видно, так как раскаленная плазма движется по магнитным линиям в атмосфере Солнца.
    • Spot– A sunspot (пер. Солнечные пятна) – Это места на поверхности Солнца, где магнитные поля проходят через поверхность Солнца, и на них температура ниже, часто в виде петли.
    • Energetic particles (пер. Энергичные частицы) – Они исходят из поверхности Солнца, в результате создается солнечный ветер. В солнечных бурях их скорость достигает скорости света.
    • X-rays (пер. Рентгеновские лучи) – невидимые для глаза человека лучи, образующиеся во вспышек на Солнце.
    • Bright spots and short-lived magnetic regions (пер. Яркие пятна и недолгие магнитные регионы) – Из-за перепада температур на поверхности Солнца появляются яркие и тусклые пятна.

    Впервые астрономам удалось заглянуть в сердце взрывающейся звезды в последние минуты ее существования. Это смог сделать космический телескоп жесткого рентгеновского диапазона NuSTAR. Ему удалось сделать снимки радиоактивного титана в останках сверхновой Cassiopeia A, которые стали видны с Земли в тот момент, когда взорвалась звезда в 1671 году.

    Подобная работа – основная для миссии NuSTAR, запущенной в июне 2012 года для того, чтобы измерять жесткое рентген-излучение взрывающихся звезд, или сверхновых, и черных дыр, в том числе массивной черной дыры в центре Млечного Пути.

    На этой неделе ученые из команды NuSTAR опубликовали статью в журнале Nature. В статье говорится, что ученым удалось создать первую карту титана, исторгнутого из ядра звезды, взорвавшейся в 1671 году. В результате этого взрыва образовались останки сверхновой, известные как Cassiopeia A.

    Этот объект уже не раз удавалось запечатлеть на снимках различных телескопов, однако лишь на этом снимке можно разглядеть, как космические осколки сталкиваются с окружающим газом и пылью и нагревают их. Благодаря NuSTAR впервые удалось составить карту жесткого рентген-излучения вещества, созданного прямо в ядре взрывающейся звезды: радиоактивного изотопа титан-44, который сформировался в ядре звезды, когда она сжалась в нейтронную звезду или в черную дыру. Энергия, которая высвободилась в результате коллапса ядра сверхновой, «сорвала» внешние слои звезды, и осколки этого взрыва до сих пор летят со скоростью 5000 километров в секунду.

    Ученые надеются, что эта информация помоет астрономам построить трехмерные компьютерные модели взрывающихся звезд, и, в конце концов, понять некоторые загадочные характеристики сверхновых, - такие, как джеты вещества, которые испускают некоторые из них. Например, прежние наблюдения за Cassiopeia A с помощью рентген-телескопа Chandra (Чандра), позволили увидеть кремниевые джеты, которые испускает звезда.

    Cassiopeia A находится примерно в 11 000 световых лет от Земли и является одной из самых изученных останков сверхновой. Через 343 года после того, как взорвалась звезда, осколки взрыва распространились на почти 10 световых лет вокруг.

    В результате более ранних наблюдений за разогретым от ударной волны железом в осколках некоторые ученые пришли к выводу, что взрыв был одинаково мощным во всех направлениях – симметричным. Однако, последние данные говорят о том, что происхождение железа настолько туманно, что его распространение может и не совпадать с «рисунком» взрыва.

    Новая карта титана-44, которая не совпадает с распространением железа в останках, позволяет выдвинуть еще одну гипотезу – о том, что внутри существует холодное железо, которое не видит Chandra. Железо и титан формируются в одном и том же месте звезды, поэтому в осколках взрыва они должны распространяться похожим образом.

    В настоящее время NuSTAR продолжает наблюдать за излучением радиоактивного титана-44 из некоторых других останков сверхновых для того, чтобы определить, как развиваются события там. Эти останки сверхновых должны находиться достаточно близко к Земле, чтобы можно было увидеть структуру осколков, и в то же время быть достаточно молодыми, для того, чтобы радиоактивные элементы, такие, как титан, - все еще выделяли жесткое рентген-излучение.