Записать правило дифференцирования u v. Найти производную: алгоритм и примеры решений

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.


Дифференцирование – это вычисление производной.

1. Формулы дифференцирования.

Основные формулы дифференцирования – в таблице. Их необязательно зазубривать. Поняв некоторые закономерности, вы сможете из одних формул самостоятельно выводить другие.

1) Начнем с формулы (kx + m)′ = k.
Ее частными случаями являются формулы x ′ = 1 и C′ = 0.

В любой функции вида у = kx + m производная равна угловому коэффициенту k.

Например, дана функция у = 2х + 4. Ее производная в любой точке будет равна 2:

(2 х + 4)′ = 2 .

Производная функции у = 9 х + 5 в любой точке равна 9 . И т.д.

А давайте найдем производную функции у = 5х . Для этого представим 5х в виде (5х + 0). Мы получили выражение, похожее на предыдущее. Значит:

(5х )′ = (5х + 0)′ = 5.

Наконец, выясним, чему равна x ′.
Применим прием из предыдущего примера: представим х в виде 1х + 0. Тогда получим:

x ′ = (1х + 0)′ = 1.

Таким образом, мы самостоятельно вывели формулу из таблицы:

(0 · x + m)′ = 0.

Но тогда получается, что m′ тоже равна 0. Пусть m = C, где C – произвольная постоянная. Тогда мы приходим к еще одной истине: производная постоянной равна нулю. То есть получаем еще одну формулу из таблицы.

Таблица производных элементарных функций

Определение 1

Вычисление производной называют дифференцированием .

Обозначают производную $y"$ или $\frac{dy}{dx}$.

Замечание 1

Для нахождения производной функции согласно основным правилам дифференцирования превращают в другую функцию.

Рассмотрим таблицу производных. Обратим внимание на то, что функции после нахождения их производных преобразуются в другие функции.

Исключение составляет лишь $y=e^x$, превращающаяся сама в себя.

Правила дифференцирования производной

Чаще всего при нахождении производной требуется не просто посмотреть в таблицу производных, а вначале применить правила дифференцирования и доказательство производной произведения, и только потом использовать таблицу производных элементарных функций.

1. Постоянная выносится за знак производной

$C$ – постоянная (константа).

Пример 1

Продифференцировать функцию $y=7x^4$.

Решение.

Находим $y"=(7x^4)"$. Выносим число $7$ за знак производной, получаем:

$y"=(7x^4)"=7(x^4)"=$

используя таблицу, необходимо находить значение производной степенной функции:

$=7 \cdot 4x^3=$

Преобразуем результат к принятому в математике виду:

Ответ: $28x^3$.

2. Производная суммы (разницы) равна сумме (разнице) производных:

$(u \pm v)"=u" \pm v"$.

Пример 2

Продифференцировать функцию $y=7+x-5x^3+4 \sin x-9\sqrt{x^2}+\frac{4}{x^4} -11\cot x$.

Решение.

$y"=(7+x-5x^5+4 \sin x-9\sqrt{x^2}+\frac{4}{x^4} -11\cot x)"=$

применим правило дифференцирования производной суммы и разницы:

$=(7)"+(x)"-(5x^5)"+(4 \sin x)"-(9\sqrt{x^2})"+(\frac{4}{x^4})"-(11\cot x)"=$

отметим, что при дифференцировании все степени и корни необходимо преобразовать к виду $x^{\frac{a}{b}}$;

вынесем все постоянные за знак производной:

$=(7)"+(x)"-(5x^5)"+(4\sin x)"-(9x^{\frac{2}{5}})"+(4x^{-4})"-(11\cot x)"=$

$=(7)"+(x)"-5(x^5)"+4(\sin x)"-9(x^{\frac{2}{5}})"+4(x^{-4})"-11(\cot x)"=$

разобравшись с правилами дифференцирования, некоторые из них (например, как последние два) применяются одновременно во избежание переписывания длинного выражения;

мы получили выражение из элементарных функций, стоящих под знаком производной; воспользуемся таблицей производных:

$=0+1-5 \cdot 5x^4+4\cos x-9 \cdot \frac{2}{5} x^{-\frac{3}{5}}+12x^{-5}-11 \cdot \frac{-1}{\sin^2 x}=$

преобразуем к виду, принятому в математике:

$=1-25x^4+4 \cos x-\frac{18}{5\sqrt{x^3}}+\frac{12}{x^5} +\frac{11}{\sin^2 x}$

Обратим внимание, что при нахождении результата принято слагаемые с дробными степенями преобразовать в корни, а с отрицательными – в дроби.

Ответ : $1-25x^4+4 \cos x-\frac{18}{5\sqrt{x^3}}+\frac{12}{x^5} +\frac{11}{\sin^2 x}$.

3. Формула производной произведения функций:

$(uv)"=u" v+uv"$.

Пример 3

Продифференцировать функцию $y=x^{11} \ln x$.

Решение.

Сначала применим правило вычисления производной произведения функций, а затем используем таблицу производных:

$y"=(x^{11} \ln x)"=(x^{11})" \ln x+x^{11} (\lnтx)"=11x^{10} \ln x+x^{11} \cdot \frac{1}{x}=11x^{10} \ln x-\frac{x^{11}}{x}=11x^{10} \ln x-x^{10}=x^{10} (11 \ln x-1)$.

Ответ : $x^{10} (11 \ln x-1)$.

4. Формула производной частной функции:

$(\frac{u}{v})"=\frac{u" v-uv"}{v^2}$.

Пример 4

Продифференцировать функцию $y=\frac{3x-8}{x^5-7}$.

Решение.

$y"=(\frac{3x-8}{x^5-7})"=$

по правилам приоритета математических операций сначала выполним деление, а потом сложение и вычитание, поэтому применим сначала правило вычисления производной частного:

$=\frac{(3x-8)" (x^5-7)-(3x-8) (x^5-7)"}{(x^5-7)^2} =$

применим правила производных суммы и разности, раскроем скобки и упростим выражение:

$=\frac{3(x^5-7)-5x^4 (3x-8)}{(x^5-7)^2} =\frac{3x^5-21-15x^5+40x^4}{(x^5-7)^2} =\frac{-12x^5+40x^4-21}{(x^5-7)^2}$ .

Ответ: $\frac{-12x^5+40x^4-21}{(x^5-7)^2}$.

Пример 5

Продифференцируем функцию $y=\frac{x^7-2x+3}{x}$.

Решение.

Функция y является частным двух функций, поэтому можно применить правило вычисления производной частного, но в таком случае получим громоздкую функцию. Для упрощения данной функции можно почленно разделить числитель на знаменатель:

$y=\frac{x^7-13x+9}{x}=x^6-13+\frac{9}{x}$.

Применим к упрощенной функции правило дифференцирования суммы и разности функций:

$y"=(x^6-13+\frac{9}{x})"=(x^6)"+(-13)"+9(x^{-1})"=6x^5+0+9 \cdot (-x^{-2})=$

$=6x^5-\frac{9}{x^2}$.

Ответ : $6x^5-\frac{9}{x^2}$.

Пусть функция y = f(x) определена в промежутке X. Производной функции y = f(x) в точке х o называется предел

Если этот предел конечный, то функция f(x) называется дифференцируемой в точке x o ; при этом она оказывается обязательно и непрерывной в этой точке.

Если же рассматриваемый предел равен ¥ (или - ¥), то при условии, что функция в точке х o непрерывна, будем говорить, что функция f(x) имеет в точке х o бесконечную производную .

Производная обозначается символами

y ¢, f ¢(x o), , .

Нахождение производной называется дифференцированием функции. Геометрический смысл производной состоит в том,что производная есть угловой коэффициент касательной к кривой y=f(x) в данной точке х o ; физический смысл - в том, что производная от пути по времени есть мгновенная скорость движущейся точки при прямолинейном движении s = s(t) в момент t o .

Если с - постоянное число, и u = u(x), v = v(x) - некоторые дифференцируемые функции, то справедливы следующие правила дифференцирования:

1) (с) " = 0, (cu) " = cu";

2) (u+v)" = u"+v";

3) (uv)" = u"v+v"u;

4) (u/v)" = (u"v-v"u)/v 2;

5) если y = f(u), u = j(x), т.е. y = f(j(x)) - сложная функция, или суперпозиция , составленная из дифференцируемых функций j и f, то , или

6) если для функции y = f(x) существует обратная дифференцируемая функция x = g(y), причем ¹ 0, то .

На основе определения производной и правил дифференцирования можно составить список табличных производных основных элементарных функций.

1. (u m)" = m u m - 1 u" (m Î R ).

2. (a u)" = a u lna× u".

3. (e u)" = e u u".

4. (log a u)" = u"/(u ln a).

5. (ln u)" = u"/u.

6. (sin u)" = cos u× u".

7. (cos u)" = - sin u× u".

8. (tg u)" = 1/ cos 2 u× u".

9. (ctg u)" = - u" / sin 2 u.

10. (arcsin u)" = u" / .

11. (arccos u)" = - u" / .

12. (arctg u)" = u"/(1 + u 2).

13. (arcctg u)" = - u"/(1 + u 2).

Вычислим производную степенно-показательного выражения
y=u v , (u>0), где u и v суть функции от х , имеющие в данной точке производные u" , v" .

Прологарифмировав равенство y=u v , получим ln y = v ln u.

Приравнивая производные по х от обеих частей полученного равенства с помощью правил 3, 5 и формулы для производной логарифмической функции, будем иметь:

y"/y = vu"/u +v" ln u, откуда y" = y (vu"/u +v" ln u).

(u v)"=u v (vu"/u+v" ln u), u > 0.

Например, если y = x sin x , то y" = x sin x (sin x/x + cos x× ln x).

Если функция y = f(x) дифференцируема в точке x , т.е. имеет в этой точке конечную производную y" , то = y"+a, где a®0 при Dх® 0; отсюда D y = y" Dх + a x.

Главная часть приращения функции, линейная относительно Dх, называется дифференциалом функции и обозначается dy: dy = y" Dх. Если положить в этой формуле y=x, то получим dx = x"Dх = 1×Dх =Dх, поэтому dy=y"dx, т. е. символ для обозначения производной можно рассматривать как дробь.

Приращение функции D y есть приращение ординаты кривой, а дифференциал dy есть приращение ординаты касательной.

Пусть мы нашли для функции y=f(x) ее производную y ¢= f ¢(x). Производная от этой производной называется производной второго порядка функции f(x), или второй производной, и обозначается .

Аналогично определяются и обозначаются:

производная третьего порядка - ,

производная четвертого порядка -

и вообще производная n-го порядка - .

Пример 15. Вычислить производную функции y=(3x 3 -2x+1)×sin x.

Решение. По правилу 3, y"=(3x 3 -2x+1)"×sin x + (3x 3 -2x+1)×(sin x)" =
= (9x 2 -2)sin x + (3x 3 -2x+1)cos x.

Пример 16 . Найти y", y = tg x + .

Решение. Используя правила дифференцирования суммы и частного, получим: y"=(tgx + )" = (tgx)" + ()" = + = .

Пример 17. Найти производную сложной функции y= ,
u=x 4 +1.

Решение. По правилу дифференцирования сложной функции, получим: y" x =y " u u" x =()" u (x 4 +1)" x =(2u + . Так как u=x 4 +1,то
(2 x 4 +2+ .

Пример 18.

Решение. Представим функцию y= в виде суперпозиции двух функций: y = e u и u = x 2 . Имеем: y" x =y " u u" x = (e u)" u (x 2)" x = e u ×2x. Подставляя x 2 вместо u , получим y=2x .

Пример 19. Найти производную функции y=ln sin x.

Решение. Обозначим u=sin x, тогда производная сложной функции y=ln u вычисляется по формуле y" = (ln u)" u (sin x)" x = .

Пример 20. Найти производную функции y= .

Решение. Случай сложной функции, полученной в результате нескольких суперпозиций, исчерпывается последовательным применением правила 5:

Пример 21 . Вычислить производную y=ln .

Решение. Логарифмируя и используя свойства логарифмов, получим:

y=5/3ln(x 2 +4) +7/3ln(3x-1)-2/3ln(6x 3 +1)-1/3tg 5x.

Дифференцируя обе части последнего равенства, получим:

2.2. Предельный анализ в экономике. Эластичность функции

В экономических исследованиях для обозначения производных часто пользуются специфической терминологией. Например, если f(x) есть производственная функция, выражающая зависимость выпуска какой-либо продукции от затрат фактора x , то f "(x) называют предельным продуктом ; если g(x) есть функция издержек, т. е. функция g(x) выражает зависимость общих затрат от объема продукции x , то g"(x) называют предельными издержками .

Предельный анализ в экономике - совокупность приемов исследования изменяющихся величин затрат или результатов при изменении объемов производства, потребления и т.п. на основе анализа их предельных значений. Большей частью плановые расчеты, основывающиеся на обычных статистических данных, ведутся в форме суммарных показателей. При этом анализ заключается главным образом в вычислении средних величин. Однако в некоторых случаях оказывается необходимым более детальное исследование с учетом предельных значений. Например, при выяснении издержек производства зерна в районе на перспективу принимают во внимание, что издержки могут быть различными в зависимости, при прочих равных условиях, от предполагаемых объемов сбора зерна, так как на вновь вовлекаемых в обработку худших землях издержки производства будут выше, чем по району в среднем.

Если зависимость между двумя показателями v и x задана аналитически: v = f(x) - то средняя величина представляет собой отношение v/x , а предельная - производную .

Нахождение производительности труда. Пусть известна функция
u = u(t), выражающая количество произведенной продукции u за время работы t . Вычислим количество произведенной продукции за время
Dt = t 1 - t 0: Du = u(t 1) - u(t 0) = u(t 0 +Dt) - u(t 0). Средней производительностью труда называется отношение количества произведенной продукции к затраченному времени, т.е. z ср.= Du/Dt.

Производительностью труда рабочего z(t 0) в момент t 0 называется предел, к которому стремится z ср. при Dt®0: . Вычисление производительности труда, таким образом, сводится к вычислению производной: z(t 0) = u"(t 0).

Издержки производства K однородной продукции есть функция количества продукции x . Поэтому можно записать K = K(x). Предположим, что количество продукции увеличивается на Dх . Количеству продукции x+ Dх соответствуют издержки производства K(x + Dх). Следовательно, приращению количества продукции Dх соответствует приращение издержек производства продукции DK = K(x + Dх) - K(x).

Среднее приращение издержек производства есть DK/Dх. Это приращение издержек производства на единицу приращения количества продукции.

Предел называется предельными издержками производства .

Если обозначить через u(x) выручку от продажи x единиц товара, то и называется предельной выручкой .

С помощью производной можно вычислить приращение функции, соответствующее приращению аргумента. Во многих задачах удобнее вычислять процент прироста (относительное приращение) зависимой переменной, соответствующий проценту прироста независимой переменной. Это приводит нас к понятию эластичности функции (иногда ее называют относительной производной ). Итак, пусть дана функция y = f(x), для которой существует производная y ¢ = f ¢(x). Эластичностью функции y = f(x) относительно переменной x называют предел

Его обозначают E x (y) = x/y f ¢ (x) = .

Эластичность относительно x есть приближенный процентный прирост функции (повышение или понижение), соответствующий приращению независимой переменной на 1%. Экономисты измеряют степень чуткости, или чувствительности, потребителей к изменению цены продукции, используя концепцию ценовой эластичности. Для спроса на некоторые продукты характерна относительная чуткость потребителей к изменениям цен, небольшие изменения в цене приводят к значительным изменениям в количестве покупаемой продукции. Спрос на такие продукты принято называть относительно эластичным или просто эластичным. Что касается других продуктов, потребители относительно нечутки к изменению цен на них, то есть существенное изменение в цене ведет лишь к небольшому изменению в количестве покупок. В таких случаях спрос относительно неэластичен или просто неэластичен. Термин совершенно неэластичный спрос означает крайний случай, когда изменение цены не приводит ни к какому изменению количества спрашиваемой продукции. Примером может служить спрос больных острой формой диабета на инсулин или спрос наркоманов на героин. И наоборот, когда при самом малом снижении цены покупатели увеличивают покупки до предела своих возможностей - тогда мы говорим, что спрос является совершенно эластичным.

Экстремум функции

Функция y=f(x) называется возрастающей (убывающей ) в некотором интервале, если при x 1 < x 2 выполняется неравенство f(x 1) < f (x 2) (f(x 1) > f(x 2)).

Если дифференцируемая функция y = f(x) на отрезке возрастает (убывает), то ее производная на этом отрезке f ¢(x) > 0 (f ¢(x) < 0).

Точка x о называется точкой локального максимума (минимума ) функции f(x), если существует окрестность точки x о , для всех точек которой верно неравенство f(x) £ f(x о) (f(x) ³ f(x о)).

Точки максимума и минимума называются точками экстремума , а значения функции в этих точках - ее экстремумами.

Необходимые условия экстремума . Если точка x о является точкой экстремума функции f(x), то либо f ¢(x о) = 0, либо f ¢(x о) не существует. Такие точки называют критическими, причем сама функция в критической точке определена. Экстремумы функции следует искать среди ее критических точек.

Первое достаточное условие. Пусть x о - критическая точка. Если f ¢ (x) при переходе через точку x о меняет знак плюс на минус, то в точке x о функция имеет максимум, в противном случае - минимум. Если при переходе через критическую точку производная не меняет знак, то в точке x о экстремума нет.

Второе достаточное условие. Пусть функция f(x) имеет производную
f ¢ (x) в окрестности точки x о и вторую производную в самой точке x о . Если f ¢(x о) = 0, >0 ( <0), то точка x о является точкой локального минимума (максимума) функции f(x). Если же =0, то нужно либо пользоваться первым достаточным условием, либо привлекать высшие производные.

На отрезке функция y = f(x) может достигать наименьшего или наибольшего значения либо в критических точках, либо на концах отрезка .

Пример 22. Найти экстремумы функции f(x) = 2x 3 - 15x 2 + 36x - 14.

Решение. Так как f ¢ (x) = 6x 2 - 30x +36 = 6(x -2)(x - 3), то критические точки функции x 1 = 2 и x 2 = 3. Экстремумы могут быть только в этих точках. Так как при переходе через точку x 1 = 2 производная меняет знак плюс на минус, то в этой точке функция имеет максимум. При переходе через точку x 2 = 3 производная меняет знак минус на плюс, поэтому в точке x 2 = 3 у функции минимум. Вычислив значения функции в точках
x 1 = 2 и x 2 = 3, найдем экстремумы функции: максимум f(2) = 14 и минимум f(3) = 13.

Пример 23. Нужно построить прямоугольную площадку возле каменной стены так, чтобы с трех сторон она была отгорожена проволочной сеткой, а четвертой стороной примыкала к стене. Для этого имеется a погонных метров сетки. При каком соотношении сторон площадка будет иметь наибольшую площадь?

Решение. Обозначим стороны площадки через x и y . Площадь площадки равна S = xy. Пусть y - это длина стороны, примыкающей к стене. Тогда по условию должно выполняться равенство 2x + y = a. Поэтому y = a - 2x и S = x(a - 2x), где 0 £ x £ a/2 (длина и ширина площадки не могут быть отрицательными). S ¢ = a - 4x, a - 4x = 0 при x = a/4, откуда
y = a - 2×a/4 =a/2. Поскольку x = a/4 - единственная критическая точка, проверим, меняется ли знак производной при переходе через эту точку. При x < a/4 S ¢ >0, а при x >a/4 S ¢ <0, значит, в точке x=a/4 функция S имеет максимум. Значение функции S(a/4) = a/4(a - a/2) = a 2 /8 (кв. ед).

Поскольку S непрерывна на и ее значения на концах S(0) и S(a/2) равны нулю, то найденное значение будет наибольшим значением функции. Таким образом, наиболее выгодным соотношением сторон площадки при данных условиях задачи является y = 2x.

Пример 24. Требуется изготовить закрытый цилиндрический бак вместимостью V=16p » 50 м 3 . Каковы должны быть размеры бака (радиус R и высота Н), чтобы на его изготовление пошло наименьшее количество материала?

Решение. Площадь полной поверхности цилиндра равна S = 2pR(R+Н). Мы знаем объем цилиндра V = pR 2 Н Þ Н = V/pR 2 =16p/ pR 2 = 16/ R 2 . Значит, S(R) = 2p(R 2 +16/R). Находим производную этой функции:
S ¢(R) = 2p(2R- 16/R 2) = 4p (R- 8/R 2). S ¢(R) = 0 при R 3 = 8, следовательно,
R = 2, Н = 16/4 = 4.

2. Основные правила дифференцирования

Если с - постоянное число, и u = u(x), v = v(x) - некоторые дифференцируемые функции, то справедливы следующие правила дифференцирования:

1) (с) " = 0, (cu) " = cu";

2) (u+v)" = u"+v";

3) (uv)" = u"v+v"u;

4) (u/v)" = (u"v-v"u)/v 2;

Пример 1. Найти производную функции

Решение. Применяя правила (5) и (8) и формулу (4) дифференцирования степенной функции получим

Пример 2. Найти производную функции

Решение. Применим правило (7) дифференцирования произведения, а затем найдём производные сомножителей так же, как в примере 4. Тогда получим

Пример 3. Найти производную функции у =

Решение. Применим правило (10) дифференцирования частного:

Затем, так же как и выше, вычислим производные в числителе. Имеем

Текст задания:

Вариант 1

1. Найти производную функции .

2. Найти производную функции .

в точке с абсциссой , .

t

Вариант 2

1. Найти производную функции .

2. Найти производную функции .

3. Написать уравнение касательной к графику функции в точке с абсциссой , .

4. Материальная точка движется по закону . Найти скорость и ускорение в момент времени t =5 с. (Перемещение измеряется в метрах.)

Вариант 3

1. Найти производную функции .

2. Найти производную функции .

3. Написать уравнение касательной к графику функции в точке с абсциссой , .

4. Материальная точка движется по закону . Найти скорость и ускорение в момент времени t =5 с. (Перемещение измеряется в метрах.)

Вариант 4

1. Найти производную функции .

2. Найти производную функции .

3. Написать уравнение касательной к графику функции в точке с абсциссой , .

4. Материальная точка движется по закону . Найти скорость и ускорение в момент времени t =5 с. (Перемещение измеряется в метрах.)

Вариант 5

1. Найти производную функции .

2. Найти производную функции .

3. Написать уравнение касательной к графику функции в точке с абсциссой , .

4. Материальная точка движется по закону . Найти скорость и ускорение в момент времени t =5 с. (Перемещение измеряется в метрах.)

Вариант 6

1. Найти производную функции .

2. Найти производную функции .

3. Написать уравнение касательной к графику функции в точке с абсциссой , .

4. Материальная точка движется по закону . Найти скорость и ускорение в момент времени t =5 с. (Перемещение измеряется в метрах.)

Практическая работа № 16



Тема: Применение производной к исследованию функций и построению графиков

Цель работы: закрепить знания и умения студентов по освоению темы, формировать навыки прикладного использования аппарата производной.

Теоритическое обоснование:

Схема исследования функции и построение ее графика

I. Найти область определения функции.
II. Найти точки пересечения графика функции с осями координат.
III. Найти асимптоты.
IV. Найти точки возможного экстремума.
V. Найти критические точки.
VI. С помощью вспомогательного рисунка исследовать знак первой производных. Определить участки возрастания и убывания функции, точки экстремумов.
VII. Построить график, учитывая исследование, проведенное в п.1-6.