Белая дыра в космосе современные статьи. Белая дыра: миф или реальность

Некоторые физики-теоретики доказывают, что процесс гравитационного коллапса не может развиваться бесконечно, как следует из классической теории, и должен остановиться на некоторой досингулярной стадии, образовав серую дыру.

Долгое время, развивая теорию гравитационных коллапсаров, никто даже не пытался задаваться «запрещенным» вопросом: а что же находится в самом центре ядра застывшей звезды? Формальные рассуждения о том, что в сингулярности черных дыр исчезают привычные нам свойства пространства-времени, а многие параметры начинают стремиться к бесконечности, мало кого могли удовлетворить.

В последней четверти XX века неожиданно возникла парадоксальная теория, предполагающая, что во Вселенной кроме черных есть еще и белые дыры и к ним ведут подпространственные каналы из области сингулярности коллапсаров.

Белая дыра антиколлапсара

Серая дыра

Будучи полными антиподами застывших звезд, белые дыры должны постоянно выбрасывать энергию и материю, и хотя белых дыр (впрочем, как и черных) никто еще не видел, их существование вполне вписывается в современную концепцию гравитационного коллапса и безукоризненно с математической точки зрения. Авторами идеи о белых коллапсарах являются физики-теоретики, которые интерпретировали таким образом некоторые необычные решения, полученные при моделировании на сверхмощных компьютерах сценариев возникновения коллапсирующих объектов.

У теоретиков эстафету перехватили астрофизики, которые, основываясь на уравнениях теории гравитации Эйнштейна и их решениях, полученных Шварцшильдом, смело связали возможность существования белых застывших звезд с точками разрыва между различными вселенными, одна из которых связана с черной дырой, а вторая - с белой. При этом может существовать некий подпространственный туннель, на одном конце которого располагается черная дыра со стороны нашей Вселенной, а на другом - белая дыра со стороны уже иного мира.

Ученые полагают, что вся материя, исчезающая в черной дыре, в неизмененном виде выбрасывается через белую. Но происходит это совершенно парадоксальным образом, а не в последовательности «поглощение - выброс». Согласно теории относительности, время в подобных межпространственных каналах способно течь вспять, и поэтому сам по себе момент выброса материи из перехода может произойти до момента ее поглощения.

Кроме черных и белых дыр можно представить себе еще и необычные коллапсары, в которых вещество выбрасывается из внутренней оболочки вблизи сингулярности и поднимается на некоторую высоту над горизонтом событий застывшей звезды, чтобы затем опять устремиться под гравитационную оболочку. В своих теоретических моделях некоторые физики настойчиво доказывают, что геометрия коллапсаров вполне допускает наличие подобных явлений для нового вида небесных тел, названных серыми дырами.

Если представления об обычных гравитационных коллапсарах появились в исследованиях эволюции звезд, то идеи о белых и серых дырах возникли в чисто теоретических построениях, связанных с попытками хоть как-то прояснить внутреннюю структуру застывших звезд.

Детальное изучение процессов гравитационного коллапса показало, что возможность образования стационарных серых и белых дыр крайне мала. Однако большинство реальных звезд вращается, как стремительные волчки, и следовательно, из них должны образовываться крутящиеся черные дыры. Если попытаться детально представить гравитационный коллапс вращающегося светила, то надо учитывать и обширные области пространства-времени, находящиеся над гравитационной поверхностью формирующейся застывшей звезды.

Именно отсюда следует логический вывод, что подобная звезда, превращающаяся в черную дыру в одной вселенной, может предстать белой дырой в ином мире. Так, сингулярность гравитационного коллапса в одной вселенной может отразиться расширяющимся антиколлапсом в другую вселенную. Причем устойчивость этих странных белых дыр напрямую зависит от скорости вращения исходного коллапсирующего объекта.

Схематическая модель вращающейся белой дыры была разработана во второй половине прошлого века советским астрофизиком и космологом Игорем Дмитриевичем Новиковым. Относительно стационарных белых дыр профессор Новиков предположил, что, несмотря на их нестабильность, эти образования могли бы играть важную роль в процессе рождения нашего мира.

В этом взрывном процессе отдельные области протопространства напоминали осколки от взрыва гранаты, не принимая участия во всеобщем расширении, сохраняя признаки первичной протосингулярности. Когда же подобные осколки довзрывного состояния начали наконец расширяться, они и проявили все свойства белых дыр. Это должны быть удивительнейшие образования, представляющие собой «доисторические» фрагменты сингулярности Большого взрыва, из которой в нашу Вселенную ворвались вещество и излучение.

Именно размышления о том, что некие остатки Большого взрыва могли сохраняться очень длительное время, привели Игоря Дмитриевича к предположению о возможности существования белых дыр.

Система из черной и белой дыр, называемая мостом Эйнштейна - Розена (по имени исследовавших этот феномен ученых)

Вращающаяся белая дыра

По его расчетам, вокруг каждого подобного посланца из сингулярного мира должно накапливаться колоссальное количество мощнейшего излучения фиолетовой части спектра. Через определенное время в фиолетовом слое соберется много света и его массовые и энергетические характеристики начнут настолько сильно искривлять пространство-время, что вокруг зародыша белой дыры замкнется эргосфера гравитационного коллапсара. Время такого превращения белой дыры в черную занимает где-то тысячные доли секунды.

За прошедшие годы проблема белых дыр неоднократно поднималась космологами и астрофизиками, причем ученые прекрасно понимали, что, если от Большого взрыва и сохранились удивительные элементы протосингулярности, обнаружить их будет далеко не просто, поскольку не очень-то и понятно, как они должны выглядеть.

При теоретическом анализе внутренней геометрии гравитационного коллапсара выяснилось, что горизонт будущего для одной вселенной может в то же время как бы являться горизонтом прошлого для другой. То есть любой горизонт событий застывшей звезды в одной вселенной представляет «с изнанки» еще один горизонт событий, через который материя попадает уже из белой дыры в иную вселенную.

Вопрос только в том, когда же это может произойти. Ответ найти непросто, и надо опять окунуться в глубины микромира. Мы уже знаем, что при изучении рождения пар элементарных частиц физики открыли, что лишенное вещества пространство вакуума заполнено виртуальными парами частиц. Например, для любой точки физического вакуума можно сопоставить наличие виртуальной пары электрон - позитрон.

В другую точку можно поместить виртуальную пару протон - антипротон. В каждом приведенном случае влияние виртуальных частиц в полной мере компенсируется влиянием виртуальных античастиц. А теперь представим, что извне падает достаточно мощный гамма-квант и соударяется с виртуальной парой частица - античастица. Виртуальная пара может поглотить столько энергии, что станет вещественной и появится в нашем мире. Таким образом, со стороны процесс «овеществления» пар элементарных частиц воспринимается как поглощение виртуальными парами энергии, превращающей их в реальные микрообъекты.

Ну а теперь давайте вспомним, что происходит вблизи пространственно-временной сингулярности в застывшей звезде. Все что падает на сингулярность, разрывается на части приливными силами, поскольку в непосредственной близости от сингулярности они настолько велики, что способны разрушить любой объект.

У горизонта событий белой дыры

Вселенная белых дыр

Ну а теперь рассмотрим еще раз физический вакуум, окружающий эргосферу - область пространства-времени, расположенную между горизонтом событий и так называемым пределом статичности. Объекты, находящиеся в пределах эргосферы, неизбежно вращаются вместе с застывшей звездой. Космический корабль, попавший в эргосферу, мог бы еще, в принципе, вырваться наружу, имея достаточную мощность двигателей. Физический вакуум просто кипит океаном невидимых виртуальных частиц, непрерывно рождая такие же виртуальные пары частица - античастица. В области сингулярности приливные силы вполне способны разорвать эти пары на отдельные элементы.

Теория предсказывает, что сам процесс разрыва пар может оказаться настолько сильным, что каждая виртуальная частица получит энергетическую возможность стать реальным микрообъектом. Так в субсингулярном пространстве возникают потоки частиц и античастиц.

Предсказание этого явления впервые встречается в оригинальных теоретических статьях Стивена Хокинга и приводит к некоторым важным выводам. Таким образом, если в стационарном коллапсаре возникает сингулярность, то она теоретически может разорвать около себя метрику пространства-времени и заполнить коллапсар веществом и антивеществом. Во вращающихся коллапсарах процесс должен протекать аналогично.

Надо еще учитывать то, что в газопылевом диске, опоясывающем застывшую звезду, скорости частиц достаточно велики, так что их столкновения порождают интенсивное электромагнитное излучение, включая высокоэнергичные фотоны рентгеновского излучения. Через некоторое время непрерывные столкновения уменьшают энергию частиц и скорость их вращения вокруг черной дыры, так что они начинают постепенно приближаться к гравитационной оболочке коллапсара и поглощаться им.

Другая часть заряженных частиц дрейфует в магнитосфере коллапсара к его полюсам, чтобы затем вылететь оттуда в гигантском джете. Так образуются выбросы частиц, излучающих радиоволны при столкновении с межзвездной материей. Длина подобных выбросов может достигать одного миллиона световых лет.

Изложенные теоретические результаты позволили многим астрофизикам считать, что в нашей Вселенной может существовать равное число белых и черных дыр, что само по себе выглядит достаточно парадоксально. Кроме того, высказывались предположения, что серые и белые дыры равномерно разбросаны по всей Метагалактике и их можно найти даже в окрестностях Солнечной системы.

Вход в иные миры

И сразу же возникает любопытный вопрос: а можно ли найти белые «обратные коллапсары» в окрестностях Солнечной системы? Несмотря на изрядную фантастичность подобного предположения, астрономы изредка сообщают о все новых источниках энергии, расположенных на окраине Вселенной и чем-то напоминающих колоссальные космические вулканы, которые извергают материю, поглощенную замерзшими звездами.

А нельзя ли использовать связь между черными и белыми коллапсарами для построения трансмирового пути между разными вселенными? Ведь идея о существовании внепространственных переходов-туннелей давно уже будоражит умы не только писателей-фантастов, но и вполне солидных ученых. Пока еще главная теоретическая проблема - в краткости мига самого перехода. Призрачный мост между мирами, по всем расчетам, может возникнуть лишь на очень краткие доли мгновения как некая эфемерная вспышка, освещающая изнанку черной дыры.

Полет в иную вселенную

И если белая дыра даже в десяток раз превышает размеры нашего Солнца, то она «сгорит» за тысячные доли секунды, и даже для колосса в миллионы солнечных масс время жизни измеряется всего лишь минутами.

Впрочем, даже если это совершенно фантастическое путешествие когда-нибудь и состоится, отважным космонавтам придется столкнуться со многими затруднениями. Например, их ждет полная неизвестность за границами замерзшей звезды, да и совершенно непонятно, как будет выглядеть мир, в который они попадут. И если даже звездолет уцелеет в новой реальности иного мира, неясно, в каком месте чужой вселенной расположится белая дыра, выбросившая космический корабль.

Столкновение белой и черной дыр

Шанс попасть в родной мир у путешественников останется один на миллиард. Но если допустить, что путешественники сумеют определить, какая именно застывшая звезда связана с их родной Вселенной, они, скорее всего, вернутся совсем в иные времена.

Ведь наверняка в силу различных парадоксов теории относительности даже несколько дней для космонавтов, проведенных на борту звездолета в ином мире, выльются в тысячи, а то и миллионы лет, прошедших в нашей Вселенной. Возвратившись в родной мир, экспедиция может не найти ни Солнечной системы, ни Млечного Пути. Впрочем, все эти опасности совсем не пугают энтузиастов внепространственных путешествий, и они уже давно рассуждают, как могут выглядеть космические корабли, способные пролететь через подпространственные ходы, связывающие разноименные коллапсары.

Пока еще все рассуждения о путешествиях через подпространственные каналы, состоящие из порталов черных и белых дыр, выглядят настоящей фантастикой. Да и само существование белых дыр предстает сугубо гипотетическим предположением, правда, подкрепленным множеством математических выкладок и даже компьютерными моделями. Возможно, открытие в будущем реальных белых дыр знаменует для наших потомков получение подпространственного канала, по которому можно будет получать какую-нибудь информацию из иного мира.

Можно даже пофантазировать, что вместе с потоками излучения из белого коллапсара когда-нибудь вылетит аппарат, созданный по ту сторону мироздания. Ну а наиболее любопытным будет, если это окажется земной транспространственный зонд, ушедший в странствия через черную дыру и вернувшийся в иные времена через белую... На самом деле ученые все чаще задумываются о том, куда же все-таки исчезает материя, попавшая в бездонный провал застывшей звезды.

Белая дыра как антипод черной

Рентгеновские звездные источники

Белым дырам может быть уготована и совершенно необычная роль спасителей человечества. Все чаще встречаются научно-популярные статьи, в которых вполне серьезно обсуждаются всяческие методы борьбы с угрозой будущей встречи с застывшими звездами, способными легко поглотить не только нашу планету, но и всю Солнечную систему. Наиболее радикальным методом активного противодействия блуждающим звездным каннибалам было бы, конечно, торпедирование их загадочными белыми коллапсарами.

В теории это выглядело бы так: некое совершенно фантастическое устройство выстреливает чередой миниатюрных белых дыр, которые, пересекая эргосферу коллапсара, сливаются вместе и в конечном итоге поглощают черную дыру. Так, несколько лет назад довольно близко от нашей планеты с громадной скоростью промчалось очень странное небесное тело, которое астрономы рассматривают как вероятного кандидата в черные дыры. Непосредственное столкновение подобного физического объекта с нашей планетой грозит ужасными бедами, ведь, согласно проведенным расчетам, Земля могла быть поглощена коллапсаром и, пройдя за горизонт событий, сжаться в сантиметровый шарик. Вот здесь и пригодилась бы некая фантастическая катапульта с белой дырой.

Жизненный путь разных звезд

Это интересно

В настоящий момент на роль одного из самых экзотических объектов Метагалактики - белой дыры - претендует рентгеновская вспышка, значащаяся в астрономических каталогах как GRB 060614. Этот феномен был зафиксирован в июне 2006 года в созвездии Индейца на расстоянии 1,6 млн световых лет. Астрофизики долго искали причину этого всплеска энергии и в итоге пришли к выводу, что наиболее вероятны два варианта: либо GRB 060614 свидетельствует о появлении какого-то необычного вида массивных сверхновых, поскольку на месте вспышки ничего обнаружено не было, либо астрономам наконец-то встретилась белая дыра, возникшая, в полном соответствии с теорией, посреди космической пустоты на краткий миг выброса энергии и материи.

Во Вселенной много разнообразных интересных объектов. Это многочисленные планеты, звезды, кометы, астероиды, созвездия, галактики и, конечно же, черные дыры. Но мало кто знает, что в космосе могут быть и белые дыры - полная временная противоположность черным. Ученые предполагают, что они могут появляться при выходе событий космического вещества черной дыры, которая находится в другом времени.

В отличии от белые существуют лишь незначительное время (по космическим меркам) и спонтанно появляются в пустоте. Во Вселенную они выбрасывают вещество и излучение. Ведь если существуют такие объекты, как которые беспрерывно поглащают вещество, то должны быть и объекты, которые его выделяют.

Пока белые дыры в космосе обнаружить не удается. Но многочисленные приверженцы данной теории не оставляют свои надежды на открытие таковых в будущем. Найдут ли их? Ведь если будут неопровержимые доказательства существования таких дыр, то сразу несколько основных законов физики нарушатся, а фундамент современной науки придется кое-где подлатывать. Причем очень основательно.

Возникновение и мгновенный распад в космическом пространстве белой дыры астрономы называют Малым взрывом, поскольку этот процесс очень сходен с Большим взрывом, без которого наша Вселенная сейчас не существовала бы. Но на сегодняшний момент такие объекты, которые можно было бы назвать белыми дырами, неизвестны. Также отсутствуют и какие-либо предпосылки по способам их поиска (например, черные дыры находятся, как правило, в центрах больших галактик).

Недавно учеными-астрофизиками Шломо Хеллером и Алоном Реттером было высказано сенсационное заявление. Оно заключалось в том, что возможной причиной необычной гамма-вспышки GRB060614, которая была зафиксирована несколькими мощнейшими телескопами четырнадцатого июня в 2006 году, были именно белые дыры или дыра. GRB060614 находится в созвездии индейца (от Земли на расстоянии около полутора миллионов лет). Вспышка сопровождалась необычайно длительным световым эффектом, благодаря которому астрономы смогли определить координаты и измерить параметры объекта. Чем же она необычна? Все известные вспышки гамма-излучения делятся на долгие (свыше двух секунд) и короткие (меньше двух секунд). Но эта не подходила под оба параметра. Поэтому ученые уделили ей особое внимание.

Специалисты считают, что долговременные гамма-вспышки появляются чаще всего из-за коллапса некоторого количества массивных звезд, которые затем преобразуются в черные дыры. Короткие гамма-вспышки - это результат слияния нейтронной звезды и дыры черной, либо нейтронных звезд. Это приводит к формированию черной дыры. Вспышка, зафиксированная израильскими учеными, длилась 102 секунды. По теории, это должно было означать, что она закончится который так и не произошел. Кроме того, на данном участке неба гамма-всплесков не предвиделось, как и появления каких-либо новых объектов.

Физик-теоретик Поплавски Никодем предложил модель, по которой наша Вселенная является внутренними стенами черной дыры, которая расположена где-то в другой Вселенной. В своей работе этот ученый показал, что все черные дыры допускается рассматривать как входы, соединяющие различные районы пространства. Также Поплавски Никодем считает, что другой конец черной дыры соединен с началом белой. При этом внутри тоннеля создаются условия, которые напоминают постепенно расширяющуюся Вселенную. Из этого можно сделать вывод о том, что и наша Вселенная вполне может оказаться внутренней частью тоннеля, а черные и белые дыры - входом и выходом в регионы космического пространства.

Теория Поплавски объясняет парадокс: почему при попадании в черную дыру космическое вещество исчезает и нигде более не появляется.

Две близкорасположенные черные дыры в галактике, находящейся в 4,2 млрд световых лет от Земли, излучают волнистые струи, а третья черная дыра, находящаяся чуть поодаль, испускает прямые струи. Исследование показывает, что этот вид систем встречается чаще, чем считалось ранее.

Ученые обнаружили далекую галактику не с одной, а сразу тремя сверхмассивными черными дырами в ее ядре. Новое открытие позволяет предположить, что тесные группы таких гигантских черных дыр гораздо более распространены, чем считалось ранее, что потенциально открывает новый способ их легкого обнаружения, говорят исследователи.

Сверхмассивные черные дыры, чья масса может быть равна массе миллионов и даже миллиардов Солнц, как полагают, скрываются в сердцах практически каждой большой галактики во Вселенной. У большинства галактик в центре только одна сверхмассивная черная дыра. Однако галактики эволюционируют путем слияния, а у слившихся галактик иногда может быть несколько сверхмассивных черных дыр.

Астрономы наблюдали за галактикой со сложным именем SDSS J150243.09+111557.3 , в которой, как они думали, может быть две гигантских черных дыры. Она находится на расстоянии 4,2 млрд световых лет от Земли, «около трети пути через Вселенную», сказал ведущий автор исследования Роджер Дин (Roger Deane), радиоастроном из Университета Кейптауна в Южной Африке. Для исследования этой галактики ученые объединили сигналы с больших радиоантенн, находящихся на расстоянии до 10 000 км друг от друга, и использовали технику под названием радиоинтерферометрия со сверхдлинными базами (РСДБ). С помощью европейской РСДБ-сети исследователи смогли увидеть в 50 раз более мелкие детали по сравнению с возможностями космического телескопа Hubble.

Астрономы неожиданно для себя обнаружили, что галактика является домом не для двух гигантских черных дыр, а сразу трех. Две из них находятся очень близко друг к другу, отчего казалось, что они единое целое.

Роджер Дин (Roger Deane)

Масса каждой из трех черных дыр равна приблизительно 100 млн Солнц.

До этого ученые были знакомы с четырьмя тройными системами черных дыр. Однако между двумя объектами самой близкой пары около 7 825 световых лет. В новом трио сверхмассивных черных дыр самое маленькое расстояние между ними составляет всего около 455 световых лет, это вторая самая близкая пара черных дыр.

Исследователи обнаружили эту пару черных дыр после того, как изучили всего шесть галактик. Это говорит о том, что плотные пары сверхмассивных черных дыр «встречаются гораздо чаще, чем предполагали предыдущие наблюдения». Зная, как часто сливаются сверхмассивные черные дыры, можно понять, как это влияет на их галактики, отметили исследователи.

Сверхмассивные черные дыры могут способствовать эволюции галактик с взрывами энергии, выделяемой турбулентной материей, которую проглатывает черная дыра. Хотя есть вероятность, что близкие пары сверхмассивных черных дыр ранее было трудно разделить, исследователи обнаружили, что новая пара оставляет за собой спиралеподобный след из испускаемых ею радиоволн. Это говорит о том, что эти завитые струи могут стать отличительным знаком близких пар. В этом случае нет необходимости использовать телескопические наблюдения высокого разрешения, например, европейскую РСДБ-сеть.

Роджер Дин (Roger Deane) радиоастроном, Университет Кейптауна, Южная Африка

Спиральные радиоструи, свойственные близким парам, могут стать очень эффективным способом идентификации этих систем, которые находятся даже еще ближе друг к другу.

Близко вращающиеся черные дыры, как полагают, генерируют рябь в ткани пространства и времени, известную как гравитационные волны, которые теоретически можно обнаружить во всей Вселенной. Найдя более тесные пары черных дыр, ученые смогут точнее оценить, сколько гравитационного излучения генерируют эти пары, сказал Дин.

Роджер Дин (Roger Deane) радиоастроном, Университет Кейптауна, Южная Африка

Конечной целью является самосогласованное понимание того, как две отдельные черные дыры из двух взаимодействующих галактик медленно движутся друг к другу, влияют на свои галактики, испускают гравитационные волны и постепенно сливаются в одну, что, по прогнозам, является страшным событием.

Черные дыры близнецы.

Это одна из главных загадок космологии и звездного развития. Как в ранней Вселенной супермассивные черные дыры становились… такими супермассивными? Ведь у них не было достаточно времени, чтобы накопить свою массу посредством одних только устойчивых процессов прироста.

Две зарождающиеся черные дыры, сформировавшиеся в результате гибели одной супергигантской звезды. Художественное представление.

Сперва надо «съесть» вещества на миллиард солнц, даже при здоровом аппетите и наличии хорошей гравитационной силы на это уходит далеко не пара сотен лет. Но все же они есть, эти гигантские черные дыры, возникшие в отдаленных галактиках, где они уже хвастались своими размерами, когда Вселенная праздновала свой миллионный день рождения.

Недавние исследования, проведенные в Калифорнийском технологическом институте, показали, что эти супермассивные черные дыры были сформированы в результате гибели определенных типов изначально гигантских звезд, экзотических звездных динозавров, которые умерли молодыми. Во время их разрушения образуется не одна, а сразу две черных дыры, каждая набирает свою собственную массу, затем они сливаются в одного супермассивного монстра.

Чтобы понять происхождение молодых супермассивных черных дыр, Кристиан Рейссвиг (Christian Reisswig), постдоктор астрофизики в Калифорнийском технологическом институте, и Кристиан Отт (Christian Ott), доцент теоретической астрофизики, обратились к модели, использующей супермассивные звезды. Эти гигантские, относительно экзотические звезды, как полагают, существовали в течение недолгого времени в ранней Вселенной.

В отличие от обычных звезд, супермассивные звезды стабилизируются вопреки силе тяжести, главным образом, за счет собственного фотонного излучения.

У очень массивной звезды фотонное излучение (поток фотонов, направленный наружу, который появляется из-за очень высоких внутренних температур звезды) толкает газ от звезды, а гравитационная сила, наоборот, направляет его к ней.

Супермассивная звезда медленно охлаждается из-за энергетической потери, возникающей от эмиссии фотонного излучения. Со снижением температуры она становится более компактной, и ее плотность в центре постепенно увеличивается. Этот процесс длится в течение нескольких миллионов лет, пока звезда из-за своей компактности не станет гравитационно неустойчивой, тогда она начинает разрушаться.

Предыдущие исследования показали, что когда супермассивные звезды разрушаются, они имеют сферическую форму, которая из-за быстрого вращения становится смазанной. Эту форму называют осесимметричной конфигурацией.

Учитывая тот факт, что очень быстро вращающиеся звезды склонны к минимальным волнениям, Рейссвиг и его коллеги посчитали, что эти волнения могли привести к отклонениям звезды к неосесимметричной форме во время своей гибели. Крошечные колебания начали очень быстро расти, в итоге газ звезды сформировал высокоплотные фрагменты.

Кристиан Рейссвиг постдоктор в Калифорнийском технологическом институте

Рост черных дыр до супермассивных масштабов в молодой вселенной кажется весьма возможным, если масса «семени» была достаточно большой

Изображения с Chandra и Hubble, показывающие супермассивные черные дыры в ранней Вселенной.

Эти фрагменты вращались вокруг центра звезды и, собирая вещество, становились все более плотными и горячими.

Затем происходит «нечто очень интересное».

При достаточно высоких температурах вырабатывается энергия, которая позволяет электронам и их античастицам, позитронам, создать электрон-позитронные пары. Создание этих пар вызвало потерю давления, ускоряя процесс разрушения. В результате два орбитальных фрагмента стали настолько плотными, что сформировали две черные дыры. Далее, продолжая расти, они слились в одну большую черную дыру.

Черная дыра — это билет в один конец. Согласно общей теории относительности, все, что пересекает ее границу, горизонт событий, никогда не вернется назад. Для частиц черная дыра станет будущим. Мы никогда не сможем увидеть, что же происходит с частицами, попадающими в воронку. Свет, который излучает частица (а это единственный способ наблюдения за ее последними шагами) будет растягиваться, становясь все более тусклым, до тех пор, пока не исчезнет.

На самом деле, история гораздо более странная. Если мы будет наблюдать за падением частицы, мы можем так и не дожить до момента, когда она пересечет горизонт событий. Экстремальная сила притяжения черной дыры «съедает» время, поэтому для стороннего наблюдателя время около нее будет идти намного медленнее. Нам будет казаться, что частица движется к горизонту событий бесконечно долго. С точки зрения частицы это произойдет незаметно, без каких либо необычных явлений во времени и пространстве.

Если черная дыра – дверь в никуда, то логично было бы спросить, а есть ли оттуда выход?

Общая теория относительности, которая является стандартной теорией гравитации вот уже 100 лет, не делает различий между прошлым и будущим, временем, идущим вперед, и временем, идущим назад. Ньютоновская физика также симметрична относительно времени. Таким образом, идея о существовании «белых дыр» как отражения черных дыр, имеет свой теоретический смысл. У белой дыры тоже есть свой горизонт событий, который нельзя пересечь в обратном направлении. Однако ее горизонт лежит в прошлом. Появляющиеся в нем частицы будут набирать энергию и усиливать свой свет. Если частица каким-то образом появится на горизонте событий, но ее «вытолкнет» наружу.

В принципе, белая дыра – это черная дыра наоборот. Общая теория относительно вполне может предсказать подобные объекты и описать их математически.

Но существуют ли белые дыры? И если да, то что это говорит о симметрии времени?

Ничего и что-то

Черные дыры являются обычным явлением в космосе, в центре практически каждой крупной галактики есть огромная дыра, не говоря уже о маленьких. Тем не менее, астрономы не обнаружили ни единой белой дыры. Однако это не означает, что их нет, возможно, их просто нужно поискать. Если они действительно отталкивают частицы, есть небольшая вероятность того, что они невидимы.

Еще один вопрос: как формируются белые дыры? Черные дыры являются результатом гравитационного коллапса. Когда звезда, которая, как минимум, в 8-20 раз больше Солнца, исчерпывает свое ядерное топливо, она больше не может производить достаточно энергии, чтобы удерживать баланс внутренней силы гравитации. Ядро взрывается, плотность повышается, а гравитация становится настолько сильной, что даже свет не может от нее уйти. В результате образуется черная дыра, сравнимая с большой звездой.

Сверхмассивные черные дыры, которые в миллионы или миллиарды раз тяжелее, формируются каким-то неизвестным образом. В любом случае, они тоже являются результатом гравитационного коллапса, будь то огромная суперзвезда, появившаяся в первые дни мироздания, огромное облако газа в сердце первобытной галактики или какой-либо другой феномен.

Формирование белой дыры также подразумевает нечто похожее на гравитационный взрыв, однако пока не ясно, как именно они возникают. Один из вариантов, белые дыры могут быть «приклеены» к черным. С этой точки зрения, черная и белая дыры являются двумя сторонами одного объекта, соединенные кротовой норой (как во многих научно-фантастических рассказах). К сожалению, этот вариант не решает одной проблемы: согласно теории, если материя попадет в кротовую нору, это приведет к ее краху, в результате чего проход между черной и белой дырами закроется. (Технически, можно создать стабильную червоточину, если существует «экзотическое вещество» с отрицательной энергии, однако это вещество пока не найдено).

Вопрос времени

Итак, мы пришли к выводу, что в нашей Вселенной множество черных дыр, но нет белых. Однако это не означает, что время ассиметрично. Общая теория относительности по-прежнему работает, но природа гравитационного коллапса такова, что время течет лишь в одном направлении. Это соответствует ситуации с космосом в целом.

Когда-то давно произошел Большой взрыв, в результате чего началось стремительное расширение, по-видимому, из одной точки. При этом все говорит против возможного существования Большого сжатия, восстановления всего существующего в одну единственную точку когда-то в далеком будущем. Если нынешние тенденции сохранятся (например, если темная энергия резко не поменяет своих свойств), Вселенная будет продолжать ускоренно расширяться. В этом случае, симметрия Вселенной явно отсутствует.

В чем-то Большой взрыв похож на белую дыру. Для всех наблюдателей он находится в прошлом, а частицы выходят наружу. Однако у него не было горизонта событий (а это значит, что мы имеем дело с «голой сингулярностью», что звучит гораздо более странно, чем это есть на самом деле). Несмотря на это, он все же напоминает гравитационный коллапс в обратном направлении. Только потому, что уравнения общей теории относительности позволяют предсказать белые дыры, большие сжатия и кротовые норы, это не означает, что они действительно существуют. Асимметрия времени гравитации не присуща, однако она возникает из особенностей поведения материи и энергии. Физикам еще предстоит это узнать.

источник

http://www.qwrt.ru/news/2274

http://www.qwrt.ru/news/1029

http://www.qwrt.ru/news/2024

http://www.qwrt.ru/news/1462

http://www.qwrt.ru/news/757

А вообще мы уже с вами разговаривали подробно про . Вот еще и . Вот посмотрите еще на Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия -

На самом деле, история гораздо более странная. Если мы будет наблюдать за падением частицы, мы можем так и не дожить до момента, когда она пересечет горизонт событий. Экстремальная сила притяжения черной дыры «съедает» время, поэтому для стороннего наблюдателя время около нее будет идти намного медленнее. Нам будет казаться, что частица движется к горизонту событий бесконечно долго. С точки зрения частицы это произойдет незаметно, без каких либо необычных явлений во времени и пространстве.

Если черная дыра - дверь в никуда, то логично было бы спросить, а есть ли оттуда выход?

Общая теория относительности, которая является стандартной теорией гравитации вот уже 100 лет, не делает различий между прошлым и будущим, временем, идущим вперед, и временем, идущим назад. Ньютоновская физика также симметрична относительно времени. Таким образом, идея о существовании «белых дыр» как отражения черных дыр, имеет свой теоретический смысл. У белой дыры тоже есть свой горизонт событий, который нельзя пересечь в обратном направлении. Однако ее горизонт лежит в прошлом. Появляющиеся в нем частицы будут набирать энергию и усиливать свой свет. Если частица каким-то образом появится на горизонте событий, но ее «вытолкнет» наружу.

В принципе, белая дыра - это черная дыра наоборот. Общая теория относительно вполне может предсказать подобные объекты и описать их математически.

Но существуют ли белые дыры? И если да, то что это говорит о симметрии времени?

Ничего и что-то

Черные дыры являются обычным явлением в космосе, в центре практически каждой крупной галактики есть огромная дыра, не говоря уже о маленьких. Тем не менее, астрономы не обнаружили ни единой белой дыры. Однако это не означает, что их нет, возможно, их просто нужно поискать. Если они действительно отталкивают частицы, есть небольшая вероятность того, что они невидимы.

Еще один вопрос: как формируются белые дыры? Черные дыры являются результатом гравитационного коллапса. Когда звезда, которая, как минимум, в 8-20 раз больше Солнца, исчерпывает свое ядерное топливо, она больше не может производить достаточно энергии, чтобы удерживать баланс внутренней силы гравитации. Ядро взрывается, плотность повышается, а гравитация становится настолько сильной, что даже свет не может от нее уйти. В результате образуется черная дыра, сравнимая с большой звездой.

Сверхмассивные черные дыры, которые в миллионы или миллиарды раз тяжелее, формируются каким-то неизвестным образом. В любом случае, они тоже являются результатом гравитационного коллапса, будь то огромная суперзвезда, появившаяся в первые дни мироздания, огромное облако газа в сердце первобытной галактики или какой-либо другой феномен.

Формирование белой дыры также подразумевает нечто похожее на гравитационный взрыв, однако пока не ясно, как именно они возникают. Один из вариантов, белые дыры могут быть «приклеены» к черным. С этой точки зрения, черная и белая дыры являются двумя сторонами одного объекта, соединенные кротовой норой (как во многих научно-фантастических рассказах). К сожалению, этот вариант не решает одной проблемы: согласно теории, если материя попадет в кротовую нору, это приведет к ее краху, в результате чего проход между черной и белой дырами закроется. (Технически, можно создать стабильную червоточину, если существует «экзотическое вещество» с отрицательной энергии, однако это вещество пока не найдено).

Вопрос времени

Итак, мы пришли к выводу, что в нашей Вселенной множество черных дыр, но нет белых. Однако это не означает, что время ассиметрично. Общая теория относительности по-прежнему работает, но природа гравитационного коллапса такова, что время течет лишь в одном направлении. Это соответствует ситуации с космосом в целом.

Когда-то давно произошел Большой взрыв, в результате чего началось стремительное расширение, по-видимому, из одной точки. При этом все говорит против возможного существования Большого сжатия, восстановления всего существующего в одну единственную точку когда-то в далеком будущем. Если нынешние тенденции сохранятся (например, если темная энергия резко не поменяет своих свойств), Вселенная будет продолжать ускоренно расширяться. В этом случае, симметрия Вселенной явно отсутствует.

В чем-то Большой взрыв похож на белую дыру. Для всех наблюдателей он находится в прошлом, а частицы выходят наружу. Однако у него не было горизонта событий (а это значит, что мы имеем дело с «голой сингулярностью», что звучит гораздо более странно, чем это есть на самом деле). Несмотря на это, он все же напоминает гравитационный коллапс в обратном направлении. Только потому, что уравнения общей теории относительности позволяют предсказать белые дыры, большие сжатия и кротовые норы, это не означает, что они действительно существуют. Асимметрия времени гравитации не присуща, однако она возникает из особенностей поведения материи и энергии. Физикам еще предстоит это узнать.

О наличии в космосе так называемых черных дыр мы знаем давно. Но помимо них, теоретически существуют и так называемые "белые дыры" — странные объекты, внутрь которых невозможно попасть. Недавно израильские астрофизики Алон Реттер и Шломо Хеллер заявили, что именно такой объект стал источником аномальной гамма-вспышки GRB 060614 в 2006 году.

GRB 060614 расположена на расстоянии около 1,6 миллиона лет от Земли в созвездии Индейца. Вспышка, зафиксированная 14 июня 2006 года множеством мощных телескопов, сопровождалась длительным световым эффектом, что позволило астрономам точнее определить координаты объекта и измерить необходимые параметры. Вот тут-то исследователей и ожидал сюрприз!

Дело в том, что все гамма-вспышки делятся на два класса: долгие (их продолжительность более двух секунд) и короткие (от нескольких миллисекунд до двух секунд). Однако наблюдаемая вспышка, как ни странно, не подходила ни под одну из этих классификаций — она имела параметры, соответствующие обеим разновидностям.

Как считают ученые, долгие гамма-вспышки возникают чаще всего вследствие коллапса массивных звезд, которые превращаются в черные дыры, а короткие — в результате слияния двух нейтронных звезд или нейтронной звезды и черной дыры, что приводит опять же к формированию черной дыры. В данном случае вспышка длилась целых 102 секунды и, по идее, должна была завершиться взрывом сверхновой. Однако никакой сверхновой, связанной с GRB 060614, исследователи не обнаружили. К тому же, в этой области неба вообще не ожидалось ни гамма-всплесков, ни появления подобных объектов.

Астрофизики пришли к выводу, что черная дыра там все-таки появилась, но процесс ее формирования пока еще не известен науке.

Не исключено, что имеются еще подобные "аномальные" прецеденты, но они пока не были зафиксированы. Зато все становится на свои места, если предположить существование в космосе так называемых "белых дыр", считают Реттер и Хеллер.

Как предполагают ученые, белые дыры могут формироваться при выбросе из-за горизонта событий вещества черной дыры, находящейся в другом временном измерении. В результате посреди пустоты спонтанно возникает область, которая через краткий миг взрывается, выбросив во Вселенную потоки вещества и излучения. Если черная дыра затягивает в себя любое вещество благодаря колоссальной силе гравитации, то белая, напротив, все из себя выбрасывает.

Так как процесс распада белой дыры во многом сходен с Большим взрывом, который, как предполагается, породил Вселенную, Реттер и Хеллер окрестили это событие Малым взрывом. Если последствия данного явления действительно аналогичны последствиям Большого взрыва, то это прекрасно объясняет, почему на месте GRB 060614 не появилась сверхновая, как ожидалось.

Есть также версия, что черные и белые дыры соединены друг с другом пространственно-временными туннелями. Один конец туннеля, как пылесос, втягивает в себя частицы материи, а другой их "выплевывает". Если мы поймем принцип их взаимодействия, то отсюда недалеко до изобретения способов телепортации и путешествий во времени.

Почему же мы не можем найти никаких реальных "следов" белых дыр? Еще в 1976 году астрофизик Стивен Хокинг пришел к выводу, что в условиях термодинамического равновесия таких объектов с окружающей материей белые дыры невозможно отличить от их антиподов — черных дыр. Чтобы "вычислить" такие объекты, нужно изменить условия.

Коллега Хокинга, Стивен Хсу из университета Орегона, некогда предложивший модель построения машины времени на основе использования принципа отрицательной энергии, в свою очередь, попробовал смоделировать ситуацию, при которой белая дыра не окружена диском материи, а изолирована в пустом пространстве. Оказалось, что в этом случае она не может оставаться устойчивым объектом и в конечном итоге обязательно взрывается. В этом заключается еще одна из причин, отчего белые дыры так трудно "поймать". По мнению Стивена Хсу, большинство их могло просто не "дожить" до наших дней — по крайней мере, в наблюдаемой части Вселенной.