Биография паули вольфганга.

(1900-1958) швейцарский физик-теоретик, основатель квантовой механики

Вольфганг Паули родился в Вене. Его отец, Йозеф Паули, был известным физиком и биохимиком, профессором Венского университета. Мать будущего ученого, Берта Паули, была известной писательницей и театральным критиком. Крестным отцом будущего ученого был знаменитый физик и философ Эрнст Мах.

В детстве Вольфганг Паули мечтал стать актером и много занимался музыкой вместе со своей младшей сестрой, которая впоследствии действительно избрала актерское поприще. Однако по совету учителей, заметивших математические способности мальчика, он поступает в Мюнхенский университет, где занимается в семинаре под руководством известного физика Арнольда Зоммерфельда. В 1921 году молодой человек закончил университет.

Но серьезно заниматься наукой Вольфганг Паули начал благодаря случаю. Знакомый Зоммерфельда профессор математики Феликс Клейн попросил того написать статью, посвященную теории относительности, для издававшейся в Германии математической энциклопедии. Из-за своей занятости Зоммерфельд поручил эту работу Паули.

Тот написал «статью» объемом в 250 страниц, которую Зоммерфельд отправил на рецензию Альберту Эйнштейну. После его положительного отзыва Паули защитил эту работу в качестве магистерской диссертации. Всего через год после этого он представил к защите докторскую диссертацию, после успешной защиты которой отправился в Гёттинген, где начал преподавательскую и научную деятельность.

Однако в Гёттингене Вольфганг Паули пробыл недолго. В 1922 году он переезжает в Копенгаген и поступает ассистентом к Нильсу Бору . Там молодой физик занялся изучением атомных спектров. Занимаясь их исследованием, Паули внес важные дополнения к теории атома, предложенной Н. Бором. В частности, он пришел к выводу, что правильнее говорить не об орбитах, по которым вращаются электроны вокруг атомного ядра, а об оболочках, которые они образуют вокруг него.

Кроме того, Вольфганг Паули показал, что в каждой такой оболочке может находиться строго определенное количество электронов.

После того как эта теоретическая модель была подтверждена работами Эрвина Шрёдингера, Вернера Гейзенберга и Поля Дирака, стало ясно, что работы Вольфганга Паули открыли новое направление в физике, которое было названо квантовой механикой, а важнейший квантовомеханический принцип получил название принципа Паули. Свои открытия молодой ученый сделал, будучи доцентом Гамбургского университета.

В 1928 году Вольфганг Паули покинул Германию и переехал в Швейцарию, где начал работать в Цюрихском технологическом институте. В 1930 году он опубликовал статью, в которой доказал, что при распаде атомного ядра, кроме электронов и нейтронов, должна возникать еще одна незарегистрированная частица. Данное открытие было подтверждено спустя годы, после ее открытия Энрико Ферми, который назвал ее нейтрино.

Годы Второй мировой войны Вольфганг Паули провел в США. Там он в 1945 году и узнал, что стал лауреатом Нобелевской премии по физике. Получив ее в 1946 году, Паули вновь вернулся в Швейцарию, где прожил до конца жизни.

Имея большие заслуги в области физики, он при этом пользовался репутацией человека, который приносит различные несчастья. Говорили, что стоило ему появиться в лаборатории, как там начинались всевозможные поломки и аварии.

Действительно, все знавшие Вольфганга Паули отмечали его редкостную неспособность сделать что-либо своими руками. Всеми делами в его доме заправляла его вторая жена, Франциска Бертран. Его ближайшим другом и партнером по отдыху был известный немецкий философ Карл Юнг.

Вольфганг Паули вошел в историю науки не только как теоретик, но и как мыслитель, стремившийся глубоко проникнуть в историю и философию научной мысли и опубликовавший ряд важнейших работ по этой проблематике.

Вольфганг Паули родился 25 апреля 1900 года в городе Вена, Австрия. Мальчик вырос в семье врача, профессора химии. Еще в средней школе проявил незаурядные математические способности и самостоятельно начал изучать высшую математику, поэтому сразу прочитал только что опубликованный труд Альберта Эйнштейна по теории относительности.

Первая работа Паули вышла в свет в 1918 году и посвящена математическим вопросам единой теории гравитации и электромагнетизма. В том же году поступил в Мюнхенский университет, где учился у известного физика Арнольда Зоммерфельда и по просьбе которого в 1920 году начал работать над статьей по теории относительности для «Энциклопедии математических наук».

Впоследствии эта статья многократно издавалась в виде книги, и ее переводы вышли во многих странах. В 1921 году защитив докторскую диссертацию, Паули отправился в Геттингенский университет, где работал под руководством «учителя гениев» Макса Борна на кафедре теоретической физики. Именно в эти годы в Геттингене родилась матричная формулировка квантовой механики и новая, статистическая ее интерпретация.

Работа под руководством известных ученых пробудила у Паули интерес к новой области физики, квантовой теории и ученый полностью погрузился в проблемы, встававшие перед физиками в этой области. Уже с университетских лет Вольфганг уделял большее внимание проблеме атомов и спектров, и в 1924 году эти исследования привели его к формулировке одного из важнейших законов физики микромира: к принципу, носящему его имя.

Принцип запрета Паули играет фундаментальную роль для понимания строения и поведения атомов, атомных ядер, свойств металлов и других физических явлений. Объясняет химическое взаимодействие элементов и их прежде непонятное расположение в периодической системе. Ученый использовал этот принцип для понимания магнитных свойств простых металлов и газов.

В последующие годы Паули преподавал в Копенгагене и Гамбурге, а в 1928 году занял пост профессора Высшего технического училища в Цюрихе, на котором оставался до конца жизни, за исключением нескольких лет, проведенных в США, когда читал лекции в Институте фундаментальных исследований в Принстоне и возглавлял кафедру теоретической физики.

В 1945 году Вольфганг Паули награжден Нобелевской премией по физике «за открытие принципа запрета». Также с его именем связано такое фундаментальное понятие, как спин элементарной частицы, а еще предсказал существование нейтрино.

Награды и Память о Вольфганге Паули

1931 - награжден медалью Лоренца.
1945 - Нобелевская премия по физике.
1950 - избран членом Американской академии искусств и наук.
1958 - награжден медалью Макса Планка.

Памятный знак в Геттингене

Именем Паули названы аллея в 14-м округе Вены и улица в университетском городке Цюриха.

В честь ученого в Геттингене установлен памятный знак.

В 1970 году Международный астрономический союз присвоил имя Паули кратеру на обратной стороне Луны.

Ежегодно в Высшей технической школе Цюриха проходит мемориальная лекция в память о Паули. В гамбургском университете имя Паули носит самый большой зал физического института.

Основные труды Вольфганга Паули

Релятивистская теория элементарных частиц. - М.: Иностранная литература, 1947. - 80 с.
Общие принципы волновой механики. - М.-Л.: Гостехиздат, 1947. - 332 с.
Мезонная теория ядерных сил. - М.: Иностранная литература, 1947. - 79 с.
Инвариантная регуляризация в релятивистской квантовой теории (совместно с Вилларсом) // Сдвиг уровней атомных электронов. - М.: Иностранная литература, 1950.
О математической структуре модели Ли (совместно с Челленом). Русский перевод // УФН. - 60. - 425 (1956).
Физические очерки: Сборник статей. - М.: Наука, 1975. - 256 с.
Труды по квантовой теории в двух томах.
Том 1. Квантовая теория. Общие принципы волновой механики. Статьи 1920-1928 / Под ред. Я. А. Смородинского. - М.: Наука, 1975. - (Серия «Классики науки»)
Том 2. Статьи 1928-1958 / Под ред. Я. А. Смородинского. - М.: Наука, 1977. - (Серия «Классики науки»)
Теория относительности. - 3-е изд., испр. - М.: Наука, 1991. - 328 с.

Австрийско-швейцарский физик Вольфганг Эрнст Паули родился в Вене. Его отец, Вольфганг Йозеф Паули, был известным физиком и биохимиком, профессором коллоидной химии в Венском университете. Его мать, Берта (в девичестве Шютц) Паули, была писательницей, связанной с венскими театральными и журналистскими кругами. Герта, младшая сестра П., стала актрисой и писательницей. Эрнст Мах, знаменитый физик и философ, был его крестным отцом. В средней школе в Вене П. проявил незаурядные математические способности, однако, находя классные занятия скучными, он переключился на самостоятельное изучение высшей математики и поэтому сразу прочитал только что опубликованную работу Альберта Эйнштейна по общей теории относительности.

В 1918 г. П. поступил в Мюнхенский университет, где учился под руководством известного физика Арнольда Зоммерфельда. В это время немецкий математик Феликс Клейн был занят изданием математической энциклопедии. Клейн попросил Зоммерфельда написать обзор общей и специальной теории относительности Эйнштейна, а Зоммерфельд в свою очередь попросил написать эту статью 20-летнего П. Тот быстро написал статью объемом в 250 страниц, которую Зоммерфельд охарактеризовал как «сделанную просто мастерски», а Эйнштейн похвалил.

В 1921 г., закончив докторскую диссертацию по теории молекулы водорода и получив докторскую степень в кратчайшие для университета сроки, П. отправился в Гёттинген, где занялся научными исследованиями совместно с Максом Борном и Джеймсом Франком. В конце 1922 г. он в Копенгагене работает в качестве ассистента у Нильса Бора. Работа под руководством Зоммерфельда, Борна, Франка и Бора пробудила у П. интерес к новой области физики – квантовой теории, которая занималась изучением атома и субатомных частиц, и он полностью погрузился в проблемы, встававшие перед физиками в этой области.

Хотя принципы классической физики позволяли удовлетворительно объяснять поведение макроскопических физических систем, попытки применить те же принципы к явлениям атомного масштаба терпели неудачу. Особенно сложной представлялась ядерная модель атома, по которой электроны вращались по орбитам вокруг центрального ядра. Согласно принципам классической физики, вращающиеся по орбитам электроны должны непрерывно испускать электромагнитные излучения, теряя при этом энергию и приближаясь по спирали к ядру. В 1913 г. Бор предположил, что электроны не могут непрерывно испускать излучение, поскольку они обязаны находиться на своих разрешенных орбитах; все промежуточные орбиты запрещены. Электрон может испустить или поглотить излучение, только сделав квантовый скачок с одной разрешенной орбиты на другую.

Модель Бора частично основывалась на изучении атомных спектров. Когда некий элемент нагревается и переходит в газо- или парообразное состояние, он излучает свет с характерным спектром. Этот спектр не представляет собой непрерывной цветовой области, подобной спектру Солнца, а состоит из последовательности ярких линий определенных длин волн, разделенных более широкими темными участками. Атомная модель Бора объясняла главную суть атомных спектров: каждая линия представляла свет, испускаемый атомом, когда электроны переходят с одной разрешенной орбиты на другую орбиту с более низкой энергией. Более того, модель правильно предсказывала большую часть характерных черт простейшего атомного спектра – спектра водорода. В то же время с помощью этой модели менее успешно описывались спектры более сложных атомов.

Еще два существенных недостатка модели Бора помогли П. в дальнейшем внести свой значительный вклад в квантовую теорию. Во-первых, эта модель не могла объяснить некоторые тонкие детали в спектре водорода. Например, когда атомный газ помещали в магнитное поле, некоторые спектральные линии расщеплялись на несколько близко расположенных линий – эффект, впервые обнаруженный Питером Зееманом в 1896 г. Более важным, однако, было то, что устойчивость электронных орбит не находила полного объяснения. Хотя считалось очевидным, что электроны не могли падать по спирали на ядро, непрерывно испуская излучение, не было видно явной причины, почему бы им не опускаться скачками, переходя с одной разрешенной орбиты на другую и собираясь вместе в наинизшем энергетическом состоянии.

В 1923 г. П. стал ассистент-профессором теоретической физики в Гамбургском университете. Здесь он в начале 1925 г. занимался теоретическими исследованиями строения атомов и их поведения в магнитных полях, разрабатывая теорию эффекта Зеемана и других видов спектрального расщепления. Он выдвинул предположение, что электроны обладают неким свойством, которое позже Сэмюэл Гаудсмит и Джордж Уленбек назвали спином, или собственным угловым моментом. В магнитном поле у спина электрона имеются две возможные ориентации: ось спина может быть направлена в ту же сторону, что и поле, или в противоположную сторону. Орбитальное движение электрона в атоме определяет еще одну ось, которая может быть ориентирована по-разному в зависимости от приложенного внешнего поля. Различные возможные комбинации спиновой и орбитальной ориентации слегка отличаются энергетически, что приводит к увеличению числа атомных энергетических состояний. Переходы электрона с каждого из этих подуровней на некоторую другую орбиту соответствуют слегка отличающимся длинам световых волн, чем и объясняется тонкое расщепление спектральных линий.

Вскоре после того, как П. ввел такое свойство «двузначности» электрона, он аналитически объяснил, почему все электроны в атоме не занимают наинизший энергетический уровень. В усовершенствованной им модели Бора допустимые энергетические состояния, или орбиты, электронов в атоме описываются четырьмя квантовыми числами для каждого электрона. Эти числа определяют основной энергетический уровень электрона, его орбитальный угловой момент, его магнитный момент и (в этом состоял вклад П.) ориентацию его спина. Каждое из этих квантовых чисел может принимать только определенные значения, более того, допустимы лишь некоторые комбинации данных значений. Он сформулировал закон, который стал известен как принцип запрета Паули и согласно которому никакие два электрона в системе не могут иметь одинаковые наборы квантовых чисел. Так, каждая оболочка в атоме может содержать лишь ограниченное число электронных орбит, определяемых допустимыми значениями квантовых чисел.

Принцип запрета Паули играет фундаментальную роль для понимания строения и поведения атомов, атомных ядер, свойств металлов и других физических явлений. Он объясняет химическое взаимодействие элементов и их прежде непонятное расположение в периодической системе. Сам П. использовал принцип запрета для того, чтобы понять магнитные свойства простых металлов и некоторых газов.

Вскоре после того, как П. сформулировал свой принцип запрета, квантовая теория получила солидное теоретическое обоснование благодаря работам Эр-вина Шрёдингера, Вернера Гейзенберга и П.А.М. Дирака. Теоретический аппарат, использованный ими для описания атомных и субатомных систем, стал называться квантовой механикой. Атомная модель Бора была заменена квантовомеханической моделью, которая успешнее предсказывала спектры и другие атомные явления. Что касается достижений П., то они позволили распространить квантовую механику на такие области, как физика частиц высокой энергии и взаимодействие частиц со светом и другими формами электромагнитных полей. Эти области стали известны как релятивистская квантовая электродинамика.

В 1928 г. П. сменил Питера Дебая на посту профессора Федерального технологического института в Цюрихе, на котором он оставался до конца жизни, за исключением двух периодов, проведенных в Соединенных Штатах; он провел академический 1935/36 г. в качестве приглашенного лектора в Институте фундаментальных исследований в Принстоне (штат Нью-Джерси) и во время второй мировой войны, когда, опасаясь, что Германия вторгнется в Швейцарию, он вернулся в этот же институт, где возглавлял кафедру теоретической физики с 1940 по 1946 г.

В 30-е гг. он сделал еще один важный вклад в физику. Наблюдения над бета-распадом атомных ядер, при котором нейтрон в ядре испускает электрон, превращаясь при этом в протон, выявили очевидное нарушение закона сохранения энергии: после учета всех зарегистрированных продуктов распада энергия после распада оказывалась меньше своего значения до распада. В 1930 г. П. выдвинул гипотезу, согласно которой предполагалось, что при таком распаде испускается какая-то незарегистрированная частица (которую Энрико Ферми назвал нейтрино), уносящая потерянную энергию, и при этом закон сохранения момента импульса оставался в силе. В конце концов нейтрино удалось зарегистрировать в 1956 г.

В 1945 г. П. был награжден Нобелевской премией по физике «за открытие принципа запрета, который называют также принципом запрета Паули». Он не присутствовал на церемонии вручения премии, и ее от его имени получил сотрудник американского посольства в Стокгольме, В Нобелевской лекции, посланной в Стокгольм в следующем году, П. подвел итоги своих работ, касавшихся принципа запрета и квантовой механики.

П. стал швейцарским гражданином в 1946 г. В дальнейшей работе он стремился пролить свет на проблемы взаимодействия частиц высокой энергии и сил, с помощью которых они взаимодействуют, т.е. занимался той областью физики, которую сейчас называют физикой высоких энергий, или физикой частиц. Он также провел глубокое исследование той роли, которую в физике частиц играет симметрия. Обладая поистине фантастическими способностями и умением глубоко проникать в существо физических проблем, он был нетерпим к туманным аргументам и поверхностным суждениям. Он подвергал собственные работы такому беспощадному критическому анализу, что его публикации фактически свободны от ошибок. Коллеги называли его «совестью физики».

После развода, последовавшего за недолгим и несчастливым первым браком, П. в 1934 г. женился на Франциске Бертрам. Испытывая глубокий интерес к философии и психологии, он получал большое удовольствие от бесед со своим другом К.Г. Юнгом. Он также высоко ценил искусство, музыку и театр. Во время отпуска любил плавать, бродить по горам и лесам Швейцарии. Интеллектуальные способности П. находились в резком диссонансе с его «умением» работать руками. Его коллеги обычно шутили по поводу таинственного «эффекта Паули», когда одно только присутствие невысокого и полноватого ученого в лаборатории, казалось, вызывало всевозможные поломки и аварии. В начале декабря 1958 г. П. заболел и вскоре, 15 декабря, умер.

Кроме Нобелевской премии, П. был награжден медалью Франклина Франклиновского института (1952) и медалью Макса Планка Германского физического общества (1958). Он был членом Швейцарского физического общества, Американского физического общества, Американской ассоциации фундаментальных наук, а также иностранным членом Лондонского королевского общества.

ПАУЛИ ВОЛЬФГАНГ

(1900 г. – 1958 г.)


Знаменитый швейцарско-австрийский физик Вольфганг Эрнст Паули родился 25 апреля 1900 года в Вене в семье Вольфганга Йозефа Паули и Берты Паули (урожденной Шютц).

Отец будущего ученого был известным физиком и биохимиком, профессором коллоидной химии медицинской школы Венского университета. Он был выходцем из пражской еврейской семьи, но позже принял католическую веру. Мать Вольфганга была связана с венским богемным миром, дружила со многими театралами и журналистами, сама мастерски владела пером. Свое второе имя Вольфганг Эрнст Паули получил в честь крестного дяди, физика и философа Эрнста Маха.

Дети в семье Паули оказались весьма талантливы: младшая сестра Вольфганга стала актрисой, а Вольфганг – ученым с мировым именем.

Родители отдали Вольфганга на учебу в федеральную Венскую гимназию. Одноклассником Паули в гимназии был будущий лауреат Нобелевской премии – Рихард Кун, получивший эту премию по химии в 1938 году. Уже в ранние годы учебы проявились таланты Паули в области математики. В скором времени, самостоятельно изучив гимназическую программу, он переключился на изучение высшей математики.

В гимназии Вольфганг заинтересовался работой Альберта Эйнштейна по общей теории относительности. В возрасте 18 лет будущий ученый окончил гимназию. К этому моменту он уже имел опубликованную статью, посвященную проблеме энергии гравитационного поля.

В 1918 году молодой Паули поступил в Мюнхенский университет, где учился под руководством знаменитого физика Арнольда Зоммерфельда. Зоммерфельд считался основателем мюнхенской школы теоретической физики. Узнав об интересе Паули к теории относительности, он порекомендовал своему студенту продолжить исследования в этой области. Уже в следующем году мир увидел две работы Паули, посвященные возможностям обобщения общей теории относительности.

В 1920 году друг Зоммерфельда, немецкий математик Феликс Клейн готовил издание «Энциклопедии математических наук». Клейн попросил Зоммерфельда сделать обзор теории относительности Эйнштейна, а тот в свою очередь дал задание 20-летнему Паули подготовить статью. Через некоторое время статья лежала на столе Зоммерфельда. В ней автор анализировал общую и специальную теорию относительности Эйнштейна на 250 страницах! Прочитав статью, Зоммерфельд охарактеризовал ее как «сделанную просто мастерски». Впоследствии эта статья-монография стала классической. Она многократно была издана отдельной книгой в различных странах.

Когда статья попала на глаза Эйнштейну, тот, похвалив Паули, не знал, чему больше удивляться – тому, что автор написал такую зрелую книгу в 21 год, или тому, как глубоко ему удалось понять ход развития идеи и проникновения в физическую сущность явлений.

С 1920 года молодой ученый начал интересоваться микромиром атомов и спектров. В 1921 году под руководством Зоммерфельда он успешно защитил докторскую диссертацию, посвященную исследованию молекулы водорода, и получил докторскую степень.

В этом же году Паули решил продолжить свои научные исследования и поучиться у гениальнейших людей того времени. Он отправился в Геттинген, где стал ассистентом Макса Борна на кафедре теоретической физики Геттингенского университета. Также Паули работал вместе с Джеймсом Франком в его лаборатории в Геттингене.

В конце 1922 года после работы в Швейцарии Паули переезжает в Копенгаген, где поступает в ассистенты к «гению эпохи» Нильсу Бору в Институт теоретической физики. Кроме научных исследований, Паули помогал Бору переводить его работы на немецкий язык. Ассистентом у Бора Паули работал до 1923 года, когда ему предложили должность ассистент-профессора теоретической физики в Гамбургском университете.

Сотрудничество с Зоммерфельдом, Борном, Франком и Бором вызвало у молодого ученого еще больший интерес к микромиру атомов и субатомных частиц – к квантовой теории.

В 1924 году Паули сформулировал один из важнейших законов физики микромира, который носит его имя. Этому предшествовал целый ряд выдающихся открытий того времени.

После того как гениальный физик Резерфорд в 1911 году разработал планетарную модель атома, возникли новые вопросы, касающиеся явлений атомной проблематики. Согласно постулатам классической физики, электроны, располагающиеся на орбитах вокруг центрального ядра, должны непрерывно испускать электромагнитные излучения. При этом они должны терять энергию и, подчиняясь притяжению ядра, приближаться к нему по спирали.

В 1913 году Бор представил миру свою теорию, которая гласила, что электроны могут находиться только на определенных орбитах. В результате этого они не могут непрерывно испускать излучение. Переместиться с одной из орбит на другую электрон может лишь в случае квантового скачка.

С помощью модели Бора можно было предсказать характерные особенности простейших атомных спектров, например спектра водорода. Но применить модель к описанию сложных атомов не удавалось.

Бор не представил четкого объяснения устойчивости электронных орбит. Хотя было понятно, что электроны не могут упасть на ядро по спирали, но совсем не ясно, почему это невозможно в результате скачкообразного перехода с одной разрешенной орбиты на другую.

В 1924 году Паули ввел в квантовую механику понятие «новой степени свободы». В следующем году Г. Уленбек и С. Гудсмит определили ее как спин электрона.

Паули предложил принцип запрета, согласно которому две тождественные частицы с полуцелым спином (их собственным моментом количества движения) не могут одновременно находиться в одном состоянии. Сформулированный для электронов в атоме, позже принцип Паули был распространен на любые частицы с полуцелым спином (фермионы). Электроны обладают полуцелым спином. На другие частицы с целым спином запрет Паули не распространялся.

В соответствии с принципом Паули, в магнитном поле у спина имеются две возможные ориентации: ось спина может быть направлена в ту же сторону, что и поле, либо в противоположную. Само движение электрона по орбите в атоме определяет еще одну ось, ориентация которой зависит от приложенного внешнего поля. Поскольку имеются различные комбинации ориентаций (спиновой и орбитальной), то это объясняет существование большого числа атомных энергетических состояний.

В своих последующих работах Паули показал, что принцип запрета является следствием связи спина и статистики Ферми – Дирака, существующей в релятивистской квантовой механике, а также дал аналитическое обоснование, почему электроны не занимают в атоме самый низкий энергетический уровень. Для этого ему пришлось усовершенствовать модель Бора.

Ученый предположил, что орбиты электронов в атоме описываются четырьмя квантовыми числами для каждого электрона. С помощью этих чисел определяется основной энергетический уровень электрона, его орбитальный угловой момент, его магнитный момент и ориентация его спина. Любое из этих квантовых чисел может принимать одно из определенных значений, при этом существуют только некоторые комбинации данных значений. Исходя из принципа запрета Паули, никакие два электрона в системе не могут иметь одинаковые наборы квантовых чисел, а любая из оболочек атома содержит количество орбит, определяемых значениями квантовых чисел.

Принцип запрета, разработанный Паули, сыграл главную роль в понимании закономерностей строения и поведения электронных оболочек атомов, атомных ядер, молекулярных спектров.

Принцип запрета лежит и в основе статистики Ферми – Дирака, которая сыграла важную роль в понимании физики микромира. Благодаря ему была разработана квантовая теория твердого тела, а также определена статистика для электронного газа, легло в основу объяснения тепловых, магнитных и электрических свойств твердых тел.

Благодаря работе Паули была объяснена система расположения элементов в периодической системе и их химическое взаимодействие.

Вместе со Шрёдингером, Гейзенбергом, Бором и Дираком Паули разработал теоретический аппарат, используемый для описания атомных и субатомных систем. После того как в 1926 году Гейзенберг предложил матричное представление квантовой механики, Паули использовал его для описания наблюдаемого спектра водорода.

В результате исследований этих ученых была создана квантово-механическая модель атома. Благодаря усилиям Паули квантовая механика нашла свое применение в областях науки, изучающих физику частиц высокой энергии и взаимодействие частиц со светом и другими формами электромагнитных полей. Позже эти области физики стали называться релятивистской квантовой электродинамикой.

В 1927 году Паули предложил обобщение уравнения Шрёдингера, описывающее частицы с полуцелым спином и ввел спиноры для описания спина электрона.

После того как в 1928 году ученый занял должность профессора федерального Политехнического института в Цюрихе, круг его научных интересов значительно расширился. Паули стал интересоваться физикой твердого тела, в частности проблемами диа– и парамагнетизма, квантовой теорией поля и физикой элементарных частиц.

На посту профессора Цюрихского института он оставался до самой смерти, за исключением двух периодов, проведенных ученым в Соединенных Штатах Америки.

В 1930 году Паули совершил еще одно гениальное открытие. Многочисленные исследования бета-распада, проводившиеся в 1930-х годах, привели многих ученых к выводу, что суммарная энергия продуктов распада нейтрона – электрона и протона – меньше энергии нейтрона до распада. Это означало, что в отдельные моменты в микромире не выполняются законы сохранения энергии и импульса. Паули решительно воспротивился этой идее. В своем письме участникам семинара в Тюбингене он предположил, что в число продуктов бета-распада входит еще одна неизвестная частица. Поскольку в то время экспериментально доказать существование частицы было невозможным, ученый выдвинул гипотезу что она имеет слабый заряд и поэтому ее нельзя зарегистрировать.

Невозможность регистрации частицы объясняла потерю энергии. К 1933 году Паули сформулировал основные свойства частицы, которую Энрико Ферми назвал нейтрино. Экспериментально доказать существование нейтрино удалось только двадцать лет спустя – в 1956 году.

В 1940 году ученый доказал теорему связи спина со статистикой.

Опасаясь того, что немецкие войска вторгнутся в Швейцарию, ученый принял в 1941 году приглашение Принстонского университета и переехал в США. Вплоть до 1946 года Паули работал в Принстоне профессором в Институте фундаментальных исследований, возглавляя кафедру теоретической физики.

В 1945 году «за открытие принципа запрета, который называют также принципом запрета Паули» ученый был награжден Нобелевской премией по физике. Паули не поехал в Стокгольм на церемонию вручения премии, и она была передана ему через сотрудника американского посольства. В следующем году ученый отправил в Стокгольм свою нобелевскую лекцию «Принцип запрета и квантовая механика», в которой подвел итоги своих работ в области квантовой механики, в том числе разработок принципа Паули.

В 1946 году нобелевский лауреат вернулся в Цюрих, где принял швейцарское подданство и продолжил преподавательскую работу в Политехническом институте в Цюрихе.

В последних своих работах гениальный ученый развивал физику частиц и проводил исследования взаимодействия частиц высокой энергии и сил взаимодействия.

Нильс Бор называл своего молодого коллегу «чистой совестью физики», поскольку Паули беспощадно и слишком критически относился как к своим работам, так и к работам коллег. Даже работы друзей получали от него характеристику как «совсем неверные» или «не то что неправильные, но даже не дотягивающие до ошибочных!» Он еще при жизни стал действующим героем многих анекдотов. Поговаривают, что после того как Гейзенберг представил Паули свою новую теорию, он через некоторое время получил письмо от Паули. В письме был нарисован квадрат с пометкой «Я могу рисовать как Тициан», а внизу письма мелким почерком было приписано: «Не хватает только деталей».

Знаменитый ученый был стопроцентным теоретиком. Поговаривали, что стоило ему лишь войти в исследовательскую лабораторию, как чувствительная электронная аппаратура сразу же выходила из строя. Этот «эффект Паули», ставший также всемирно известным, вошел в различные сборники из разряда «физики шутят».

Среди множества случаев, связанных с «эффектом Паули», был и такой. Однажды в лаборатории Джеймса Франка в Геттингене от неожиданного сокрушительного взрыва была разрушена дорогая установка. Как потом оказалось, взрыв произошел в то самое время, когда поезд, в котором Паули ехал из Цюриха в Копенгаген, остановился на несколько минут в Геттингене.

Первый брак знаменитого ученого оказался неудачным. В 1934 году он вторично женился – на Франциске Бертрам. Супруги любили слушать музыку, посещали театр.

Притчей во языцех стали одинокие прогулки Паули на дальние расстояния. Кроме того, он любил рыбачить и совершать походы в Альпы.

Одним из лучших друзей ученого был всемирно известный психолог Карл Густав Юнг, с которым Паули активно переписывался с 1923 года и до самой смерти. Из их переписки выяснилось, что львиная доля объяснений понятия синхронности, введенного Юнгом, на самом деле принадлежит Паули. Кроме того, ученый интересовался архетипами, понятием коллективного бессознательного, сопоставлением внутреннего мира человека с внешним миром, поднятыми в работах Юнга.

Нильс Бор: «Прогресс физики в нашем столетии характеризуется не только расширением круга познания, но главным образом и построением новых теоретических основ для анализа и синтеза экспериментальных данных. Вольфганг Паули… внес в этот прогресс огромный вклад не только собственными выдающимися работами, но и тем вдохновением и воодушевлением, которые мы все от него получали».

Макс Борн: «Паули… общепризнан как наиболее критичный, логически и математически требовательный среди ученых, которые внесли вклад в квантовую механику».

Вольфганг Эрнест Паули родился 25 апреля 1900 года в Вене, в семье известного профессора фармакологии Вольфганга Йозефа Паули. Очень рано заметив исключительные математические способности сына, отец всячески стремился их развить. Мать, Берта Паули, журналистка по профессии, старалась воспитать у него любовь к музыке.

Они оба преуспели в своих стремлениях. Паули‑гимназист прекрасно разбирался в астрономии, любил находить ошибки в читаемых им научно‑фантастических романах, например у Жюля Верна. Исключительные математические способности у мальчика обнаружились рано. Быстро освоив школьный курс, он изучил высшую математику. Еще в школе он познакомился и с трудами Эйнштейна и проникся его идеями.

Восемнадцатилетний юноша, только что закончивший с отличием гимназию, отослал в немецкий журнал «Physikalische Zeitschrift» свою первую оригинальную статью об энергии гравитационного поля, которая и была опубликована в 1919 году.

В Мюнхенском университете он стал одним из любимых учеников Зоммерфельда, который поручил ему, студенту 2‑го курса, написать обзор по теории относительности для физического тома математической энциклопедии. Этот том увидел свет в 1921 году и сразу сделал имя Паули известным среди физиков.

Сам Эйнштейн дал восторженную оценку этой статьи Паули: «Тот, кто будет читать эту зрелую и тщательно продуманную работу, вряд ли поверит, что ее автору всего двадцать один год. Неизвестно, чему следует удивляться больше: глубокому психологическому пониманию хода развития идей, безупречности математических выводов, глубокому проникновению в физическую сущность явлений, способности ясно и систематически излагать предмет, эрудиции, полноте изложения, уверенности критика».

С 1921 по 1928 год Паули работал в Геттингене у Борна, в Гамбурге, Копенгагене у Бора и снова в Гамбурге. В школе Зоммерфельда Паули рано заинтересовался атомной физикой. Первая его статья относится к 1920 году и была посвящена исследованию диамагнетизма одноатомных газов. Для диамагнитной восприимчивости Паули получил формулу, сохранившуюся и в квантовой механике.

Но главной темой своего исследования Паули избрал аномальный эффект Зеемана – расщепление спектральных линий в магнитном поле. В те годы эта проблема стала средоточием всех трудностей старой квантовой теории. Это очень образно выразил как‑то сам Паули. Когда в Копенгагене его спросили, почему он выглядит таким удрученным, последовал ответ: «Как может выглядеть счастливым человек, если он думает об аномальном эффекте Зеемана?»

Именно Паули сделал решающий шаг, сформировав свой знаменитый «принцип запрета». Впервые принцип Паули был сформулирован в статье «О связи между заполнением групп электронов в атоме и сложной структурой спектров», опубликованной в 1925 году. Этот принцип Паули открыл на основании обобщения громадного эмпирического материала, накопившегося в атомной спектроскопии многоэлектронных элементов (щелочных металлов и инертных газов).

Согласно ему в атоме не может существовать более одного электрона с заданными значениями четырех квантовых чисел, характеризующих энергетический уровень.

Другими словами, если уровень занят одним электроном, то второй уже на этом уровне располагаться не может. Надежда Паули, что в будущем удастся вывести гениально угаданный им принцип из более фундаментальных положений, оправдалась. В квантовой механике принцип Паули можно вывести из принципа тождественности частиц для систем, описываемых антисимметричными волновыми функциями. Сам Паули показал в 1940 году, что эти системы состоят из частиц с полуцелым спином, т е. частиц, подчиняющихся статистике Ферми–Дирака.

Принцип Паули был последним выдающимся достижением доквантовомеханической теории атома. Он стимулировал создание квантовой статистики Ферми и сделал возможным объяснение периодической таблицы Менделеева.

В 1926 году, упростив выкладки Ферми, Паули установил связь между вырождением электронного газа и парамагнетизмом.

«Сразу же после появления матричной механики Гейзенберга возникла задача рассчитать с помощью нового математического аппарата спектр водородоподобных атомов, – пишет А.М. Франк. – Самому Гейзенбергу это не удавалось, и тогда этим занялся Паули. В период, когда техника матричного исчисления только осваивалась физиками, работа оказалась довольно трудной. Но Паули с ней быстро справился, и не только получил правильные значения для энергетических уровней, но и сумел учесть влияние на спектр электрических и магнитных полей. По словам Гейзенберга, его переписка с Паули, критические замечания и вопросы последнего сыграли огромную роль и в установлении принципа неопределенности. На V Сольвеевском конгрессе (Брюссель, 1927) Паули решительно поддержал ту интерпретацию квантовой механики, которая была предложена Бором, а в последующие годы был одним из основателей применения теоретико‑групповых методов в квантовой механике».

Начиная с 1928 года Паули занимал кафедру теоретической физики Высшей технической школы в Цюрихе, став преемником Минковского и Эйнштейна.

К 1929 году построение основ квантовой механики и разработка ее математического толкования были закончены. И Паули с Гейзенбергом взялись за совершенно новую задачу – приложение новых методов квантования к электромагнитному полю. Их пионерская работа положила начало новой по существу науке, а разработанный ими метод широко применялся на протяжении всех последующих лет. Паули и дальше живо интересовался развитием квантовой электродинамики и стимулировал работы в этом направлении.

В начале тридцатых годов Паули, занявшись ядерной физикой и физикой элементарных частиц, сразу же высказал две фундаментальные идеи. Первая относилась к хорошо ему известной области спектроскопии. В докладе на VI Сольвеевском конгрессе (1930) он высказал мысль, что подобно тому как наличие спина электрона объясняет тонкую структуру спектральных линий, так вновь тогда открытая сверхтонкая структура обусловлена взаимодействием орбитального момента электронов с магнитным моментом ядра. В качестве примера Паули детально рассчитал сверхтонкую структуру линий гелия.

Вторая идея еще больше прославила имя Паули. Еще в 1931 году в письме к друзьям, а затем во время дискуссии на VII Сольвеевском конгрессе в 1933 году Паули высказал предположение, что помимо электрона при бета‑распаде испускается еще одна частица, которая уносит часть энергии. Эта частица (хотя она и электрически нейтральна) – не гамма‑квант и обладает очень высокой проникающей способностью. После открытия в 1932 году Дж. Чедвиком нейтрона эту гипотетическую частицу стали называть нейтрино.

В последующие годы Паули занимался главным образом квантовой теорией поля, едиными теориями поля, мезонной теорией ядерных сил, теорией элементарных частиц, опубликовал по этим вопросам около 30 статей и несколько книг.

Во время Второй мировой войны он работает в Принстоне, в Институте высших исследований, где в то время трудились Эйнштейн и Бор. В 1945 году «за открытие принципа запрета, который называют также принципом Паули» теоретику была присуждена Нобелевская премия по физике.

После войны Паули снова работает в Цюрихе на посту профессора Федерального технологического института. В 1946 году ученый принял швейцарское гражданство.

В последний период своей деятельности Паули интересовался физикой высоких энергий. Он близко сходится с великим психоаналитиком К. Юнгом.

Пытливый ум Паули охватывал очень разные области деятельности. Его многосторонность, широчайшая эрудиция проявились в целом ряде исследований по истории физики, философским вопросам современного естествознания, психологии научного творчества.

Барбара Клайн в своей книге «В поисках» пишет: «Внешне он очень напоминал Будду, но Будду, в глазах которого светился ум. В научных спорах Паули был бесподобен. Для него никакого значения не имело правильное решение проблем, если доказательство не получалось лаконичным, полным и логически безупречным. Его научные труды… являлись продуктом энергичного длительного процесса мышления, во время которого доказательство оттачивалось снова и снова, пока не начинало удовлетворять его придирчивым требованиям… Он подвергал сомнению абсолютно все. Он был безжалостен, бесчувствен, язвителен, но очень часто – полезен. Бор и Гейзенберг очень ценили критические замечания Паули, хотя они часто бывали весьма болезненными для самолюбия. Их восхищала неистовая честность ученого. Бор сравнивал Паули со скалой в разбушевавшемся море…»