An arithmetic progression with n is given by conditions. Lesson topic: “Formula for the sum of the first n terms of an arithmetic progression

The motto of our lesson will be the words of the Russian mathematician V.P. Ermakova: “In mathematics, one should remember not formulas, but thinking processes.”

During the classes

Formulation of the problem

On the board is a portrait of Gauss. A teacher or student who was given the task of preparing a message in advance says that when Gauss was at school, the teacher asked the students to add all the natural numbers from 1 to 100. Little Gauss solved this problem in a minute.

Question . How did Gauss get the answer?

Finding solutions

Students express their assumptions, then summarize: realizing that the sums are 1 + 100, 2 + 99, etc. are equal, Gauss multiplied 101 by 50, that is, by the number of such sums. In other words, he noticed a pattern that is inherent in arithmetic progression.

Derivation of the sum formula n first terms of an arithmetic progression

Write down the topic of the lesson on the board and in your notebooks. Students together with the teacher write down the conclusion of the formula:

Let a 1 ; a 2 ; a 3 ; a 4 ; ...; a n – 2 ; a n – 1 ; a n- arithmetic progression.

Primary consolidation

1. Using formula (1), we solve the Gauss problem:

2. Using formula (1), solve problems orally (their conditions are written on the board or positive code), ( a n) - arithmetic progression:

A) a 1 = 2, a 10 = 20. S 10 - ?

b) a 1 = –5, a 7 = 1. S 7 - ? [–14]

V) a 1 = –2, a 6 = –17. S 6 - ? [–57]

G) a 1 = –5, a 11 = 5. S 11 - ?

3. Complete the task.

Given: ( a n) - arithmetic progression;

a 1 = 3, a 60 = 57.

Find: S 60 .

Solution. Let's use the sum formula n first terms of an arithmetic progression

Answer: 1800.

Additional question. How many types of different problems can be solved using this formula?

Answer. Four types of tasks:

Find the amount S n;

Find the first term of an arithmetic progression a 1 ;

Find n th term of an arithmetic progression a n;

Find the number of terms of an arithmetic progression.

4. Complete task: No. 369(b).

Find the sum of the first sixty terms of the arithmetic progression ( a n), If a 1 = –10,5, a 60 = 51,5.

Solution.

Answer: 1230.

Additional question. Write down the formula n th term of an arithmetic progression.

Answer: a n = a 1 + d(n – 1).

5. Calculate the formula for the first nine terms of the arithmetic progression ( b n),
If b 1 = –17, d = 6.

Is it possible to calculate immediately using a formula?

No, because the ninth term is unknown.

How to find it?

According to the formula n th term of an arithmetic progression.

Solution. b 9 = b 1 + 8d = –17 + 8∙6 = 31;

Answer: 63.

Question. Is it possible to find the sum without calculating the ninth term of the progression?

Formulation of the problem

Problem: getting the sum formula n first terms of an arithmetic progression, knowing its first term and difference d.

(Deriving a formula at the board by a student.)

We will decide No. 371(a) on new formula (2):

Let us verbally establish formulas (2) ( the conditions of the tasks are written on the board).

(a n

1. a 1 = 3, d = 4. S 4 - ?

2. a 1 = 2, d = –5. S 3 - ? [–9]

Find out from students what questions are unclear.

Independent work

Option 1

Given: (a n) - arithmetic progression.

1. a 1 = –3, a 6 = 21. S 6 - ?

2. a 1 = 6, d = –3. S 4 - ?

Option 2

Given: (a n) - arithmetic progression.

1.a 1 = 2, a 8 = –23. S 8 - ? [–84]

2.a 1 = –7, d = 4. S 5 - ?

Students exchange notebooks and check each other's solutions.

Summarize the learning of the material based on the results of independent work.

First level

Arithmetic progression. Detailed theory with examples (2019)

Number sequence

So, let's sit down and start writing some numbers. For example:
You can write any numbers, and there can be as many of them as you like (in our case, there are them). No matter how many numbers we write, we can always say which one is first, which one is second, and so on until the last, that is, we can number them. This is an example of a number sequence:

Number sequence
For example, for our sequence:

The assigned number is specific to only one number in the sequence. In other words, there are no three second numbers in the sequence. The second number (like the th number) is always the same.
The number with number is called the th term of the sequence.

We usually call the entire sequence by some letter (for example,), and each member of this sequence is the same letter with an index equal to the number of this member: .

In our case:

Let's say we have number sequence, in which the difference between adjacent numbers is the same and equal.
For example:

etc.
This number sequence is called an arithmetic progression.
The term "progression" was introduced by the Roman author Boethius back in the 6th century and was understood in more in a broad sense, like an infinite number sequence. The name "arithmetic" was transferred from the theory of continuous proportions, which was studied by the ancient Greeks.

This is a number sequence, each member of which is equal to the previous one added to the same number. This number is called the difference of an arithmetic progression and is designated.

Try to determine which number sequences are an arithmetic progression and which are not:

a)
b)
c)
d)

Got it? Let's compare our answers:
Is arithmetic progression - b, c.
Is not arithmetic progression - a, d.

Let's go back to given progression() and try to find the value of its th member. Exists two way to find it.

1. Method

We can add the progression number to the previous value until we reach the th term of the progression. It’s good that we don’t have much to summarize - only three values:

So, the th term of the described arithmetic progression is equal to.

2. Method

What if we needed to find the value of the th term of the progression? The summation would take us more than one hour, and it is not a fact that we would not make mistakes when adding numbers.
Of course, mathematicians have come up with a way in which it is not necessary to add the difference of an arithmetic progression to the previous value. Take a closer look at the drawn picture... Surely you have already noticed a certain pattern, namely:

For example, let’s see what the value of the th term of this arithmetic progression consists of:


In other words:

Try to find the value of a member of a given arithmetic progression yourself in this way.

Did you calculate? Compare your notes with the answer:

Please note that you got exactly the same number as in the previous method, when we sequentially added the terms of the arithmetic progression to the previous value.
Let's try to "depersonalize" this formula- let's bring her to general form and we get:

Arithmetic progression equation.

Arithmetic progressions can be increasing or decreasing.

Increasing- progressions in which each subsequent value of the terms is greater than the previous one.
For example:

Descending- progressions in which each subsequent value of the terms is less than the previous one.
For example:

The derived formula is used in the calculation of terms in both increasing and decreasing terms of an arithmetic progression.
Let's check this in practice.
We are given an arithmetic progression consisting of the following numbers: Let’s check what the th number of this arithmetic progression will be if we use our formula to calculate it:


Since then:

Thus, we are convinced that the formula operates in both decreasing and increasing arithmetic progression.
Try to find the th and th terms of this arithmetic progression yourself.

Let's compare the results:

Arithmetic progression property

Let's complicate the problem - we will derive the property of arithmetic progression.
Let's say we are given the following condition:
- arithmetic progression, find the value.
Easy, you say and start counting according to the formula you already know:

Let, ah, then:

Absolutely right. It turns out that we first find, then add it to the first number and get what we are looking for. If the progression is represented by small values, then there is nothing complicated about it, but what if we are given numbers in the condition? Agree, there is a possibility of making a mistake in the calculations.
Now think about whether it is possible to solve this problem in one step using any formula? Of course yes, and that’s what we’ll try to bring out now.

Let us denote the required term of the arithmetic progression as, the formula for finding it is known to us - this is the same formula we derived at the beginning:
, Then:

  • the previous term of the progression is:
  • the next term of the progression is:

Let's sum up the previous and subsequent terms of the progression:

It turns out that the sum of the previous and subsequent terms of the progression is the double value of the progression term located between them. In other words, to find the value of a progression term with known previous and successive values, you need to add them and divide by.

That's right, we got the same number. Let's secure the material. Calculate the value for the progression yourself, it’s not at all difficult.

Well done! You know almost everything about progression! It remains to find out only one formula, which, according to legend, was easily deduced by one of the greatest mathematicians of all time, the “king of mathematicians” - Karl Gauss...

When Carl Gauss was 9 years old, a teacher, busy checking the work of students in other classes, asked the following problem in class: “Calculate the sum of all natural numbers from to (according to other sources up to) inclusive.” Imagine the teacher’s surprise when one of his students (this was Karl Gauss) a minute later gave the correct answer to the task, while most of the daredevil’s classmates, after long calculations, received the wrong result...

Young Carl Gauss noticed a certain pattern that you can easily notice too.
Let's say we have an arithmetic progression consisting of -th terms: We need to find the sum of these terms of the arithmetic progression. Of course, we can manually sum all the values, but what if the task requires finding the sum of its terms, as Gauss was looking for?

Let us depict the progression given to us. Take a closer look at the highlighted numbers and try to perform various mathematical operations with them.


Have you tried it? What did you notice? Right! Their sums are equal


Now tell me, how many such pairs are there in total in the progression given to us? Of course, exactly half of all numbers, that is.
Based on the fact that the sum of two terms of an arithmetic progression is equal, and similar pairs are equal, we obtain that total amount is equal to:
.
Thus, the formula for the sum of the first terms of any arithmetic progression will be:

In some problems we do not know the th term, but we know the difference of the progression. Try to substitute the formula of the th term into the sum formula.
What did you get?

Well done! Now let's return to the problem that was asked to Carl Gauss: calculate for yourself what the sum of numbers starting from the th is equal to and the sum of the numbers starting from the th.

How much did you get?
Gauss found that the sum of the terms is equal, and the sum of the terms. Is that what you decided?

In fact, the formula for the sum of terms of an arithmetic progression was proven by the ancient Greek scientist Diophantus back in the 3rd century, and throughout this time witty people made full use of the properties of arithmetic progression.
For example, imagine Ancient Egypt and the most large-scale construction that time - the construction of a pyramid... The picture shows one side of it.

Where is the progression here, you say? Look carefully and find a pattern in the number of sand blocks in each row of the pyramid wall.


Why not an arithmetic progression? Calculate how many blocks are needed to build one wall if block bricks are placed at the base. I hope you won’t count while moving your finger across the monitor, you remember the last formula and everything we said about arithmetic progression?

IN in this case progression looks like in the following way: .
Arithmetic progression difference.
The number of terms of an arithmetic progression.
Let's substitute our data into the last formulas (calculate the number of blocks in 2 ways).

Method 1.

Method 2.

And now you can calculate on the monitor: compare the obtained values ​​with the number of blocks that are in our pyramid. Got it? Well done, you have mastered the sum of the nth terms of an arithmetic progression.
Of course, you can’t build a pyramid from blocks at the base, but from? Try to calculate how many sand bricks are needed to build a wall with this condition.
Did you manage?
The correct answer is blocks:

Training

Tasks:

  1. Masha is getting in shape for summer. Every day she increases the number of squats by. How many times will Masha do squats in a week if she did squats at the first training session?
  2. What is the sum of all odd numbers contained in.
  3. When storing logs, loggers stack them in such a way that each upper layer contains one less log than the previous one. How many logs are in one masonry, if the foundation of the masonry is logs?

Answers:

  1. Let us define the parameters of the arithmetic progression. In this case
    (weeks = days).

    Answer: In two weeks, Masha should do squats once a day.

  2. First odd number, last number.
    Arithmetic progression difference.
    The number of odd numbers in is half, however, let’s check this fact using the formula for finding the th term of an arithmetic progression:

    Numbers do contain odd numbers.
    Let's substitute the available data into the formula:

    Answer: The sum of all odd numbers contained in is equal.

  3. Let's remember the problem about pyramids. For our case, a , since each top layer is reduced by one log, then in total there are a bunch of layers, that is.
    Let's substitute the data into the formula:

    Answer: There are logs in the masonry.

Let's sum it up

  1. - a number sequence in which the difference between adjacent numbers is the same and equal. It can be increasing or decreasing.
  2. Finding formula The th term of an arithmetic progression is written by the formula - , where is the number of numbers in the progression.
  3. Property of members of an arithmetic progression- - where is the number of numbers in progression.
  4. The sum of the terms of an arithmetic progression can be found in two ways:

    , where is the number of values.

ARITHMETIC PROGRESSION. AVERAGE LEVEL

Number sequence

Let's sit down and start writing some numbers. For example:

You can write any numbers, and there can be as many of them as you like. But we can always say which one is first, which one is second, and so on, that is, we can number them. This is an example of a number sequence.

Number sequence is a set of numbers, each of which can be assigned a unique number.

In other words, each number can be associated with a certain natural number, and a unique one. And we will not assign this number to any other number from this set.

The number with number is called the th member of the sequence.

We usually call the entire sequence by some letter (for example,), and each member of this sequence is the same letter with an index equal to the number of this member: .

It is very convenient if the th term of the sequence can be specified by some formula. For example, the formula

sets the sequence:

And the formula is the following sequence:

For example, an arithmetic progression is a sequence (the first term here is equal, and the difference is). Or (, difference).

nth term formula

We call a formula recurrent in which, in order to find out the th term, you need to know the previous or several previous ones:

To find, for example, the th term of the progression using this formula, we will have to calculate the previous nine. For example, let it. Then:

Well, is it clear now what the formula is?

In each line we add to, multiplied by some number. Which one? Very simple: this is the number of the current member minus:

Much more convenient now, right? We check:

Decide for yourself:

In an arithmetic progression, find the formula for the nth term and find the hundredth term.

Solution:

The first term is equal. What is the difference? Here's what:

(This is why it is called difference because it is equal to the difference of successive terms of the progression).

So, the formula:

Then the hundredth term is equal to:

What is the sum of all natural numbers from to?

According to the legend, great mathematician Karl Gauss, as a 9-year-old boy, calculated this amount in a few minutes. He noticed that the sum of the first and last numbers is equal, the sum of the second and penultimate is the same, the sum of the third and 3rd from the end is the same, and so on. How many such pairs are there in total? That's right, exactly half the number of all numbers, that is. So,

The general formula for the sum of the first terms of any arithmetic progression will be:

Example:
Find the sum of all double digit numbers, multiples.

Solution:

The first such number is this. Each subsequent one is obtained by adding to previous date. Thus, the numbers we are interested in form an arithmetic progression with the first term and the difference.

Formula of the th term for this progression:

How many terms are there in the progression if they all have to be two-digit?

Very easy: .

The last term of the progression will be equal. Then the sum:

Answer: .

Now decide for yourself:

  1. Every day the athlete runs more meters than the previous day. How many total kilometers will he run in a week if he ran km m on the first day?
  2. A cyclist travels more kilometers every day than the previous day. On the first day he traveled km. How many days does he need to travel to cover a kilometer? How many kilometers will he travel during the last day of his journey?
  3. The price of a refrigerator in a store decreases by the same amount every year. Determine how much the price of a refrigerator decreased each year if, put up for sale for rubles, six years later it was sold for rubles.

Answers:

  1. The most important thing here is to recognize the arithmetic progression and determine its parameters. In this case, (weeks = days). You need to determine the sum of the first terms of this progression:
    .
    Answer:
  2. Here it is given: , must be found.
    Obviously, you need to use the same sum formula as in previous task:
    .
    Substitute the values:

    The root obviously doesn't fit, so the answer is.
    Let's calculate the path traveled over the last day using the formula of the th term:
    (km).
    Answer:

  3. Given: . Find: .
    It couldn't be simpler:
    (rub).
    Answer:

ARITHMETIC PROGRESSION. BRIEFLY ABOUT THE MAIN THINGS

This is a number sequence in which the difference between adjacent numbers is the same and equal.

Arithmetic progression can be increasing () and decreasing ().

For example:

Formula for finding the nth term of an arithmetic progression

is written by the formula, where is the number of numbers in progression.

Property of members of an arithmetic progression

It allows you to easily find a term of a progression if its neighboring terms are known - where is the number of numbers in the progression.

Sum of terms of an arithmetic progression

There are two ways to find the amount:

Where is the number of values.

Where is the number of values.


For example, the sequence \(2\); \(5\); \(8\); \(eleven\); \(14\)... is an arithmetic progression because each next element differs from the previous one by three (can be obtained from the previous one by adding three):

In this progression, the difference \(d\) is positive (equal to \(3\)), and therefore each next term is greater than the previous one. Such progressions are called increasing.

However, \(d\) can also be negative number. For example, in arithmetic progression \(16\); \(10\); \(4\); \(-2\); \(-8\)... the progression difference \(d\) is equal to minus six.

And in this case, each next element will be smaller than the previous one. These progressions are called decreasing.

Arithmetic progression notation

Progression is indicated by a small Latin letter.

Numbers that form a progression are called members(or elements).

They are denoted by the same letter as an arithmetic progression, but with a numerical index equal to the number of the element in order.

For example, the arithmetic progression \(a_n = \left\( 2; 5; 8; 11; 14…\right\)\) consists of the elements \(a_1=2\); \(a_2=5\); \(a_3=8\) and so on.

In other words, for the progression \(a_n = \left\(2; 5; 8; 11; 14…\right\)\)

Solving arithmetic progression problems

In principle, the information presented above is already enough to solve almost any arithmetic progression problem (including those offered at the OGE).

Example (OGE). The arithmetic progression is specified by the conditions \(b_1=7; d=4\). Find \(b_5\).
Solution:

Answer: \(b_5=23\)

Example (OGE). The first three terms of an arithmetic progression are given: \(62; 49; 36…\) Find the value of the first negative term of this progression..
Solution:

We are given the first elements of the sequence and know that it is an arithmetic progression. That is, each element differs from its neighbor by the same number. Let's find out which one by subtracting the previous one from the next element: \(d=49-62=-13\).

Now we can restore our progression to the (first negative) element we need.

Ready. You can write an answer.

Answer: \(-3\)

Example (OGE). Given several consecutive elements of an arithmetic progression: \(…5; x; 10; 12.5...\) Find the value of the element designated by the letter \(x\).
Solution:


To find \(x\), we need to know how much the next element differs from the previous one, in other words, the progression difference. Let's find it from two known neighboring elements: \(d=12.5-10=2.5\).

And now we can easily find what we are looking for: \(x=5+2.5=7.5\).


Ready. You can write an answer.

Answer: \(7,5\).

Example (OGE). Arithmetic progression is given the following conditions: \(a_1=-11\); \(a_(n+1)=a_n+5\) Find the sum of the first six terms of this progression.
Solution:

We need to find the sum of the first six terms of the progression. But we do not know their meanings; we are given only the first element. Therefore, we first calculate the values ​​​​one by one, using what is given to us:

\(n=1\); \(a_(1+1)=a_1+5=-11+5=-6\)
\(n=2\); \(a_(2+1)=a_2+5=-6+5=-1\)
\(n=3\); \(a_(3+1)=a_3+5=-1+5=4\)
And having calculated the six elements we need, we find their sum.

\(S_6=a_1+a_2+a_3+a_4+a_5+a_6=\)
\(=(-11)+(-6)+(-1)+4+9+14=9\)

The required amount has been found.

Answer: \(S_6=9\).

Example (OGE). In arithmetic progression \(a_(12)=23\); \(a_(16)=51\). Find the difference of this progression.
Solution:

Answer: \(d=7\).

Important formulas for arithmetic progression

As you can see, many problems on arithmetic progression can be solved simply by understanding the main thing - that an arithmetic progression is a chain of numbers, and each subsequent element in this chain is obtained by adding the same number to the previous one (the difference of the progression).

However, sometimes there are situations when deciding “head-on” is very inconvenient. For example, imagine that in the very first example we need to find not the fifth element \(b_5\), but the three hundred and eighty-sixth \(b_(386)\). Should we add four \(385\) times? Or imagine that in the penultimate example you need to find the sum of the first seventy-three elements. You'll be tired of counting...

Therefore, in such cases they do not solve things “head-on”, but use special formulas derived for arithmetic progression. And the main ones are the formula for the nth term of the progression and the formula for the sum of \(n\) first terms.

Formula of the \(n\)th term: \(a_n=a_1+(n-1)d\), where \(a_1\) is the first term of the progression;
\(n\) – number of the required element;
\(a_n\) – term of the progression with number \(n\).


This formula allows us to quickly find even the three-hundredth or the millionth element, knowing only the first and the difference of the progression.

Example. The arithmetic progression is specified by the conditions: \(b_1=-159\); \(d=8.2\). Find \(b_(246)\).
Solution:

Answer: \(b_(246)=1850\).

Formula for the sum of the first n terms: \(S_n=\frac(a_1+a_n)(2) \cdot n\), where



\(a_n\) – the last summed term;


Example (OGE). The arithmetic progression is specified by the conditions \(a_n=3.4n-0.6\). Find the sum of the first \(25\) terms of this progression.
Solution:

\(S_(25)=\)\(\frac(a_1+a_(25))(2 )\) \(\cdot 25\)

To calculate the sum of the first twenty-five terms, we need to know the value of the first and twenty-fifth terms.
Our progression is given by the formula of the nth term depending on its number (for more details, see). Let's calculate the first element by substituting one for \(n\).

\(n=1;\) \(a_1=3.4·1-0.6=2.8\)

Now let's find the twenty-fifth term by substituting twenty-five instead of \(n\).

\(n=25;\) \(a_(25)=3.4·25-0.6=84.4\)

Well, now we can easily calculate the required amount.

\(S_(25)=\)\(\frac(a_1+a_(25))(2)\) \(\cdot 25=\)
\(=\) \(\frac(2.8+84.4)(2)\) \(\cdot 25 =\)\(1090\)

The answer is ready.

Answer: \(S_(25)=1090\).

For the sum \(n\) of the first terms, you can get another formula: you just need to \(S_(25)=\)\(\frac(a_1+a_(25))(2)\) \(\cdot 25\ ) instead of \(a_n\) substitute the formula for it \(a_n=a_1+(n-1)d\). We get:

Formula for the sum of the first n terms: \(S_n=\)\(\frac(2a_1+(n-1)d)(2)\) \(\cdot n\), where

\(S_n\) – the required sum of \(n\) first elements;
\(a_1\) – the first summed term;
\(d\) – progression difference;
\(n\) – number of elements in total.

Example. Find the sum of the first \(33\)-ex terms of the arithmetic progression: \(17\); \(15.5\); \(14\)…
Solution:

Answer: \(S_(33)=-231\).

More complex arithmetic progression problems

Now you have everything necessary information for solving almost any arithmetic progression problem. Let’s finish the topic by considering problems in which you not only need to apply formulas, but also think a little (in mathematics this can be useful ☺)

Example (OGE). Find the sum of all negative terms of the progression: \(-19.3\); \(-19\); \(-18.7\)…
Solution:

\(S_n=\)\(\frac(2a_1+(n-1)d)(2)\) \(\cdot n\)

The task is very similar to the previous one. We begin to solve the same thing: first we find \(d\).

\(d=a_2-a_1=-19-(-19.3)=0.3\)

Now I would like to substitute \(d\) into the formula for the sum... and here a small nuance emerges - we do not know \(n\). In other words, we don’t know how many terms will need to be added. How to find out? Let's think. We will stop adding elements when we reach the first positive element. That is, you need to find out the number of this element. How? Let's write down the formula for calculating any element of an arithmetic progression: \(a_n=a_1+(n-1)d\) for our case.

\(a_n=a_1+(n-1)d\)

\(a_n=-19.3+(n-1)·0.3\)

We need \(a_n\) to become greater than zero. Let's find out at what \(n\) this will happen.

\(-19.3+(n-1)·0.3>0\)

\((n-1)·0.3>19.3\) \(|:0.3\)

We divide both sides of the inequality by \(0.3\).

\(n-1>\)\(\frac(19.3)(0.3)\)

We transfer minus one, not forgetting to change the signs

\(n>\)\(\frac(19.3)(0.3)\) \(+1\)

Let's calculate...

\(n>65,333…\)

...and it turns out that the first positive element will have the number \(66\). Accordingly, the last negative one has \(n=65\). Just in case, let's check this.

\(n=65;\) \(a_(65)=-19.3+(65-1)·0.3=-0.1\)
\(n=66;\) \(a_(66)=-19.3+(66-1)·0.3=0.2\)

So we need to add the first \(65\) elements.

\(S_(65)=\) \(\frac(2 \cdot (-19.3)+(65-1)0.3)(2)\)\(\cdot 65\)
\(S_(65)=\)\((-38.6+19.2)(2)\)\(\cdot 65=-630.5\)

The answer is ready.

Answer: \(S_(65)=-630.5\).

Example (OGE). The arithmetic progression is specified by the conditions: \(a_1=-33\); \(a_(n+1)=a_n+4\). Find the sum from the \(26\)th to the \(42\) element inclusive.
Solution:

\(a_1=-33;\) \(a_(n+1)=a_n+4\)

In this problem you also need to find the sum of elements, but starting not from the first, but from the \(26\)th. For such a case we do not have a formula. How to decide?
It’s easy - to get the sum from the \(26\)th to the \(42\)th, you must first find the sum from the \(1\)th to the \(42\)th, and then subtract from it the sum from first to \(25\)th (see picture).


For our progression \(a_1=-33\), and the difference \(d=4\) (after all, we add the four to the previous element to find the next one). Knowing this let's find the sum the first \(42\)-y elements.

\(S_(42)=\) \(\frac(2 \cdot (-33)+(42-1)4)(2)\)\(\cdot 42=\)
\(=\)\(\frac(-66+164)(2)\) \(\cdot 42=2058\)

Now the sum of the first \(25\) elements.

\(S_(25)=\) \(\frac(2 \cdot (-33)+(25-1)4)(2)\)\(\cdot 25=\)
\(=\)\(\frac(-66+96)(2)\) \(\cdot 25=375\)

And finally, we calculate the answer.

\(S=S_(42)-S_(25)=2058-375=1683\)

Answer: \(S=1683\).

For arithmetic progression, there are several more formulas that we did not consider in this article due to their low practical usefulness. However, you can easily find them.