Три группы экологических факторов. Экологические факторы среды

Экологические факторы - неотъемлемая часть существования популяций и создания условий существования. Изучение каждого фактора в отдельности создает множество дополнительных факторов, которые выражают весь комплекс его влияния, действия и значения в природе.

Классификация экологических факторов

Систематизация свойств окружающей среды упрощает восприятие, составление и изучение их параметров. Компоненты окружающей среды делятся по характеру и спектру воздействия на природную и антропогенную среду. К ним относят:

  • Быстродействующие. Воздействие фактора на процессы обмена веществ энергии и информации на осуществление, которого требуется минимальное количество времени.
  • Косвеннодействующие. Воздействие отдельных факторов оказывают лимитирующее или сопутствующее для развития процессов, обмена веществ или изменения вещественного состава элемента, группы организмов или веществ окружающей среды.
  • Избирательное воздействие направленно на компоненты окружающей среды, характеризуя их как лимитирующие для определенного вида организмов ил процессов.

Определенные виды животных питаются только одним видом пищи, избирательным воздействием их будет среда обитания с этим растением. Общий спектр воздействия – это фактор обуславливающий воздействие комплекса условий окружающей среды на разные уровни организации жизни.

Разнообразие экологических факторов позволяет их классифицировать по признакам их действия:

  • по среде обитания;
  • по времени;
  • по периодичности;
  • по характеру воздействия;
  • по происхождению;
  • по объекту воздействия.

Их классификация имеет многокомпонентное описание и внутри каждого фактора делится на множество самостоятельных. Это позволяет подробно описать средовые условия и совместное влияние их на разных уровнях организации жизни.

Группы экологических факторов

Условия существования организмов независимо от уровня его организации испытывает влияние от экологических факторов, которые по своей организации делятся на группы. Выделяют три группы факторов: абиотические; биотические; антропогенные.

Антропогенными факторами называют воздействие на окружающую среду: продуктов деятельности человека, изменение естественной среды с заменой на искусственно созданные объекты. Эти факторы дополняют загрязнение остаточными продуктами промышленности, жизнедеятельности (выбросы, отходы, удобрения).

Абиотические экологические факторы . Природная окружающая среда состоит из компонентов слагающих ее как единое целое. Она состоит из факторов определяющих ее как среду обитания для разных уровней организации жизни. Ее компоненты:

  • Свет. Отношение к свету определяет местообитание, основные процессы метаболизма растений, разнообразие животных и их жизнедеятельность.
  • Вода. Это компонент присутствующий в живых организмах всех уровней организации жизни на Земле. Этот элемент среды обитания занимает большую часть Земли и является средой обитания. Разнообразие живых организмов в большинстве своих видов относится к этой среде.
  • Атмосфера. Газовая оболочка земли, в которой протекают процессы, регулирующие климатические и температурные режимы планеты. Эти режимы определяют пояса планеты и условия существования на них.
  • Эдафические или почвенные факторы. Почва результат эрозии горных пород Земли своими свойствами определяют облик планеты. Неорганические компоненты, входящие в ее состав служат питательной средой для растений.
  • Рельеф местности. Орографические условия местности регулируются изменением поверхности под влиянием геологических эрозионных процессов земли. К ним относят возвышенности, ложбины, речные долины, плоскогорья и другие географические рубежи поверхности Земли.
  • Влияние абиотических факторов и биотических взаимосвязано. Каждый фактор оказывает положительное или отрицательное влияние на живые организмы.

Биотические экологические факторы . Взаимоотношения между организмами и их влияние на объекты неживой природы называется биотическими экологическими факторами. Эти факторы классифицируются по действиям и взаимоотношениям организмов:

Вид взаимодействия особей, их соотношение и описание

Действие экологических факторов

Экологические факторы оказывают комплексное воздействие на организмы. Их действие характеризуется количественными показателями, выраженными в общей потоке их влияния. Способность адаптироваться к действию экологических факторов называют экологической валентностью вида. Порог влияния выражается зоной толерантности. Широкий диапазон распространения и приспособленности вида характеризует его как эврибионтный, а узкий – стенобитный.

Совместное влияние факторов характеризуется экологическим спектром вида. Закономерности влияния факторов. Закон действия факторов:

  • Относительности. Каждый фактор влияет совместно и его характеризует: интенсивность, направленность и количество в определенный промежуток времени.
  • Оптимальность факторов – средний диапазон их воздействия является благоприятным.
  • Относительной заменимости и абсолютной незаменимости Условия жизни зависят от незаменимых абиотических факторов окружающей среды (вода, свет) и абсолютное их отсутствие незаменимо для вида. Компенсирующее воздействие оказывает избыток других факторов.

Влияние экологических факторов

Влияние каждого фактора обусловлено их характеристиками. Основные группы этих факторов:

  • Абиотические. Свет оказывает влияние на физиологические процессы в организме человека, на жизнедеятельность животных и вегетацию растений. Биотические. Дерево при смене сезонов года сбрасывает лиственный покров и удобряет верхний почвенный слой.
  • Антропогенные. Деятельность человека еще со времен каменного века оказывает влияние на окружающую природную среду. При развитии промышленности и хозяйственной деятельности загрязнение ее это основное влияние человека на среду.
  • Экофакторы оказывают смежное влияние и их отдельное воздействие описать сложно.

Экологические факторы: примеры

Примерами экологических факторов являются основные условия существования на популяционном уровне. Основные факторы:

  • Свет. Растения используют свет для вегетативных процессов. Физиологические процессы под влиянием света в организме человека генетически обусловлены в процессе эволюции.
  • Температура. Биоразнообразие организмов выражается в существовании видов в разных диапазонах температур. Под воздействием температуры осуществляются метаболические процессы в организме.
  • Вода. Элемент окружающей среды, оказывающий влияние на существование и адаптацию организмов. Также к ним относят воздух, ветер, почву, человека. Эти факторы создают динамические процессы в природе и оказывают свое воздействие на процессы в ней.

Загрязнение окружающей среды является первостепенной проблемой для экологических сообществ, охраны окружающей среды. Факты о отходах (антропогенные экологические факторы):

  • В Тихом океане обнаружен остров из отходов (пластиковые бутылки и другие вещества). Пластик разлагается более 100 лет, пленка – 200 лет. Вода может ускорить этот процесс и это станет еще одним фактором загрязнения гидросферы. Животные поедают пластик, принимая их за медузы. Пластик не переваривается, и животное может погибнуть.
  • Загрязнение воздуха в Китае, Индии и других промышленных городах отравляет организм. Токсичные отходы с промышленных предприятий поступают со сточными водами в реки и отравляют этим воды, которые по цепочке водного баланса могут загрязнять воздушные массы, подземные воды и опасны для человека.
  • В Австралии обществом по защите животных и сохранению биоразнообразия натягивают вдоль шоссе лианы. Это защищает коал от гибели.
  • Для защиты носорогов от вымирания как вида им отрезают рог.

Экологические факторы являются многофакторными условиями существования каждого вида на разных уровнях организации жизни. Каждый уровень организации использует их рационально и способы их отличаются.

Сообществ) между собой и со средой обитания. Данный термин был впервые предложен немецким биологом Эрнстом Геккелем в 1869 г. Как самостоятельная наука она выделилась в начале XX века наряду с физиологией, генетикой и другими. Область приложения экологии – это организмы, популяции и сообщества. Экология рассматривает их как живой компонент системы, которую называют экосистемой. В экологии понятия популяции – сообщества и экосистемы имеют четкие определения.

Популяция (с точки зрения экологии) – это группа особей одного вида, занимающая определенную территорию и, обычно, в той или иной степени изолированная от других сходных групп.

Сообщество – это любая группа организмов различных видов, обитающих на одной площади и взаимодействующих друг с другом посредством трофических (пищевых) или пространственных связей.

Экосистема – это сообщество организмов с окружающей их средой, взаимодействующих между собой и образующих экологическую единицу.

Все экосистемы Земли объединяются в или экосферу. Понятно, что совершенно невозможно охватить исследованиями всю биосферу Земли. Поэтому точкой приложения экологии является экосистема. Однако, экосистема, как видно из определений состоит из популяций, отдельных организмов и всех факторов неживой природы. Исходя из этого возможно несколько различных подходов в изучении экосистем.

Экосистемный подход .При экосистемном подходе экологом изучаются поток энергии и в экосистеме. Наибольший интерес в данном случае представляют собой взаимоотношения организмов между собой и с окружающей средой. Этот подход позволяет объяснить сложную структуру взаимосвязей в экосистеме и дать рекомендации по рациональному природопользованию.

Изучение сообществ . При этом подходе подробно изучается видовой состав сообществ и факторы, ограничивающие распространение конкретных видов. В данном случае исследуются четко различимые биотические единицы (луг, лес, болото и т.д.).
подход . Точкой приложения данного подхода, как явствует из названия, является популяция.
Изучение местообитаний . В данном случае изучается относительно однородный участок среды, где живет данный организм. Отдельно, как самостоятельное направление исследований он обычно не применяется, но дает необходимый материал для понимания экосистемы в целом.
Следует отметить, что все перечисленные выше подходы в идеале должны применяться в комплексе, но в настоящий момент это практически невозможно из-за значительных масштабов исследуемых объектов и ограниченности количества полевых исследователей.

Экология как наука использует разнообразные методы исследования, позволяющие получить объективную информацию о функционировании природных систем.

Методы экологических исследований:

  • наблюдение
  • эксперимент
  • учет численности популяции
  • метод моделирования

Среда, которая окружает живые существа, состоит из многих элементов. Они по-разному влияют на жизнедеятельность организмов. Последние неодинаково реагируют на различные факторы среды. Отдельные элементы среды, взаимодействующие с организмами, называют экологическими факторами. Условия существования - это совокупность жизненно необходимых факторов среды, без которых живые организмы не могут существовать. Относительно организмов они выступают как экологические факторы.

Классификация экологических факторов.

Все экологические факторы принято классифицировать (распределять) на следующие основные группы: абиотические, биотические и антропические. в Абиотические (абиогенные) факторы - это физико-химические факторы неживой природы. Биотические, или биогенные, факторы - это прямое или опосредованное влияние живых организмов как друг на друга, так и на окружающую среду. Антропические (антропогенные) факторы в последние годы выделяют в самостоятельную группу факторов среди биотических, в связи с их большим значением. Это факторы прямого или косвенного воздействия человека и его хозяйственной деятельности на живые организмы и среда.

Абиотические факторы.

К абиотических факторов относятся элементы неживой природы, которые действуют на живой организм. Виды абиотических факторов представлены в табл. 1.2.2.

Таблица 1.2.2. Основные виды абиотических факторов

Климатические факторы.

Все абиотические факторы проявляются и действуют в пределах трех геологических оболочек Земли: атмосферы, гидросферы и литосферы. Факторы, проявляющиеся (действуют) в атмосфере и при взаимодействии последней с гидросферой или же с литосферой, называют климатическими. их проявление зависит от физико-химических свойств геологических оболочек Земли, от количества и распределения солнечной энергии, проникающей и поступает к ним.

Солнечная радиация.

Наибольшее значение среди всего многообразия экологических факторов имеет солнечная радиация (солнечное излучение). Это непрерывный поток элементарных частиц (скорость 300-1500 км/с) и электромагнитных волн (скорость 300 тыс. км/с), что несет к Земле огромное количество энергии. Солнечная радиация - это основной источник жизни на нашей планете. Под непрерывным потоком солнечного излучения на Земле зародилась жизнь, прошло долгий путь своей эволюции и продолжает существовать и зависеть от солнечной энергии. Основные свойства лучистой энергии Солнца как экологического фактора определяется длиной волн. Волны, проходящие атмосферу и достигают Земли, измеряются в пределах от 0,3 до 10 мкм.

По характеру воздействия на живые организмы этот спектр солнечной радиации разделяют на три части: ультрафиолетовое излучение, видимый свет и инфракрасное излучение.

Коротковолновые ультрафиолетовые лучи почти полностью поглощаются атмосферой, а именно ее озоновым экраном. Незначительное количество ультрафиолетовых лучей проникает к поверхности земли. Длина их волн лежит в пределах 0,3-0,4 мкм. На их долю приходится 7% энергии солнечной радиации. Коротковолновые лучи губительно действуют на живые организмы. Они могут вызвать изменения наследственного материала - мутации. Поэтому в процессе эволюции организмы, которые длительное время находятся под влиянием солнечной радиации, выработали приспособления защиты от ультрафиолетовых лучей. У многих из них в покровах вырабатывается дополнительное количество черного пигмента - меланина, который защищает от проникновения нежелательных лучей. Именно поэтому люди приобретают загара, долгое время находясь на открытом воздухе. Во многих индустриальных регионах наблюдается так называемый индустриальный меланизм - потемнение окраски животных. Но это происходит не под воздействием ультрафиолетового излучения, а из-за загрязнения сажей, пылью окружающей среды, элементы которого обычно становятся темнее. На таком темном фоне выживают (хорошо маскируются) более темные формы организмов.

Видимый свет проявляется в пределах длин волн от 0,4 до 0,7 мкм. На его долю приходится 48% энергии солнечной радиации.

Оно тоже неблагоприятно влияет на живые клетки и их функции в целом: меняет вязкость протоплазмы, величину электрического заряда цитоплазмы, нарушает проницаемость мембран и меняет движение цитоплазмы. Свет влияет на состояние коллоидов белков и протекания энергетических процессов в клетках. Но несмотря на это, видимый свет было, есть и впредь будет одним из важнейших источников энергии для всего живого. Его энергия используется в процессе фотосинтеза и накапливается в виде химических связей в продуктах фотосинтеза, а затем передается как еда всем другим живым организмам. В целом можно сказать, что все живое в биосфере, и даже человек, зависят от солнечной энергии, от фотосинтеза.

Свет для животных - это необходимое условие восприятия информации об окружающей среде и его элементы, видения, зрительной ориентации в пространстве. В зависимости от условий существования животные приспособились к различной степени освещенности. Одни виды животных ведут дневной образ жизни, другие - наиболее активны в сумерках или ночью. Большинство млекопитающих и птиц, ведут сумеречный образ жизни, плохо различают цвета и все видят в черно-белом изображении (собачьи, кошачьи, хомяки, совы, козодои и др.). Жизнь в сумерках или при недостаточной освещенности часто приводит к гипертрофии глаз. Относительно огромные глаза, способные улавливать ничтожные доли света, свойственные ночным животным или же тем, которые живут в полной темноте и ориентируются на органы свечения других организмов (лемуры, обезьяны, совы, глубоководные рыбы и др.). Если же в условиях полной темноты (в пещерах, под землей в норах) нет никаких других источников света, тогда животные, живущие там, как правило, утрачивают органы зрения (европейский протей, слепыш и др.).

Температура.

Источниками создания фактора температуры на Земле является солнечная радиация и геотермальные процессы. Хотя ядро нашей планеты характеризуется чрезвычайно высокой температурой, влияние его на поверхность планеты незначительный, кроме зон вулканической деятельности и выхода геотермальных вод (гейзеры, фумаролы). Следовательно, основным источником тепла в пределах биосферы можно считать солнечную радиацию, а именно, инфракрасные лучи. Те лучи, которые достигают поверхности Земли, поглощаются литосферой и гидросферой. Литосфера, как твердое тело, быстрее нагревается и так же быстро охлаждается. Гидросфера более теплоемкая, чем литосфера: она медленно нагревается и медленно же остывает, а потому длительное время удерживает тепло. Приземные слои тропосферы нагреваются благодаря излучению тепла гидросферой и поверхностью литосферы. Земля поглощает солнечную радиацию и излучает энергию обратно в безвоздушное пространство. И все же атмосфера Земли способствует удержанию тепла в приземных слоях тропосферы. Благодаря ее свойствам, атмосфера пропускает коротковолновые инфракрасные лучи и задерживает длинноволновые инфракрасные лучи, испускаемые нагретой поверхностью Земли. Это явление атмосферы имеет название парникового эффекта. именно Благодаря ему на Земле стало возможным жизнь. Парниковый эффект способствует удержанию тепла в приземных слоях атмосферы (здесь сосредоточено большинство организмов) и сглаживает колебания температуры в течение дня и ночи. На Луне, например, что размещается почти в тех же условиях космоса, и Земля, и на котором нет атмосферы, суточные колебания температуры на его экваторе проявляются в пределах от 160° С до + 120° С.

Диапазон имеющихся в окружающей среде температур достигает тысяч градусов (раскаленная магма вулканов и максимально низкие температуры Антарктиды). Пределы, в которых может существовать известное нам жизнь, довольно узкие и равны приблизительно 300° С, от -200° С (замораживание в сжиженных газах) до + 100° С (точка кипения воды). На самом деле, большинство видов и большая часть их активности привязана к еще более узкому диапазону температур. Общий температурный диапазон активной жизни на Земле ограничивается следующими значениями температур (табл. 1.2.3):

Таблица 1.2.3 Температурный диапазон жизни на Земле

Растения приспосабливаются к различным температурам и даже к экстремальным. Те, что переносят высокие температуры, называются жаровитривалими растениями. Они способны переносить перегрев до 55-65° С (некоторые кактусы). Виды, растущие в условиях высоких температур, легче их переносят благодаря значительному укорочению размеров листьев, развития войлочного (опушеного) или, наоборот, воскового покрытия и др. Растения без ущерба для их развития способны выдерживать длительное воздействие низких температур (от 0 до -10° С), называются холодостойкими.

Хотя температура является важным экологическим фактором, влияющим на живые организмы, однако ее действие сильно зависит от сочетания с другими абиотическими факторами.

Влажность.

Влажность - это важный абиотический фактор, что предопределяется наличием воды или водяного пара в атмосфере или литосфере. Сама же вода является необходимым неорганическим соединением для жизнедеятельности живых организмов.

Вода в атмосфере всегда присутствует в виде водяной пары. Фактическую массу воды на единицу объема воздуха называют абсолютной влажностью, а процентное содержание пары относительно максимального ее количества, которое воздух может содержать, - относительной влажностью. Температура является основным фактором, влияющим на способность воздуха удерживать водяной пар. Например, при температуре +27°С воздух может содержать в два раза больше влаги, чем при температуре +16°С. Это означает, что абсолютная влажность при 27°С в 2 раза больше, чем при 16°С, в то время когда относительная влажность в обоих случаях будет равна 100%.

Вода как экологический фактор крайне необходима живым организмам, ибо без нее не может осуществляться метаболизм и много других связанных с ним процессов. Обменные процессы организмов проходят при наличии воды (в водных растворах). Все живые организмы являются открытыми системами, поэтому в них постоянно наблюдаются потери воды и всегда есть потребность в пополнении ее запасов. Для нормального существования растения и животные должны поддерживать определенный баланс между поступлением воды в организм и ее потерей. Большие потери воды организмом (дегидратация) приводят к снижению его жизнедеятельности, а в дальнейшем - и к гибели. Растения удовлетворяют свои потребности в воде за счет атмосферных осадков, влажности воздуха, а животные - еще и за счет пищи. Устойчивость организмов к наличию или отсутствию влаги в окружающей среде различна и зависит от приспособленности вида. В связи с этим все наземные организмы разделяют на три группы: гигрофильные (или влаголюбивые), мезофильные (или умеренно влаголюбивые) и ксерофильные (или сухолюбивые). Относительно растений и животных отдельно этот раздел будет иметь такой вид:

1) гигрофильые организмы:

- гигрофиты (растения);

- гигрофилы (животного);

2) мезофильные организмы:

- мезофиты (растения);

- мезофилы (животного);

3) ксерофильные организмы:

- ксерофиты (растения);

- ксерофилы, или гигрофобиы (животные).

Больше всего влаги нуждаются гигрофильные организмы. Среди растений это будут те, что живут на избыточно увлажненных почвах при высокой влажности воздуха (гигрофиты). В условиях средней полосы к ним относятся среди травянистых растений, которые растут в затененных лесах (кислица, папоротники, фиалки, разрыв-трава и др.) и на открытых местах (калужница, росянка и т.д.).

К гигрофильных животных (гигрофилы) относятся такие, экологически связанные с водной средой или с переувлажненными местностями. Они нуждаются в постоянной наличии большого количества влаги в окружающей среде. Это животные влажных тропических лесов, болот, увлажненных лугов.

Мезофильные организмы требуют умеренного количества влаги и обычно связаны с умеренными теплыми условиями и хорошими условиями минерального питания. Это могут быть лесные растения и растения открытых мест. Среди них встречаются деревья (липа, береза), кустарники (лещина, крушина) и еще больше трав (клевер, тимофеевка, овсяница, ландыш, копытень и др). В общем мезофиты - это широкая экологическая группа растений. К мезофильных животных (мезофилы) принадлежит большинство организмов, которые обитают в умеренных и субарктических условиях или в определенных горных регионах суши.

Ксерофильные организмы - это довольно разнообразная экологическая группа растений и животных, которые приспособились к засушливым условиям существования с помощью таких средств: ограничение испарения, усиления добывания воды и создания запасов воды на длительный период отсутствия водоснабжения.

Растения, обитающие в засушливых условиях, по-разному преодолевают их. У некоторых нет структурных приспособлений для переноски недостачи влажности. их существование возможно в засушливых условиях только благодаря тому, что в критический момент они находятся в состоянии покоя в виде семян (ефемери) или луковиц, корневищ, клубней (эфемероиды), очень легко и быстро переходят к активной жизнедеятельности и за короткий период времени полностью проходят годичный цикл развития. Ефемери в основном распространены в пустынях, полупустынях и степях (веснянка, крестовник весенний, реп"яшок т.д.). Эфемероиды (от греч. ефемери и выглядеть) - это многолетние травянистые, в основном весенние, растения (осоки, злаки, тюльпан и т.д.).

Весьма своеобразными категориями растений, которые приспособились переносить условия засухи, является суккуленты и склерофиты. Суккуленты (от греч. сочный) способны накапливать в себе большое количество воды и постепенно ее тратить. Например, некоторые кактусы североамериканских пустынь могут содержать в себе от 1000 до 3000 л воды. Вода накапливается в листьях (алоэ, очиток, агава, молодило) или стеблях (кактусы и кактусоподобные молочаи).

Животные получают воду тремя основными путями: непосредственно выпивши или поглощая через покровы, вместе с пищей и в результате метаболизма.

Много видов животных, пьют воду и в достаточно большом количестве. Например, гусениц китайского дубового шелкопряда может выпить до 500 мл воды. Отдельные виды зверей и птиц требуют регулярного потребления воды. Поэтому они выбирают определенные источники и регулярно посещают их как места водопоя. Пустынные виды птиц ежедневно летают до оазисов, пьют там воду и приносят воду птенцам.

Часть видов животных, не употребляет воду путем прямого питья, может употреблять ее, всасывая всей поверхностью кожи. У насекомых и личинок, обитающих в почве, увлажненной трухой деревьев, их покровы проницаемы для воды. Австралийская ящерица молох воспринимает влагу осадков кожей, что является чрезвычайно гигроскопичным. Много животных получают влагу с сочной пищей. Такими сочными кормами может быть трава, сочные плоды, ягоды, луковицы и клубни растений. Степная черепаха, обитающая в центральноазиатских степях, потребляет воду только из сочной пищей. В этих регионах, в местах посадки овощей или на бахчах, черепахи наносят большой ущерб, питаясь дынями, арбузами, огурцами. Так же получают воду некоторые хищные животные, за счет поедания своей жертвы. Это свойственно, например, африканской лисы-фенеку.

Виды, которые питаются исключительно сухой пищей и не имеют возможности потреблять воду, получают ее путем метаболизма, то есть химическим путем в ходе переваривания пищи. Метаболическая вода может образовываться в организме вследствие окисления жиров и крахмала. Это важный способ получения воды особенно для животных, которые населяют жаркие пустыни. Так, червонохвоста песчанка иногда питается только сухими семенами. Известны эксперименты, когда в условиях неволи североамериканская оленья мышь прожила около трех лет, питаясь лишь сухими зернами ячменя.

Едафические факторы.

Поверхность литосферы Земли составляет отдельное среда жизни, что характеризуется своим комплексом экологических факторов. Эту группу факторов называют едафическими (от греч. едафос - почвы). Почвам свойственны своя строение, состав и свойства.

Почвы характеризуются определенной влажностью, механическим составом, содержанием органических, неорганических и органо-минеральных соединений, определенной кислотностью. От показателей зависят многие свойства самого грунта и распространение живых организмов в нем.

Например, отдельные виды растений и животных любят почвы с определенной кислотностью, а именно: сфагновые мхи, дикая смородина, ольха растут на кислых почвах, а зеленые лесные мхи - на нейтральных.

Реагируют на определенную кислотность почвы также и личинки жуков, наземные моллюски и много других организмов.

Химический состав почвы очень важен для всех живых организмов. Для растений наиболее важны не только те химические элементы, которые используются ими в большом количестве (азот, фосфор, калий и кальций), но и те, что являются редкими (микроэлементы). Некоторые из растений избирательно накапливают определенные редкие элементы. Крестоцветные и зонтичные растения, например, в 5-10 раз больше накапливают в своем теле серы, чем другие растения.

Избыточное содержание некоторых химических элементов в почве может негативно (патологически) влиять на животных. Например, в одной из долин Тувы (Россия) было замечено, что овцы болеют какую-то специфическую болезнь, которая проявлялась в выпадении шерсти, деформации копыт и т. п. Позже выяснилось, что в этой долине в почве, воде и некоторых растениях было повышенное содержание селена. Попадая в организм овец в избыточном количестве, этот элемент вызвал хронический селеновый токсикоз.

Для почвы характерен свой тепловой режим. Вместе с влажностью он влияет на почвообразование, на различные процессы, проходящие в почве (физико-химические, химические, биохимические и биологические).

Благодаря своей малой теплопроводности почвы способны сглаживать температурные колебания с глубиной. На глубине чуть более 1 м суточные температурные колебания почти не ощутимы. Например, в пустыне Каракумы, которая характеризуется резко континентальным климатом, летом, когда температура поверхности почвы достигает +59°С, в норах грызунов песчанок на расстоянии 70 см от входа температура была на 31°С ниже и составляла +28°С. Зимой же, в течение морозной ночи, температура в норах песчанок составляла +19°С.

Почва является уникальным сочетанием физико-химических свойств поверхности литосферы и живых организмов, его населяющих. Грунт невозможно представить без живых организмов. Недаром известный геохимик В.И. Вернадский называл почвы биокосным телом.

Орографические факторы (рельеф).

Рельеф не относится к таким непосредственно действующих экологических факторов, как вода, свет, тепло, почва. Однако характер рельефа в жизни многих организмов оказывает косвенное влияние.

в Зависимости от величины форм достаточно условно различают рельеф нескольких порядков: макрорельєф (горы, низины, межгорные впадины), мезорельєф (холмы, овраги, гряды и т.п.) и микрорельеф (небольшие впадины, неровности и прочее). Каждый из них играет определенную роль в формировании комплекса экологических факторов для организмов. В частности, рельеф влияет на перераспределение таких факторов, как влага и тепло. Так, даже незначительные понижения, в несколько десятков сантиметров, создают условия повышенной влажности. С повышенных участков вода стекает в более низкие, где создаются благоприятные условия для влаголюбивых организмов. Северные и южные склоны имеют разное освещение, тепловой режим. В горных условиях на относительно небольших площадях создаются значительные амплитуды высот, что приводит к формированию различных климатических комплексов. В частности, типичными их чертами являются пониженные температуры, сильные ветры, изменения режима увлажнения, газового состава воздуха и др.

Например, с поднятием над уровнем моря температура воздуха понижается на 6° С на каждые 1000 м. Хотя это является характеристикой тропосферы, но благодаря рельефа (возвышенности, горы, горные плато и т.п.), наземные организмы могут оказаться в условиях, не похожих на те, что есть в соседних регионах. Например, горный вулканический массив Килиманджаро в Африке у подножья окружен саваннами, а выше по склонам идут плантации кофе, бананов, леса и альпийские луга. Вершины Килиманджаро покрытые вечными снегами и ледниками. Если температура воздуха на уровне моря равна +30° С, то отрицательные температуры будут проявляться уже на высоте 5000 м. В умеренных зонах снижение температуры на каждые 6° С соответствует перемещению на 800 км в сторону высоких широт.

Давление.

Давление проявляется как в воздушном, так и в водной средах. В атмосферном воздухе давление меняется посезонно, в зависимости от состояния погоды и высоты над уровнем моря. Особый интерес представляют приспособления организмов, которые живут в условиях пониженного давления, разреженного воздуха высокогорья.

Давление в водной среде изменяется в зависимости от глубины: он растет примерно на 1 атм на каждые 10 м. Для многих организмов есть свои пределы изменения давления (глубины), к которым они приспособились. Например, абисальные рыбы (рыбы мировых глубин) способны переносить большое давление, но они никогда не поднимаются к поверхности моря, потому что для них это является смертельным. И наоборот, не все морские организмы способны погружаться в воду на большие глубины. Кашалот, например, может нырять на глубину до 1 км, а морские птицы - до 15-20 м, где они добывают свою пищу.

Живые организмы суши и водной среды четко реагируют на изменения давления. В свое время было отмечено, что рыбы могут воспринимать даже незначительные изменения давления. их поведение меняется при изменении атмосферного давления (напр., перед грозой). В Японии некоторых рыб специально содержат в аквариумах и за изменением их поведения судят о возможных изменениях погоды.

Наземные животные, воспринимая незначительные изменения давления, своим поведением могут прогнозировать изменения состояния погоды.

Неравномерность давления, что является результатом неравномерного прогрева Солнцем и распределения тепла как в воде, так и в атмосферном воздухе, создает условия для смешения водных и воздушных масс, т.е. образование течений. При определенных условиях течения является мощным экологическим фактором.

Гидрологические факторы.

Вода как составная часть атмосферы и литосферы (включая почвы) играет большую роль в жизни организмов как один из экологических факторов, который называют влажностью. В то же время, вода в жидком состоянии может быть фактором, образует собственную среду, - водное. Благодаря своим свойствам, которые отличают воду от всех других химических соединений, она в жидком и свободном состоянии создает комплекс условий водной среды, так называемые гидрологические факторы.

Такие характеристики воды, как теплопроводность, текучесть, прозрачность, соленость, по-разному проявляются в водоемах и являются экологическими факторами, которые в этом случае называют гидрологическими. Например, водяные организмы по-разному приспособились к различной степени солености воды. Различают пресноводные и морские организмы. Пресноводные организмы не поражают своим видовым разнообразием. Во-первых, жизнь на Земле зародилась в морских водах, а во-вторых, пресные водоемы занимают мизерную часть земной поверхности.

Морские же организмы более разнообразны и являются количественно многочисленнее. Одни из них приспособились к низкой солености и обитающие в опресненных участках моря и других солоноватых водоемах. У многих видов таких водоемов наблюдается уменьшение размеров тела. Так, например, створки моллюсков, съедобной мидии (Mytilus edulis) и серцевидки Ламарка (Cerastoderma lamarcki), которые обитают в заливах Балтийского моря при солености 2-6%о, в 2-4 раза мельче, чем особи, которые живут в том самом море, только при солености 15%о. Краб Carcinus moenas в Балтийском море имеет мелкие размеры, тогда, как в опресненных лагунах и эстуариях он намного больше. Морские ежи в лагунах вырастают более мелкими, чем в море. Рачок артемия (Artemia salina) при солености 122%о имеет размеры до 10 мм, но при 20%о он вырастает до 24-32 мм. Соленость может влиять и на продолжительность жизни. Та же серцевидка Ламарка в водах Северной Атлантики живет до 9 лет, а в менее соленых водах Азовского моря - 5.

Температура водоемов является более постоянным показателем, чем температура суши. Это обусловлено физическими свойствами воды (теплоемкость, теплопроводность). Амплитуда годовых колебаний температуры в верхних слоях океана не превышает 10-15° С, а в континентальных водоемах - 30-35° С. Что уж говорить о глубинные слои воды, которым присуще постоянство теплового режима.

Биотические факторы.

Организмы, которые живут на нашей планете, нуждаются не только абиотических условий для своей жизни, они взаимодействуют между собой и часто очень зависят друг от друга. Совокупность факторов органического мира, влияющие на организмы прямо или косвенно, называют биотическими факторами.

Биотические факторы весьма разнообразны, но, несмотря на это, они также имеют свою классификацию. Согласно простейшей классификации биотические факторы подразделяют на три группы, которые вызываются: растениями, животными и микроорганизмами.

Клементс и Шелфорд (1939) предложили свою классификацию, в которой учтены наиболее типичные формы взаимодействия двух организмов - коакции. Все коакции разделяют на две большие группы, в зависимости от того, взаимодействуют организмы одного вида или двух разных. Типы взаимодействий организмов, принадлежащих к одному и тому же виду, является гомотиповые реакции. Гетеротиповими реакциями называют формы взаимодействия двух организмов разных видов.

Гомотиповые реакции.

Среди взаимодействии организмов одного вида можно выделить такие коакции (взаимодействия): групповой эффект, массовый эффект и внутривидовая конкуренция.

Групповой эффект.

Много живых организмов, которые могут жить одиночно, образуют группы. Часто в природе можно наблюдать, как группами растут некоторые виды растений. Это дает им возможность ускорить свой рост. В группы объединяются и животные. При таких условиях они лучше выживают. При совместном образе жизни животным легче защищаться, добывать пищу, охранять свое потомство, переживать неблагоприятные факторы окружающей среды. Таким образом, групповой эффект имеет положительное влияние для всех участников группы.

Группы, в которые объединяются животные, могут быть разными по размерам. Например, бакланы, которые на побережьях Перу образуют огромные колонии, могут существовать только при условии, если в колонии не меньше 10 тысяч птиц, а на 1 квадратный метр территории приходится три гнезда. Известно, что для выживания африканских слонов стадо должно состоять минимум из 25 особей, а стадо северных оленей - с 300-400 голов. Стая волков может насчитывать до десятка особей.

Простые скопления (временные или постоянные) могут превратиться в сложные группировки, состоящие из специализированных особей, которые выполняют присущую им функцию в этой группе (семьи пчел, муравьев или термитов).

Массовый эффект.

Массовый эффект - это явление, возникающее при перенаселении какого жизненного пространства. Естественно, что при объединении в группы, особенно больших размеров, тоже возникает некоторое перенаселение, но между групповым и массовым эффектами существует большая разница. Первый дает преимущества каждому члену объединения, а другой, наоборот, подавляет жизнедеятельность всех, то есть имеет негативные последствия. Например, массовый эффект проявляется при скоплении позвоночных животных. Если в одной клетке содержать подопытных крыс в большом количестве, то в их поведении будут проявляться акты агрессивности. При длительном содержании животных в таких условиях у беременных самок рассасываются эмбрионы, агрессивность возрастает настолько, что крысы отгрызают друг другу хвосты, уши, конечности.

Массовый эффект высокоорганизованных организмов приводит к стрессовому состоянию. У человека это может вызвать психические расстройства и нервные срывы.

Внутривидовая конкуренция.

Между особями одного вида всегда происходит своеобразное соревнование в получении лучших условий существования. Чем больше плотность поселения той или иной группы организмов, тем более напряженное соревнование. Такое соревнование организмов одного вида между собой за те или иные условия существования называют внутривидовой конкуренцией.

Массовый эффект и внутривидовая конкуренция не являются тождественными понятиями. Если первое явление возникает на относительно короткое время и впоследствии завершается разрежением группировки (смертность, людоедство, снижение плодовитости и др.), то внутривидовая конкуренция существует постоянно и в конце концов приводит к более широкому приспособления вида к условиям среды. Вид становится более экологически приспособленным. В результате внутривидовой конкуренции сам вид сохраняется и сам себя не уничтожает в результате такой борьбы.

Внутривидовая конкуренция может проявляться в чем угодно, на что могут претендовать организмы одного вида. У растений, густо растут, конкуренция может происходить за свет, минеральное питание и т.д. Например, дуб, когда он растет отдельно, имеет шаровидную крону, он довольно разлапистый, поскольку нижние боковые ветви получают достаточное количество света. В посадках дуба в лесу нижние ветки затеняются верхними. Ветви, что получают недостаточное количество света, отмирают. С ростом дуба в высоту нижние ветви быстро опадают, и дерево приобретает лесной формы - длинный цилиндрический ствол и крона ветвей на верхушке дерева.

У животных конкуренция возникает за определенную территорию, пищу, за места гнездования и т.д. Подвижным животным легче избежать жесткой конкуренции, но все равно она на них сказывается. Как правило, те, что избегают конкуренции, часто оказываются в неблагоприятных условиях, они вынуждены тоже, как растения (или прикрепленные виды животных), приспосабливаться к тем условиям, которыми им приходится довольствоваться.

Гетеротиповые реакции.

Таблица 1.2.4. Формы межвидовых взаимодействий

Виды занимают

Виды занимают

Форма взаимодействия (коакций)

одну территорию (живут вместе)

различные территории (живут отдельно)

Вид А

Вид Б

Вид А

Вид Б

Нейтрализм

Коменсализм (вид А - коменсал)

Протокооперация

Мутуализм

Аменсализм (вид А - аменсал, вид Б - ингибитор)

Хищничество (вид А - хищник, вид Б - жертва)

Конкуренция

0 - взаимодействие между видами не дает выигрыша и не наносит ущерба ни одной стороне;

Взаимодействие между видами дает положительные последствия; --взаимодействие между видами дает негативные последствия.

Нейтрализм.

Чаще всего встречается такая форма взаимодействия, когда организмы разных видов, занимая одну территорию, никак не влияют друг на друга. В лесу обитает большое количество видов и многие из них поддерживают нейтральные взаимоотношения. Например, белка и еж населяют один и тот же лес, но они имеют нейтральные взаимоотношения, как и множество других организмов. Однако эти организмы входят в состав одной экосистемы. Они являются элементами одного целого, и поэтому при детальном изучении все же можно найти не прямые, а опосредованные, довольно тонкие и с первого взгляда незаметные связи.

Есть. В дум в своей "Популярной экологии" приводит шутливый, но очень меткий пример таких связей. Он пишет, что в Англии старые одинокие женщины поддерживают мощь королевских гвардейцев. А связь между гвардейцами и женщинами довольно простой. Одинокие женщины, как правило, разводят котов, коты же охотятся на мышей. Чем больше кошек, тем меньше мышей на полях. Мыши являются врагами шмелей, ибо разрушают их норы, где они живут. Чем меньше мышей, тем больше шмелей. Шмели, как известно, не единственные опылители клевера. Больше шмелей на полях - больший урожай клевера. На клевере выпасают лошадей, а гвардейцы любят употреблять в пищу конское мясо. Вот за таким примером в природе можно найти множество скрытых связей между различными организмами. Хотя в природе, как видно из примера, коты имеют нейтральные отношения с лошадьми или джмелями, однако они косвенно связаны с ними.

Коменсализм.

Многие виды организмов вступают во взаимоотношения, которые дают пользу только одной стороне, а другая от этого не страдает и ничего нет полезного. Такую форму взаимодействия организмов называют коменсализмом. Коменсализм часто проявляется в виде сосуществования различных организмов. Так, насекомые часто живут в норах млекопитающих или в гнездах птиц.

Часто можно наблюдать и такое совместное поселение, когда в гнездах крупных хищных птиц или аистов вьют гнезда воробьи. Для хищных птиц соседство воробьев не мешает, а для самих воробьев - это надежная охрана их гнезд.

В природе существует даже вид, что так и назван - краб-коменсал. Этот маленький, изящный краб охотно селится в мантийной полости устриц. Этим он не мешает моллюску, а сам получает убежище, свежие порции воды и питательные частицы, попадающие с водой к нему.

Протокооперация.

Следующим шагом совместной позитивной коакции двух организмов разных видов есть протокооперация, при которой оба вида выигрывают от взаимодействия. Естественно, что эти виды могут отдельно существовать без каких-либо потерь. Эту форму взаимодействия еще называют первичной кооперации, или сотрудничеством.

В море такая взаимовыгодная, но не обязательная форма взаимодействия возникает при объединении крабов и кишковопорожнистих. Актинии, например, часто поселяются на спинной стороне крабов, замасковуючи и защищая их своими жалючими щупальцами. В свою очередь, актинии получают от крабов кусочки пищи, которые остаются от их еды, и используют крабов как транспортное средство. И крабы, и актинии способны свободно и независимо существовать в водоеме, но когда они поблизости, то краб даже сам клешней пересаживает актинию на себя.

Совместное гнездование птиц разных видов в одной колонии (цапли и бакланы, кулики и крачки разных видов и т.д.) тоже является примером сотрудничества, при котором выигрывают обе стороны, например, при защите от хищников.

Мутуализм.

Мутуализм (или облигатный симбиоз) является следующим этапом взаимовыгодного приспособления разных видов друг к другу. Он отличается от протокооперации своей зависимостью. Если при протокооперации организмы, которые вступают в связь, могут существовать отдельно и независимо друг от друга, то при мутуализме существования этих организмов отдельно невозможно.

Такого типа коакции часто возникают в достаточно разных организмов, отдаленных в систематическом плане, с разными потребностями. Примером этому может быть связь между азотфиксирующими бактериями (пузырьковые бактерии) и бобовыми растениями. Вещества, выделяемые корневой системой бобовых, стимулируют рост пузырьковых бактерий, а продукты жизнедеятельности бактерий приводят к деформации корневых волосков, с чего начинается образование пузырьков. Бактерии обладают способностью усваивать атмосферный азот, который является дефицитом в почве, но необходимым макроэлементом для растений, что в этом случае дает большую пользу бобовым растениям.

В природе достаточно распространенным является взаимоотношения грибов и корней растений, называются микоризой. Грибница, взаимодействуя с тканями корня, образует своеобразный орган, который помогает растению более эффективно усваивать минеральные вещества из почвы. Грибы от этого взаимодействия получают продукты фотосинтеза растения. Многие виды деревьев не могут расти без микоризы, и определенные виды грибов образуют микоризу с корнями определенных видов деревьев (дуб и белый гриб, береза и подберезовик и др.).

Классическим примером мутуализма являются лишайники, которые сочетают в себе симбиотическая связь грибов и водорослей. Функциональные и физиологические связи между ними настолько тесные, что их рассматривают как отдельную группу организмов. Гриб в этой системе обеспечивает водоросль водой и минеральными солями, а водоросль, в свою очередь, дает грибу органические вещества, которые сама синтезирует.

Аменсализм.

В естественной среде не все организмы положительно влияют друг на друга. Есть много случаев, когда для обеспечения своей жизнедеятельности один вид вредит другому. Такая форма коакций, при которой один вид организма подавляет рост и размножение организма другого вида, не теряя ничего, имеет название аменсализму (антибиозу). Подавленный вид в паре, что взаимодействует, называют аменсалом, а того, который подавляет, - ингибитором.

Аменсализм лучше всего изучен у растений. В процессе жизни растения выделяют в окружающую среду химические вещества, которые и являются факторами влияния на другие организмы. Относительно растений аменсализм имеет свое название - аллелопатия. Известно, что благодаря выделению корнями токсичных веществ нечуйвитер волохатенький вытесняет другие однолетние растения и образует сплошные одновидовые заросли на больших площадях. На полях пырей и другие сорняки вытесняют или подавляют культурные растения. Орех и дуб угнетают травянистую растительность под своими кронами.

Растения могут выделять алелопатични вещества не только корнями, но и надземной частью своего тела. Летучие алелопатичные вещества, выделяемые растениями в воздух, называют фитонцидами. в Основном они уничтожающе действуют на микроорганизмы. Всем хорошо известна антимикробная профилактическое действие чеснока, лука, хрена. Много фитонцидов продуцируют хвойные породы деревьев. Один гектар насаждений можжевельника обыкновенного за год производит более 30 кг фитонцидов. Часто хвойные породы применяются в населенных пунктах для создания санитарно-защитных полос вокруг различных производств, что способствует очищению воздуха.

Фитонциды негативно влияют не только на микроорганизмы, но и на животных. В быту издавна применяли различные растения для борьбы с насекомыми. Так, баглиця и лаванда является хорошим средством для борьбы с молью.

Антибиоз известен и у микроорганизмов. Его впервые было открыто Бы. Бабешом (1885) и переоткрыто А. Флемингом (1929). Было показано, что грибы пеницилу выделяют вещество (пенициллин), что подавляет рост бактерий. Широко известно, что некоторые молочнокислые бактерии окисляют свое окружение так, что в нем не могут существовать гнилостные бактерии, которые нуждаются в щелочной или нейтральной среды. Алелопатичные химические вещества микроорганизмов известны под названием антибиотики. Уже описано свыше 4 тысячи антибиотиков, но лишь около 60 их разновидностей широко применяются в медицинской практике.

Защита животных от врагов может осуществляться и с помощью выделения веществ, имеющих неприятный запах (напр., среди рептилий - грифе черепахи, ужи; птиц - птенцы удодов; млекопитающих - скунсы, хорьки).

Хищничество.

Хищением в широком понимании этого слова считается способ добывания пищи и питания животных (иногда и растений), при котором они ловят, умерщвляют и поедают других животных. Иногда под этим термином понимают любое съедания одних организмов другими, т.е. такие взаимоотношения между организмами, при которых одни используют других как еду. При таком понимании заяц является хищником относительно травы, которую он потребляет. Но мы будем пользоваться более узким пониманием хищничества, при котором один организм питается другим, что близок к первому в систематическом плане (например, насекомые, которые питаются насекомыми; рыбы, которые питаются рыбами; птицы, которые питаются пресмыкающимися, птицами и млекопитающими; млекопитающие, которые питаются птицами и млекопитающими). Крайний случай хищничества, при котором вид питается организмами своего вида, имеет название каннибализма.

Иногда хищник отбирает жертву в таком количестве, что это не влияет негативно на численность ее популяции. Этим хищник способствует лучшему состояния популяции жертвы, которая к тому же уже приспособилась к прессу хищника. Рождаемость в популяциях жертвы выше, чем это требуется для обычного поддержания ее численности. Образно говоря, популяция жертвы учитывает то, что должен отобрать хищник.

Межвидовой конкуренция.

Между организмами разных видов, так же, как и между организмами одного вида, возникают взаимодействия, благодаря которым они пытаются получить один и тот же ресурс. Такие коакции между различными видами имеют название межвидовой конкуренции. Другими словами можно сказать, что межвидовой конкуренция - это любое взаимодействие между популяциями разных видов, которая неблагоприятно влияет на их рост и выживание.

Последствиями такой конкуренции может быть вытеснение одного организма другим с определенной экологической системы (принцип конкурентного исключения). В то же время конкуренция способствует возникновению в процессе отбора многих адаптаций, что ведет к многообразию видов, которые существуют в определенном сообществе или регионе.

Конкурентное взаимодействие может касаться пространства, пищи или биогенных элементов, света и многих других факторов. Межвидовой конкуренция, в зависимости от того, на чем она базируется, может привести либо к установлению равновесия между двумя видами, или, при более жесткой конкуренции, к замене популяции одного вида популяцией другого. Также результатом конкуренции может стать и такое, что один вид вытеснит другой в иное место или же заставит его перейти на другие ресурсы.

Экологические факторы, их влияние на организмы

Температурные, физико-химические, биологические элементы среды обитания, оказывающие постоянное или периодическое, прямое или косвенное влияние на организмы и популяции, называют экологическими факторами.

Экологические факторы подразделяют следующим образом:

Абиотические - температурные и климатические условия, влажность, химический состав атмосферы, почвы, воды, освещенность, особенности рельефа;

Биотические - живые организмы и непосредственные продукты их жизнедеятельности;

Антропогенные - человек и непосредственные продукты его хозяйственной и иной деятельности.

Основные абиотические факторы

1. Солнечная радиация: ультрафиолетовые лучи губительны для организма. Видимая часть спектра обеспечивает фотосинтез. Инфракрасные лучи повышают температуру окружающей среды и тела организмов.

2. Температура влияет на скОрость реакций обмена веществ. Животных с постоянной температурой тела называют гомойотермными, а с переменной - пойкилотермными.

3. Влажность характеризуется количеством воды в среде обитания и внутри организма. Адаптации животных связаны с добыванием воды, запасанием жира как источника воды при окислении, с переходом к спячке в жару. У растений развиваются корневые системы, утолщается кутикула на листьях, уменьшается площадь листовой пластинки, редуцируются листья.

4. Климат - совокупность факторов, характеризующихся сезонной и суточной периодичностью, обусловленной вращением Земли вокруг Солнца и собственной оси. Адаптации животных выражаются в переходе к спячке в холодное время года, в оцепенении у пойкилотермных организмов. У растений адаптации связаны с переходом в состояние покоя (летнего или зимнего). При больших потерях воды ряд организмов впадает в состояние анабиоза - максимального замедления процессов обмена веществ.

5. Биологические ритмы - периодические колебания интенсивности действия факторов. Суточные биоритмы определяют внешние и внутренние реакции организмов на смену дня и ночи

Организмы адаптируются (приспосабливаются) к влиянию определенных факторов в процессе естественного отбора. Их адаптационные возможности определяются нормой реакции по отношению к каждому из факторов, как постоянно действующих, так и колеблющихся в своих значениях. Например, длина светового дня в конкретном регионе постоянна, а температура и влажность могут колебаться в достаточно широких пределах.

Экологические факторы характеризуются интенсивностью действия, оптимальностью значения (оптимумом), максимальным и минимальным значениями, в пределах которых возможна жизнь конкретного организма. Эти параметры для представителей разных видов различны.

Отклонение от оптимума какого-либо фактора, например снижение количества пищи, может сузить пределы выносливости птиц или млекопитающих по отношению к понижению температуры воздуха.

Фактор, значение которого в данный момент находится на пределах выносливости или выходит за них, называют ограничивающим.

Организмы, способные существовать в широких пределах колебания фактора, называют эврибионтами. Например, организмы, обитающие в условиях континентального климата, переносят широкие колебания температур. Такие организмы обычно имеют широкие ареалы распространения.

Интенсивность фактора минимальная оптимальная максимальная

Рис. 23. Действие экологического фактора на живые организмы: А - общая схема; Б - схема для теплокровных и холоднокровных животных

Основные биотические факторы

Организмы одного вида вступают в различные по характеру отношения как друг с другом, так и с представителями других видов. Эти отношения соответственно подразделяют на внутривидовые и межвидовые.

Внутривидовые отношения проявляются во внутривидовой конкуренции за пищу, кров, самку, а также в особенностях поведения, иерархии отношений между членами популяции.

Межвидовые отношения:

Мутуализм - форма взаимовыгодных симбиотических отношений двух популяций разных видов;

Комменсализм - форма симбиоза, при которой отношения выгодны преимущественно для одного из двух видов, обитающих совместно (рыбы лоцманы и акулы);

Хищничество - отношения, при которых особи одного вида убивают и поедают особей другого вида.

Антропогенные факторы связаны с деятельностью человека, под влиянием которой среда изменяется и формируется. Деятельность человека распространяется практически на всю биосферу: добыча полезных ископаемых, освоение водных ресурсов, развитие авиации и космонавтики сказываются на состоянии биосферы. В результате возникают разрушительные процессы в биосфере, к которым относятся загрязнение вод, «парниковый эффект», связанный с увеличением концентрации диоксида углерода в атмосфере, нарушения озонового слоя, «кислотные дожди» и т.д.

Биогеоценоз

Биогеоценоз - совокупность совместно обитающих и взаимодействующих между собой и с неживой природой популяций разных видов, образующих сложную, саморегулирующуюся систему в относительно однородных условиях среды. Термин введен В.Н. Сукачевым.

В состав биогеоценоза входят: биотоп (неживая часть среды) и биоценоз (все виды организмов, населяющие биотоп).

Совокупность растений, обитающих в данном биогеоценозе, принято называть фитоценозом, совокупность животных - зооценозом, совокупность микроорганизмов - мик-робоценозом.

Характеристика биогеоценоза:

Биогеоценоз имеет естественные границы;

В биогеоценозе взаимодействуют все экологические факторы;

Для каждого биогеоценоза характерен определенный круговорот веществ и энергии;

Биогеоценоз относительно устойчив во времени и способен к саморегуляции и саморазвитию в случае однонаправленных изменений биотопа. Смену биоценозов называют сукцессией.

Структура биогеоценоза:

Продуценты - растения, производящие органические вещества в процессе фотосинтеза;

Консументы - потребители готового органического вещества;

Редуценты - бактерии, грибы, а также питающиеся падалью и навозом животные, - разрушители органических веществ, преобразующие их в неорганические.

Перечисленные компоненты биогеоценоза составляют трофические уровни, связанные обменом и переносом питательных веществ и энергии.

Организмы разных трофических уровней образуют пищевые цепи, в которых вещества и энергия ступенчато передаются с уровня на уровень. На каждом трофическом уровне используется 5-10% энергии поступившей биомассы.

Пищевые цепи обычно состоят из 3-5 звеньев, например: растения-корова-человек; растения-божья коровка-синица-ястреб; растения-муха-лягушка-змея-орел.

Масса каждого последующего звена в пищевой цепи уменьшается примерно в 10 раз. Этo правило называют правилом экологической пирамиды. Соотношения энергетических затрат могут отражаться в пирамидах чисел, биомассы, энергии.

Искусственные биоценозы, созданные людьми, занимающимися сельским хозяйством, называют агроценозами. Они обладают большой продуктивностью, но не обладают способностью к саморегуляции и устойчивости, так как зависят от внимания к ним человека.

Биосфера

Существуют два определения биосферы.

1. Биосфера - это населенная часть геологической оболочки Земли.

2. Биосфера - это часть геологической оболочки Земли, свойства которой определяются активностью живых организмов.

Второе определение охватывает более широкое пространство: ведь образовавшийся в результате фотосинтеза атмосферный кислород распределен по всей атмосфере и присутствует там, где нет живых организмов.

Биосфера согласно первому определению состоит из литосферы, гидросферы и нижних слоев атмосферы - тропосферы. Пределы биосферы ограничены озоновым экраном, верхняя граница которого находится на высоте 20 км, а нижняя - на глубине около 4 км.

Биосфера в соответствии со вторым определением включает всю атмосферу.

Учение о биосфере и ее функциях разработал академик В.И. Вернадский.

Биосфера - это область распространения жизни на Земле, включая живое вещество (вещество, входящее в состав живых организмов). Биокосное вещество - это вещество, не входящее в состав живых организмов, но формирующееся за счет их активности (почва, природные воды, воздух).

Живое вещество, составляющее менее 0,001% массы биосферы, является наиболее активной частью биосферы.

В биосфере происходит постоянная миграция веществ как биогенного, так и абиогенного происхождения, в котором живые организмы играют основную роль. Круговорот веществ определяет устойчивость биосферы.

Основным источником энергии для поддержания жизни в биосфере является Солнце. Его энергия преобразуется в энергию органических соединений в результате фотосинтетических процессов, происходящих в фототрофных организмах. Энергия накапливается в химических связях органических соединений, служащих пищей растительноядным и плотоядным животным. Органические вещества пищи разлагаются в процессе обмена веществ и выводятся из организма. Выделенные или отмершие остатки, в свою очередь, разлагаются бактериями, грибами и некоторыми другими организмами. Образовавшиеся химические соединения и элементы вовлекаются в круговорот веществ.

Биосфера нуждается в постоянном притоке внешней энергии, так как вся химическая энергия превращается в тепловую.

Функции биосферы:

Газовая - выделение и поглощение кислорода и углекислого газа, восстановление азота;

Концентрационная - накопление организмами химических элементов, рассеянных во внешней среде;

Окислительно-восстановительная - окисление и восстановление веществ в ходе фотосинтеза и энергетического обмена;

Биохимическая - реализуется в процессе обмена веществ.

Энергетическая - связана с использованием и преобразованием энергии.

В результате биологическая и геологическая эволюции происходят одновременно и тесно взаимосвязаны. Геохимическая эволюция происходит под влиянием биологической эволюции.

Масса всего живого вещества биосферы составляет ее биомассу, равную примерно 2,4-1012 т.

Организмы, населяющие сушу, составляют 99,87% от общей биомассы, биомасса океана - 0,13%. Количество биомассы увеличивается от полюсов к экватору. Биомасса (Б) характеризуется:

а) продуктивностью - приростом вещества, приходящегося на единицу площади (П);

б) скоростью воспроизведения - отношением продукции к биомассе за единицу времени (П/Б).

Самыми продуктивными являются тропические и субтропические леса.

Часть биосферы, находящуюся под влиянием активной деятельности человека, называют ноосферой - сферой человеческого разума. Термин предполагает разумное влияние человека на биосферу в современную эпоху научно-технического прогресса. Однако чаще всего это влияние губительно для биосферы, что в свою очередь губительно для человечества.

Круговорот веществ и энергии в биосфере обусловлен жизнедеятельностью организмов и является необходимым условием их существования. Круговороты не замкнуты, поэтому химические элементы накапливаются во внешней среде и в организмах.

Углерод поглощается растениями в процессе фотосинтеза и выделяется организмами в процессе дыхания. Он также накапливается в среде в виде топливных ископаемых, а в организмах - в виде запасов органических веществ.

Азот превращается в соли аммония и нитраты в результате деятельности азотфиксирующих и нитрифицирующих бактерий. Затем после использования соединений азота организмами и денитрификации редуцентами азот возвращается в атмосферу. Сера находится в виде сульфидов и свободной серы в составе морских осадочных пород и почвы. Превращаясь в сульфаты в результате окисления серобактериями, она включается в ткани растений, затем вместе с остатками их органических соединений подвергается воздействию анаэробных редуцентов. Образовавшийся в результате их деятельности сероводород снова окисляется серобактериями.

Фосфор содержится в составе фосфатов горных пород, в пресноводных и океанических отложениях, в почвах. В результате эрозии фосфаты вымываются и в кислой среде переходят в растворимое состояние с образованием фосфорной кислоты, которая усваивается растениями. В тканях животных фосфор входит в состав нуклеиновых кислот, костей. В результате разложения редуцентами остатков органических соединений он снова возвращается в почвы, а затем в растения.

История экологического знания насчитывает много веков. Уже первобытным людям необходимо было иметь определенные знания о растениях и животных, их образе жизни, взаимоотношениях друг с другом и с окружающей средой. В рамках общего развития естественных наук происходило и накопление знаний, ныне принадлежащих к области экологической науки. Как самостоятельная обособившаяся дисциплина экология выделилась в XIX в.

Термин Экология (от греч.экое - дом, логос - учение) в науку ввел немецкий биолог Эрнест Геккель.

В 1866 г. в работе «Всеобщая морфология организмов» он писал, что это «... сумма знаний, относящихся к экономике природы: изучению всей совокупности взаимоотношений животного с окружающей его средой, как органической, так и неорганической, и прежде всего его дружественных или враждебных отношений с теми животными и растениями, с которыми оно прямо или косвенно вступает в контакт». Такое определение относит экологию к биологическим наукам. В начале XX в. формирование системного подхода и разработка учения о биосфере, которое является обширнейшей областью знания, включающей в себя множество научных направлений как естественного, так и гуманитарного цикла, в том числе и общую экологию, обусловили распространение экосистемных взглядов в экологии. Основным объектом для изучения в экологии стала экосистема.

Экосистемой называют совокупность живых организмов, взаимодействующих друге другом и с окружающей их средой посредством обмена веществом, энергией и информацией таким образом, что эта единая система сохраняет устойчивость в течение продолжительного времени.

Все возрастающее воздействие человека на окружающую среду потребовало вновь расширить границы экологического знания. Во второй половине XX в. научно-технический прогресс повлек за собой ряд проблем, получивших статус глобальных, таким образом, в поле зрения экологии явственно обозначились вопросы сравнительного анализа природных и техногенных систем и поиска путей их гармоничного сосуществования и развития.

Соответственно дифференцировалась и усложнялась структура экологической науки. Сейчас ее можно представить как четыре основные ветви, имеющие дальнейшее деление: Биоэкология, геоэкология, экология человека, прикладная экология.

Таким образом, мы можем дать определение экологии как науки об общих законах функционирования экосистем различного порядка, совокупности научных и практических вопросов взаимоотношений человека и природы.

2. Экологические факторы, их классификация, виды воздействия на организмы

Любой организм в природе испытывает на себе воздействие самых разнообразных компонентов внешней среды. Любые свойства или компоненты окружающей среды, оказывающие влияние на организмы, называют экологическими факторами.

Классификация экологических факторов. Факторы среды (экологические факторы) разнообразны, имеют разную природу и специфику действия. Выделяют следующие группы экологических факторов:

1. Абиотические (факторы неживой природы):

а) климатические - условия освещенности, температурный режим и т. п.;

б) эдафические (местные) - водоснабжение, тип почвы, рельеф местности;

в) орографические - воздушные (ветер) и водные течения.

2. Биотические факторы - это все формы воздействия живых организмов друг на друга:

Растения Растения. Растения Животные. Растения Грибы. Растения Микроорганизмы. Животные Животные. Животные Грибы. Животные Микроорганизмы. Грибы Грибы. Грибы Микроорганизмы. Микроорганизмы Микроорганизмы.

3. Антропогенные факторы - это все формы деятельности человеческого общества, приводящие к изменению среды обитания других видов или непосредственно сказывающиеся на их жизни. Воздействие этой группы экологических факторов стремительно возрастает из года в год.

Виды воздействия экологических факторов на организмы. Экологические факторы оказывают на живые организмы воздействия разного рода. Они могут являться:

Раздражителями, которые способствуют появлению приспособительных (адаптивных) физиологических и биохимических изменений (зимняя спячка, фотопериодизм);

Ограничителями, изменяющими географическое распространение организмов из-за невозможности существования в данных условиях;

Модификаторами, которые вызывают морфологические и анатомические изменения организмов;

Сигналами, свидетельствующими об изменениях других факторов среды.

Общие закономерности действия экологических факторов:

В связи с чрезвычайным разнообразием экологических факторов различные виды организмов, испытывая их влияние, отвечают на него по-разному, тем не менее, можно выявить ряд общих законов (закономерностей) действия экологических факторов. Остановимся на некоторых из них.

1. Закон оптимума

2. Закон экологической индивидуальности видов

3. Закон ограничивающего (лимитирующего) фактора

4. Закон неоднозначного действия

3. Закономерности действия факторов среды на организмы

1)Правило оптимума. Для экосистемы, организма или определенной стадии его

развития имеется диапазон наиболее благоприятного значения фактора. Там, где

факторы благоприятны плотность популяции максимальна. 2)Толерантность.

Эти характеристики зависят от среды, в которой обитают организмы. Если она

стабильна по своим

свой-ам, в ней больше шансов на выживание организмов.

3) Правило взаимодействия факторов. Одни факторы могут усиливать или

смягчать силу действия других факторов.

4) Правило лимитирующих факторов. Фактор, находящийся в недостатке или

избытке отрицательно влияет на организмы и ограничивает возможность прояв. силы

действия других факторов. 5)Фотопериодизм. Под фотопериодизмом

понимают реакцию организма на длину дня. Реакция на изменение света.

6) Адаптация к ритмичности природных явлений. Адаптация к суточной и

сезонной ритмике, приливно-отливным явлениям, ритмам солнечной активности,

лунным фазам и др. явлениям, повторяющимся со строгой периодичность.

Эк. валентность (пластичность) - способность орг. адаптироваться к отд. факторам окр. среды.

Закономерности действия экологических факторов на живые организмы.

Экологические факторы и их классификация. Все организмы потенциально способны к неограниченному размножению и расселению: даже виды, ведущие прикрепленный образ жизни, имеют хотя бы одну фазу развития, на которой способны к активному или пассивному распространения. Но вместе с тем видовой состав организмов, обитающих в различных климатических зонах, не смешивается: для каждой из них присущ определенный набор видов животных, растений, грибов. Это объясняется ограничением чрезмерного размножения и расселения организмов определенными географическими преградами (моря, горные хребты, пустыни и др.), климатическими факторами (температура, влажность и др.)., А также взаимосвязями между отдельными видами.

В зависимости от природы и особенностей действия экологические факторы разделяют на абиотические, биотические и антропогенные (антропичних).

Абиотические факторы - это компоненты и свойства неживой природы, которые прямо или косвенно влияют на отдельные организмы и их группировки (температура, освещенность, влажность, газовый состав воздуха, давление, солевой состав воды и др.).

К отдельной группе экологических факторов относятся различные формы хозяйственной деятельности человека, изменяющие состояние среды обитания различных видов живых существ, включая и самого человека (антропогенные факторы). За относительно короткий период существования человека как биологического вида, ее деятельность коренным образом изменила облик нашей планеты и ежегодно это влияние на природу возрастает. Интенсивность действия некоторых экологических факторов может оставаться относительно стабильной на протяжении длительных исторических периодов развития биосферы (например, солнечное излучение, сила тяжести, солевой состав морской воды, газовый состав атмосферы и т.д.). Большинство из них имеет переменную интенсивность (температура, влажность и т.д.). Степень изменчивости каждого из экологических факторов зависит от особенностей среды обитания организмов. Например, температура на поверхности почвы может варьировать в значительных пределах в зависимости от времени года или суток, погоды и т.д., тогда как в водоемах на глубинах свыше нескольких метрах перепады температуры почти отсутствуют.

Изменения экологических факторов могут быть:

Периодическими, в зависимости от времени суток, времени года, положение Луны относительно Земли и т.п.;

Непериодическими, например, извержения вулканов, землетрясения, ураганы и др..;

Направленными течение значительных исторических промежутков времени, например, изменения климата Земли, связанные с перераспределением соотношения площадей суши и Мирового океана.

Каждый из живых организмов постоянно приспосабливается ко всему комплексу экологических факторов, то есть к среде обитания, регулируя процессы жизнедеятельности в соответствии с изменениями этих факторов. Среда обитания - это совокупность условий, в которых живут определенные особи, популяции, группировка организмов.

Закономерности влияния экологического факторов на живые организмы. Несмотря на то, что экологические факторы очень разнообразны и различны по природе, отмечают некоторые закономерности их влияния на живые организмы, а также реакций организмов на действие этих факторов. Приспособления организмов к условиям среды обитания называются адаптациями. Они производятся на всех уровнях организации живой материи: от молекулярного до биогеоценотичного. Адаптации непостоянны, поскольку изменяются в процессе исторического развития отдельных видов в зависимости от изменений интенсивности действия экологических факторов. Каждый вид организмов приспособлен к определенным условиям существования особым образом: не существует двух близких видов, сходных посвоим адаптациями (правило экологической индивидуальности). Так, крот (ряд Насекомоядные) и слепыш (ряд Грызуны) адаптированы к существованию в почве. Но крот роет ходы с помощью передних конечностей, а слепыш - резцов, выбрасывая наружу грунт головой.

Хорошая приспособленность организмов к определенному фактору не означает такого же адаптированности к другим (правило относительной независимости адаптации). Например, лишайники, которые могут поселяться на субстратах, бедных на органику (например, скальных породах) и выдерживать засушливые периоды, очень чувствительны к загрязнению воздуха.

Существует и закон оптимума: каждый фактор положительно влияет на организм лишь в определенных пределах. Благоприятная для организмов определенного вида интенсивность воздействия экологического фактора называется зоны оптимума. Чем больше интенсивность действия определенного экологического фактора отклоняться отоптимальной в ту или другую сторону, тем больше будет выражена его угнетающее действие на организмы (зона пессимума). Значение интенсивности воздействия экологического фактора, по которым существование организмов становится невозможным, называют верхней и нижней границей выносливости (критические точки максимума и минимума). Расстояние между границами выносливости определяет экологическую валентность определенного вида относительно того или иного фактора. Следовательно, экологическая валентность - это диапазон интенсивности воздействия экологического фактора, в котором возможно существование определенного вида.

Широкую экологическую валентность особей определенного вида относительно конкретного экологического фактора обозначают префиксом «евры-». Так, песцы относятся к евритермних животных, поскольку выдерживают значительные колебания температуры (в пределах 80ьС). Некоторые беспозвоночные (губки, кильчакив, иглокожие) относятся к еврибатних организмов, потому поселяются от прибрежной зоны до больших глубин, выдерживая значительные колебания давления. Виды, которые могут жить в широком диапазоне колебаний различных экологических факторов, называют еврибионтнимы Узкая экологическая валентность, то есть неспособность выдерживать значительные изменения определенного экологического фактора, обозначают приставкой «стено-» (например, стенотермные, стенобатни, стенобионтных т.д.).

Оптимум и пределы выносливости организма относительно определенного фактора зависят от интенсивности действия других. Например, в сухую безветренную погоду легче выдерживать низкие температуры. Итак, оптимум и пределы выносливости организмов в отношении любого фактора среды могут сдвигаться в определенную сторону в зависимости от того, с какой силой и в каком сочетании действуют другие факторы (явление взаимодействия экологических факторов).

Но взаемокомпенсация жизненно важных экологических факторов имеет определенные границы и ни один не может быть заменен другими: если интенсивность действия хотя бы одного фактора выходит за пределы выносливости, существование вида становится невозможным, несмотря на оптимальную интенсивность действия других. Так, недостаток влаги тормозить процесс фотосинтеза даже при оптимальной освещенности и концентрации CO2 в атмосфере.

Фактор, интенсивность действия которого выходит за пределы выносливости, называется ограничительным. Ограничивающие факторы определяют территорию расселения вида (ареал). Например, распространение многих видов животных на север сдерживается нехваткой тепла и света, на юг - дефицитом влаги подобное.

Таким образом, присутствие и процветания определенного вида в данной среде обитания обусловлено его взаимодействием с целым комплексом экологических факторов. Недостаточная или чрезмерная интенсивность действия любого из них невозможным процветание и само существование отдельных видов.

Экологические факторы - это любые компоненты окружающей среды, влияющие на живые организмы и их группировки; их делят на абиотические (составляющие неживой природы), биотические (различные формы взаимодействия между организмами) и антропогенные (различные формы хозяйственной деятельности человека).

Приспособления организмов к условиям окружающей среды называют адаптациями.

Любой экологический фактор имеет лишь определенные пределы положительного влияния на организмы (закон оптимума). Границы интенсивности действия фактора, по которым существование организмов становится невозможным, называют верхней и нижней границей выносливости.

Оптимум и пределы выносливости организмов по отношению любой яко-го фактора среды могут варьироваться в определенную сторону в зависимости от того, с какой интенсивностью и в каком сочетании действуют другие экологические факторы (явление взаимодействия экологических факторов). Но их взаимная компенсация ограничена: ни один жизненно необходимый фактор не может быть заменен другими. Экологический фактор, который выходит за пределы выносливости, называется ограничительного, он определяет ареал определенного вида.

кологическая пластичность организмов

Экологическая пластичность организмов (экологическая валентность) - степень приспособляемости вида к изменениям фактора среды. Выражается диапазоном значений факторов среды, в пределах которого данный вид сохраняет нормальную жизнедеятельность. Чем шире диапазон, тем больше экологическая пластичность.

Виды, способные существовать при небольших отклонениях фактора от оптимума, называются узкоспециализированными, а виды, выдерживающие значительные изменения фактора - широкоприспособленными.

Экологическая пластичность может рассматриваться как по отношению к отдельному фактору, так и по отношению к комплексу экологических факторов. Способность видов переносить значительные изменения определенных факторов оозначается соответствующим термином с приставкой "эври":

Эвритермные (пластичны к температуре)

Эвриголинные (соленость воды)

Эврифотные (пластичны к свету)

Эвригигрические (пластичны к влажности)

Эвриойкные (пластичны к месту обитания)

Эврифагные (пластичны к пище).

Виды, приспособленные к небольшим изменениям данного фактора, обозначаются термином с приставкой "стено". Эти приставки используются, чтобы выразить относительную степень толерантности (например, у стенотермного вида экологический температурный оптимум и пессимум сближены).

Виды, обладающие широкой экологической пластичностью по отношению к комплексу экологических факторов - эврибионты; виды с малой индивидуальной приспособляемостью - стенобионты. Эврибионтность и истенобионтность характеризуют различные типы приспособления организмов к выживанию. Если эврибионты долгое время развиваются в хороших условиях, то они могут утрачивать экологическую пластичность и вырабатывать черты стенобионтов. Виды, существующие при значительных колебаниях фактора, приобретают повышенную экологическую пластичность и становятся эврибионтами.

Например, в водной среде больше стенобионтов, так как она по своим свойствам относительно стабильна и амплитуды колебания отдельных факторов малы. В более динамичной воздушно-наземной среде преобладают эврибионты. У теплокровных животных экологическая валентность шире, чем у хладнокровных. Молодые и старые организмы, как правило, требуют более однородных условий среды.

Эврибионты широко распространены, а стенобионтность суживает ареалы; однако в некоторых случаях благодаря высокой специализированности стенобионтам принадлежат обширные территории. Например, рыбоядная птица скопа является типичным стенофагом, но по отношению к другим факторам среды - эврибионтом. В поисках необходимой пищи птица способна преодолевать в полете большие расстояния, поэтому занимает значительный ареал.

Пласти́чность - способность организма существовать в определённом диапазоне значений экологического фактора. Пластичность определяется нормой реакции.

По степени пластичности по отношению к отдельным факторам все виды подразделяются на три группы:

Стенотопы - виды, способные существовать в узком диапазоне значений экологического фактора. Например, большинство растений влажных экваториальных лесов.

Эвритопы - широкопластичные виды, способные осваивать различные местообитания, например, все виды-космополиты.

Мезотопы занимают промежуточное положение между стенотопами и эвритопами.

Следует помнить, что вид может быть, например, стенотопом по одному фактору и эвритопом - по другому и наоборот. Например, человек является эвритопом по отношению к температуре воздуха, но стенотопом по содержанию кислорода в нём.