Связь эндогенных и экзогенных геологических процессов. Характеристика и классификация экзогенных процессов

1.ОБЩИЕ ПРЕДСТАВЛЕНИЯ ОБ ЭНДОГЕННЫХ

И ЗКЗОГЕННЫХ ПРОЦЕССАХ

...ведущими в жизни Земли являются эндогенные геологические процессы. Они закладывают основные формы рельефа земной поверхности, обусловливают проявление экзогенных процессов и, главное, определяют строение как земной коры, так и всей Земли в целом.

Акад. М. А. Усов

Эндогенные процессы- это геологические процессы, у которых происхождение непосредственно связано с недрами Земли, со сложнымифизико-механическими и физико-химическими преобразованиями вещества.

Эндогенные процессы очень отчетливо выражаются в явлениях магматизма -процесса, связанного с перемещением магмы к верхним слоям земной коры, а также на ее поверхность. Второй вид эндогенных процессов-это землетрясения , проявляющиеся в виде не продолжительных толчков или сотрясений. Третьим видом эндогенных процессов являются колебательные движения .Самым ярким проявлением внутренних сил является разрывные и складчатые деформации. В итоге складкообразования, пласты, залегающие горизонтально оказываются собранными в различные складки, порой разорванные или надвинутые друг на друга. Складчатые деформации появляются исключительно в определенных, самых подвижных и самых проницаемых участках земной коры для магмы, называют их складчатыми поясами, а устойчивые и слабые по тектонической активности области-платформами. Складчатые деформации способствуют значительному изменению горных пород.

В условиях больших давлений и температуры породы превращаются в более плотные и твердые. Под воздействием газов и паров, которые выделяются из магмы, происходит образование новых минералов. Эти явления преобразования горных пород носит название метаморфизма. существенно меняют характер земной коры (образование гор, огромных впадин).

Формы, которые созданны эндогенными силами подвергаются воздействию экзогенных сил. Эндогенные силы создают предпосылки для расчленения и уплотнения рельефа земли, а экзогенные силы в конечном итоге выравнивают поверхность Земли или, как это еще называют, денудируют. Когда взаимодействуют экзогенные и эндогенные процессы, земная кора и ее поверхность развиваются.

Эндогенные процессы возникают под влиянием внутренней энергии Земли: атомных, молекулярных и ионных реакций, внутреннего давления (гравитации) и разогрева отдельных участков земной коры.

Экзогенные процессы черпают свою энергию от Солнца и из космоса, успешно используют силу тяжести, климат и жизнедеятельность организмов и растений. Все геологические процессы участвуют в общем круговороте вещества Земли.

Традиционно в учебниках по «Общей геологии» при описании эндогенных процессов основное внимание уделялось характеристике процессов магматизма и метаморфизма,а также различным формам пликативных и дизъюнктивных дислокаций,разломам и складкам.Вместе с тем в истории Земли,ее разрезе проявлялись гораздо более масштабные эндогенные процессы.Они играли определяющую роль в перемещении вещества мантии,формировании литосферы и земной коры и многое другое.И если до недавного прошлого они объяснялись с позиции господсвовавшей тогда «геосинклинальной теории»,то сейчас они расшифровываются положениями новой теории »тектоники литосферных плит» и «плюм-тектоники».Ведущее значение приобретает изучение энергетики Земли-важнейшего эндогенного процесса.Генерация эндогенной энергии направляет и контролирует все другие процессы.В их числе круговорот вещества мантии,ее конвективные течения,процессы фазовых преобразований,дрейф континентов и многое другое.Образно говоря,тепловая энергия Земли трансформируется в энергию кинетическую,а последняя контролирует и направляет общий ход перемещения магмы,возникновение различных по масштабу и проявлениям пликативных и дизъюнктивных дислокаций.Без их знания невозможно объяснить природу магматизма,метаморфизма,складчатых и разломных структур.

Экзогенными (от греч. éxo - вне, снаружи) называют геологические процессы, которые обусловлены внешними по отношению к Земле источниками энергии: солнечной радиацией и гравитационным полем. Они протекают на поверхности земного шара или в приповерхностной зоне литосферы. К ним относятся гипергенез (выветривание), эрозия, абразия, седиментогенез и др.

Противоположные экзогенным процессам эндогенные (от греч. éndon - внутри) геологические процессы связаны с энергией, возникающей в недрах твердой части земного шара. Главными источниками эндогенных процессов считаются тепло и гравитационная дифференциация вещества по плотности с погружением более тяжелых составляющих элементов. К эндогенным процессам относятся вулканизм, сейсмичность, метаморфизм и др.

Использование представлений об экзогенных и эндогенных процессах, красочно иллюстрирующих динамику процессов в каменной оболочке в борьбе противоположностей, подтверждает справедливость высказывания Ж. Бодрийяра, что «Всякая унитарная система, если она хочет выжить, должна обрести бинарную регуляцию». Если имеется оппозиция, то существование симулякра, т. е. представления, скрывающего, что его нет, возможно.

В модели реального мира природы, очертывающейся законами естествознания, которые не имеют исключений, бинарность объяснений недопустима. Например, два человека держат в руке по камню. Один из них заявляет, что когда опустит камень, тот полетит к Луне. Это его мнение. Другой говорит, что камень упадет вниз. Спорить им, кто из них прав, не нужно. Есть закон всемирного тяготения, по которому в 100% случаев камень упадет вниз.

Согласно второму началу термодинамики нагретое тело на контакте с холодным в 100 % случаев остынет, нагревая холодное.

Если реально наблюдаемое строение литосферы из аморфного базальта, ниже глины, потом сцементированной глины - аргиллита, мелкокристаллического сланца, среднекристаллического гнейса и крупнокристаллического граница, то перекристаллизация вещества с глубиной с увеличением размера кристаллов однозначно свидетельствует о не поступлении из-под гранита тепловой энергии. В противном случае на глубине были бы аморфные горные породы, сменяющиеся к поверхности все более крупнокристаллическими образованиями.

Отсюда, глубинной тепловой энергии нет, а, стало быть, и эндогенных геологических процессов. Если нет эндогенных процессов, то теряет смысл выделение и противоположных им экзогенных геологических процессов.

А что же есть? В каменной оболочке земного шара, как и в атмосфере, гидросфере и биосфере, взаимосвязанных между собой, составляющих единую систему планеты Земля, происходит круговорот энергии и вещества, вызванный поступлением солнечной радиации и наличием энергии гравитационного поля. Этот круговорот энергии и вещества в литосфере и составляет систему геологических процессов.

Круговорот энергии состоит из трех звеньев. 1. Начальное звено - накопление веществом энергии. 2. Промежуточное звено - освобождение накопленной энергии. 3. Заключительное звено - удаление освобожденной тепловой энергии.

Круговорот вещества также состоит из трех звеньев. 1. Начальное звено - перемешивание разных веществ с усреднением химического состава. 2. Промежуточное звено - разделение усредненного вещества на две части разного химического состава. 3. Заключительное звено - удаление одной части, которая поглотила выделившееся тепло и стала разуплотненной, легкой.

Суть начального звена круговорота энергии вещества в литосфере в поглощении горными породами на поверхности суши поступающей солнечной радиации, что приводит к разрушению их до глины и обломков (процесс гипергенеза). Продукты разрушения накапливают громадное количество солнечной радиации в виде потенциальной свободной поверхностной, внутренней, геохимической энергии. Под действием силы тяжести продукты гипергенеза сносятся в пониженные участки, перемешиваясь, усредняя свой химический состав. В конечном счете, глина и пески сносятся на дно морей, где накапливаются слоями (процесс седиментогенеза). Формируется слоистая оболочка литосферы, около 80% которой приходится на глину. Химический состав глины = (гранит + базальт)/2.

На промежуточном звене круговорота слои глины погружаются в недра, перекрываясь новыми слоями. Возрастающее литостатическое давление (массы вышележащих слоев) приводит к отжатию из глины воды с растворенными солями и газами, сдавливанию глинистых минералов, уменьшению расстояний между их атомами. Это вызывает перекристаллизацию глинистой массы до кристаллических сланцев, гнейсов и гранитов. При перекристаллизации потенциальная энергия (аккумулированная солнечная) переходит в кинетическую тепловую, которая выделяется из кристаллического гранита и поглощается водно-силикатным раствором базальтового состава, находящимся в порах между кристаллами гранита.

На заключительное звено круговорота приходится удаление нагретого базальтового раствора на поверхность литосферы, где люди называют его лавой. Вулканизм - заключительное звено круговорота энергии и вещества в литосфере, суть которого в удалении нагретого базальтового раствора, образовавшегося при перекристаллизации глины в гранит.

Образующаяся при перекристаллизации глины тепловая энергия, поднимаясь на поверхность литосферы, создает для человека иллюзию поступления глубинной (эндогенной) энергии. На самом деле, это освобожденная солнечная энергия, преобразованная в тепловую. Как только тепловая энергия возникает при перекристаллизации, она сразу же удаляет вверх, поэтому на глубине нет эндогенной энергии (эндогенных процессов).

Таким образом, представление об экзогенных и эндогенных процессах представляет собой симулякр.

Ноотик - круговорот энергии и вещества в литосфере, вызванный поступлением солнечной энергии и наличием гравитационного поля.

Представление об экзогенных и эндогенных процессах в геологии является результатом восприятия мира каменной оболочки земного шара таким, каким его видит (хочет видеть) человек. Это и определило дедуктивный и фрагментарный способ мышления геологов.

Но, мир природы не создан человеком, и какой он, неизвестно. Для познания его необходимо применять индуктивный и системный способ мышления, что и реализовано в модели круговорота энергии и вещества в литосфере, как системе геологических процессов.

Геологические процессы подразделяют на эндогенные и экзогенные.

Эндогенные процессы - геологические процессы, связанные с энергией, возникающей в недрах Земли. К ним относятся тектонические движения земной коры, магматизм, метаморфизм горных пород и сейсмическая активность. Главными источниками энергии эндогенных процессов являются тепло и гравитационная неустойчивость -перераспределение материала в недрах Земли по плотности (гравитационная дифференциация).

К эндогенным процессам относятся:

  • - тектонические - разнообразные по направлению и интенсивности движения земной коры, вызывающие ее деформации (смятие в складки) или разрывы слоев;
  • - сейсмические - связанные с землетрясениями;
  • - магматические - связанные с магматической деятельностью;
  • - вулканические - связанные с вулканической деятельностью;
  • - метаморфические - процесс преобразования горных пород под влиянием давления и температуры без привнесения или выноса химических компонентов;
  • - скарновые - метасоматического минерало- и породообразования в результате воздействия на различные горные породы (преимущественно известняки и доломиты) высокотемпературных растворов, содержащих в том или ином количестве Бе, М?, Са, 81, А1 и другие вещества при широком участии летучих компонентов (вода, углекислота, С1, Б, В и др.), и в широком диапазоне температур и давлений при общей эволюции растворов по мере понижения температуры от щелочных к кислым;
  • - грейзеновые - метасоматического изменения гранитовых пород под действием газов, выделяющихся из охлаждающейся магмы с преобразованием полевых шпатов в светлые слюды;
  • - гидротермальные - месторождения руд металлов (Аи, Си, РЬ, 8п, XV и др.) и неметаллических ископаемых (тальк, асбест и др.), образование которых связано с отложением или переотложением рудного вещества из горячих глубинных водных растворов, часто связанных с остывающими в земной коре магматическими очагами.

Тектонические движения - механические движения земной коры, вызываемые силами, действующими в ней и главным образом в мантии Земли, и приводящие к деформации слагающих кору пород. Тектонические движения связаны, как правило, с изменением химического состава, фазового состояния (минерального состава) и внутренней структуры подвергающихся деформации горных пород. Тектонические движения охватывают одновременно очень большие площади.

Геодезические измерения показывают, что практически вся поверхность Земли находится непрерывно в движении, однако скорость тектонических движений невелика, изменяется от сотых долей до первых десятков миллиметров в год, и только накопления этих движений в ходе очень продолжительного (десятки-сотни млн лет) геологического времени приводят к крупным суммарным перемещениям отдельных участков земной коры.

Американский геолог Г. Джильберт предложил (1890 г.), а немецкий геолог X. Штилле развил (1919г.) классификацию тектонических движений с разделением их на эпейрогенические, выражающиеся в длительных поднятиях и опусканиях крупных участков земной поверхности, и орогеиические, проявляющиеся эпизодически (орогени-ческие фазы) в определённых зонах образованием складок и разрывов и ведущие к формированию горных сооружений. Эта классификация применяется до сих пор, но её основной недостаток - объединение в понятие орогенеза двух принципиально различных процессов -складко- и разрывообразования, с одной стороны, и горообразования - с другой. Были предложены и другие классификации. Одна из них (отечественные геологи А. П. Карпинский, М. М. Тетяев и др.) предусматривала выделение колебательных складко- и разрывообразующих тектонических движений, другая (немецкий геолог Э. Харман и голландский учёный Р. В. ван Беммелен) - ундационных (волновых ) и ундуляционных (складчатых ) тектонических движений. Стало ясным, что тектонические движения весьма разнообразны как по форме проявления, так и по глубине зарождения, а также, очевидно, по механизму и причинам возникновения.

По другому принципу тектонические движения были разделены ещё М. В. Ломоносовым на медленные (вековые ) и быстрые. Быстрые движения связаны с землетрясениями и, как правило, отличаются высокой скоростью, на несколько порядков превышающей скорость медленных движений. Смещения земной поверхности во время землетрясений составляют несколько метров, иногда более 10 м. Однако такие смещения проявляются эпизодически.

Существенное значение имеет подразделение тектонических движений на вертикальные {радиальные ) и горизонтальные {тангенциальные), хотя оно и носит в большей мере условный характер, так как эти движения взаимосвязаны и переходят одни в другие. Поэтому правильнее говорить о тектонических движениях с преобладающей вертикальной или горизонтальной компонентой. Преобладающие вертикальные движения обусловливают поднятия и опускания земной поверхности, в том числе образование горных сооружений. Они являются основной причиной накопления мощных толщ осадочных пород в океанах и морях, а отчасти и на суше. Горизонтальные движения наиболее ярко проявляются в образовании крупных сдвигов отдельных блоков земной коры относительно других с амплитудой в сотни и даже тысячи километров, в их надвигах с амплитудой в сотни километров, а также в образовании океанических впадин шириной в тысячи километров в результате раздвига глыб континентальной коры.

Тектонические движения отличаются определённой периодичностью или неравномерностью, которая выражается в изменениях знака и (или) скорости во времени. Относительно короткопериодические вертикальные движения с частой переменой знака (обратимые) называются колебательными. Горизонтальные движения обычно длительно сохраняют свою направленность и являются необратимыми. Колебательные тектонические движения, вероятно, служат причиной трансгрессий и регрессий моря, образования морских и речных террас.

По времени проявления выделяют новейшие тектонические движения, которые непосредственно отражаются в современном рельефе Земли и поэтому распознаются не только геологическими, но и геоморфологическими методами, и современные тектонические движения, которые изучаются также и геодезическими методами (повторное нивелирование и пр.). Они составляют предмет исследования новейшей тектоники.

Тектонические движения отдалённого геологического прошлого устанавливаются по распространению трансгрессий и регрессий океана, по суммарной толщине (мощности) накопившихся осадочных отложений, по распределению их фаций и источников обломочного материала, снесённого в депрессии. Таким способом выясняется вертикальная компонента перемещения верхних слоев земной коры или поверхности консолидированного фундамента, расположенного под осадочным чехлом. В качестве репера используется уровень Мирового океана, который считают почти постоянным, с возможными отклонениями до 50-100 м при таянии или образовании ледников, а также более значительными - до нескольких сот метров в результате изменения ёмкости океанических впадин при их разрастании и образовании срединно-океанических хребтов.

Крупные горизонтальные перемещения, которые признаются не всеми учёными, устанавливаются как по геологическим данным, путём графического выпрямления складок и восстановления надвинутых толщ горных пород в первоначальном положении, так и на основании изучения остаточной намагниченности горных пород и изменений палеоклимата. Считается, что при достаточном количестве па-леомагнитных и геологических данных можно восстанавливать былое расположение материков и океанов и определять скорость и направление перемещений, происходивших в последующее время, например с конца палеозойской эры.

Скорость горизонтальных перемещений определяется сторонниками мобилизма по ширине новообразованных океанов (Атлантического, Индийского), по палеомагнитным данным, указывающим на изменения широты и ориентировки по отношению к меридианам, и по ширине образующихся при разрастании океанического дна полос магнитных аномалий различного знака, которые сопоставляются с длительностью эпох различной полярности магнитного поля Земли. Эти оценки, как и скорость современных горизонтальных движений, измеренная геодезическими методами в рифтах (Восточная Африка), складчатых областях (Япония, Таджикистан) и на сдвигах (Калифорния), составляют 0,1-10 см/г. На протяжении миллионов лет скорость горизонтальных движений изменяется незначительно, направление остаётся почти постоянным.

Вертикальные движения имеют, напротив, переменный, колебательный характер. Повторные нивелировки показывают, что скорость опускания или поднятия на равнинах обычно не превышает 0,5 см/год, поднятие в горных областях (например, на Кавказе) достигает 2 см/год. В то же время средние скорости вертикальных тектонических движений, определяемые для больших интервалов времени (например, за десятки миллионов лет), не превышают 0,1 см/год в подвижных поясах и 0,01 см/год на платформах. Это различие в скоростях, измеренных за малые и большие промежутки времени, указывает на то, что в геологических структурах фиксируется лишь интегральный результат вековых вертикальных движений, накапливающийся при суммировании колебаний противоположного знака.

Сходство тектонических движений, повторяющихся на одних и тех же тектонических структурах, позволяет говорить об унаследованном характере вертикальных тектонических движений. К тектоническим движениям обычно не относят перемещения горных пород в приповерхностной зоне (десятки метров от поверхности), вызванные нарушениями их гравитационного равновесия под влиянием экзогенных (внешних) геологических процессов, а также периодические поднятия и опускания земной поверхности, обусловленные твёрдыми приливами Земли вследствие притяжения Луны и Солнца. Спорным является отнесение к тектоническим движениям процессов, связанных с восстановлением изостатического равновесия, например поднятий при сокращении крупных ледниковых покровов типа антарктического или гренландского. Локальный характер носят движения земной коры, вызванные деятельностью вулканов. Причины тектонических движений до сих пор достоверно не установлены; в этом отношении высказываются различные предположения.

По мнению ряда учёных, глубинные тектонические движения вызваны системой крупных конвекционных течений, охватывающих верхние и средние слои мантии Земли. С такими течениями, по-видимому, связано растяжение земной коры в океанах и сжатие в складчатых областях, над теми зонами, где происходит сближение и погружение встречных течений. Другие учёные (В. В. Белоусов) отрицают существование замкнутых конвекционных течений в мантии, но допускают подъём разогретых в низах мантии и более лёгких продуктов её дифференциации, вызывающий восходящие вертикальные движения коры. Охлаждение этих масс служит причиной её опусканий. При этом горизонтальным движениям не придаётся существенного значения, и они считаются производными от вертикальных. При выяснении природы движений и деформаций земной коры некоторые исследователи отводят определённую роль напряжениям, возникающим в связи с изменениями скорости вращения Земли, другие считают их слишком незначительными.

Глубинное тепло Земли имеет преимущественно радиоактивное происхождение. Непрерывная генерация тепла в недрах Земли ведёт к образованию его потока, направленного к поверхности. На некоторых глубинах при благоприятном сочетании вещественного состава, температуры и давления могут возникать очаги и слои частичного плавления. Таким слоем в верхней мантии является астеносфера - основной источник образования магмы; в ней могут возникать конвекционные токи, которые служат предположительной причиной вертикального и горизонтального движений литосферы. В зонах вулканических поясов островных дуг и окраин континентов основные очаги магм связаны со сверхглубинными наклонными разломами (зоны Завариц-кого-Беньофа), уходящими под них со стороны океана (приблизительно до глубины 700 км). Под влиянием теплового потока или непосредственно тепла, приносимого поднимающейся глубинной магмой, возникают так называемые коровые очаги магмы в самой земной коре; достигая приповерхностных частей коры, магма внедряется в них в виде различных по форме интрузивов или изливается на поверхность, образуя вулканы.

Гравитационная дифференциация вела к расслоению Земли на геосферы разной плотности. На поверхности Земли она проявляется также в форме тектонических движений, которые, в свою очередь, ведут к тектоническим деформациям пород земной коры и верхней мантии. Накопление и последующая разрядка тектонических напряжений вдоль активных разломов приводят к землетрясениям.

Оба вида глубинных процессов тесно связаны: радиоактивное тепло, понижая вязкость материала, способствует его дифференциации, а последняя ускоряет вынос тепла к поверхности. Предполагается, что сочетание этих процессов ведёт к неравномерности во времени выноса тепла и лёгкого вещества к поверхности, что, в свою очередь, можно объяснить наличием в истории земной коры тектономагматических циклов.

Тектонические циклы (этапы) - большие (более 100 млн лет) периоды геологической истории Земли, характеризующиеся определённой последовательностью тектонических и общегеологических событий. Наиболее ярко проявляются в подвижных областях Земли, где цикл начинается погружениями земной коры с образованием глубоких морских бассейнов, накоплением мощных толщ осадков, подводным вулканизмом, образованием основных и ультраосновных интрузивно-магматических пород. Возникают островные дуги, проявляется андезитовый вулканизм, морской бассейн расчленяется на более мелкие, начинаются складчато-надвиговые деформации. Далее происходит формирование складчатых и складчато-покровных горных сооружений, окаймленных и разделённых передовыми (краевыми, предгорными) и межгорными прогибами, которые заполняются продуктами разрушения гор - мопассами. Этот процесс сопровождается региональным метаморфизмом, гранитообразованием, липарит-базальтовы-ми наземными вулканическими излияниями.

Сходная последовательность событий наблюдается и на платформах: смена континентальных условий за счет трансгрессии моря, а затем снова регрессии и установления континентального режима с образованием кор выветривания, с соответствующим изменением типа осадков - вначале континентальных, затем лагунных, нередко соленосных или угленосных, далее морских обломочных, в середине цикла преимущественно карбонатных или кремнистых, в конце снова морских, лагунных (соли) и континентальных (иногда ледниковых).

Интенсивным складчато-надвиговым деформациям и горообразованию в одних подвижных зонах нередко соответствуют образование в их тылу новых зон погружений и формирование систем рифтов -авлакогенов на платформах.

Средняя продолжительность тектонических циклов в фанерозое 150-180 млн лет (в докембрии тектонические циклы были, по-видимому, более продолжительными). Наряду с такими циклами иногда выделяют более крупные - мегациклы (мегаэтапы) - длительностью в сотни миллионов лет. В Европе, отчасти в Северной Америке и Азии в позднем докембрии и фанерозое установлены следующие циклы: гренвильский (средний рифей); байкальский (поздний рифей-венд); каледонский (кембрий-девон); герцинский (девон-пермь); киммерийский или мезозойский (триас-юра); альпийский (мел-кайнозой).

Первоначальное схематичное представление о тектонических циклах как строго синхронных в масштабах всей планеты, повсеместно повторяющихся и отличающихся одинаковым комплексом явлений, до сих пор справедливо оспаривается. В действительности, конец одного и начало другого циклов нередко оказываются синхронными (в разных, часто смежных регионах). В каждой отдельной подвижной системе наиболее полно выражены обычно один или два цикла, непосредственно предшествующие превращению ее в складчатую горную систему, а более ранние отличаются неполнотой набора характерных для них явлений, которые иногда сливаются друг с другом. В масштабе всей истории Земли тектоническая цикличность выступает лишь как осложнение общего её направленного развития. Отдельные циклы образуют стадии мегациклов, а они, в свою очередь, - крупные этапы истории Земли в целом. Причины цикличности пока не установлены. Высказываются предположения о периодичном накоплении тепла и возрастании теплового потока, исходящего из глубоких недр Земли, о циклах подъёма или круговорота (конвекции) продуктов дифференциации вещества мантии и др.

Пространственные неравномерности тех же глубинных процессов привлекаются к объяснению разделения земной коры на более или менее геологически активные регионы, например на горноскладчатые области и платформы.

С эндогенными процессами связано формирование рельефа Земли и образование многих важнейших полезных ископаемых.

Экзогенные процессы - геологические процессы, обусловленные внешними по отношению к Земле источниками энергии (преимущественно солнечное излучение) в сочетании с силой тяжести. Экзогенные процессы протекают на поверхности и в приповерхностной зоне земной коры в форме механического и физико-химического её взаимодействия с гидросферой и атмосферой. К ним относятся осадкообразование и образование месторождений осадочных полезных ископаемых, выветривание, геологическая деятельность ветра (эоловые процессы, дефляция), проточных поверхностных и подземных вод (эрозия, денудация), озёр и болот, вод морей и океанов (абразия), ледников (экзарация).

Экзогенные процессы включают разные виды выветривания в виде разрушений:

  • - дефляционные - выдувание, обтачивание и шлифование горных пород минеральными частицами, переносимыми ветром;
  • - селевые - образование и перемещение грязевых или грязекаменных потоков;
  • - эрозионные - размывание почв и горных пород водными потоками;

или разных процессов накопления осадков:

  • - аллювиальные - отложения рек в виде песка, галечника, конгломератов;
  • - делювиальные - перемещение продуктов выветривания горных пород вниз по склону под влиянием силы тяжести, дождевых и талых вод;
  • - коллювиальные - смещение склоновых обломков под влиянием силы тяжести;
  • - оползневые - отрыв земельных масс и горных пород и перемещение их по склону под влиянием силы тяжести;
  • - осадкообразующие - отложение осадков из воды, воздуха (в участках затишья) или на склонах под действием силы тяжести;
  • - пролювиальные - перемещение временными потоками продуктов разрушения горных пород и отложение их у подножий гор часто в виде конусов выноса;
  • - рудообразующие - накопление рудного вещества под действием разных причин: самородного золота - в результате выпадения из водных потоков, оксидов алюминия - выпадения из водных растворов и т. д.;
  • - элювиальные - продукты разрушения горных пород остаются на месте своего образования.

Выветривание - процесс разрушения и изменения горных пород в условиях земной поверхности в результате механического и химического воздействия атмосферы, грунтовых и поверхностных вод и организмов. По характеру среды, в которой происходит выветривание, оно может быть атмосферным и подводным. По роду воздействия выветривания на горные породы различают физическое выветривание , ведущее только к механическому распаду породы на обломки; химическое выветривание, при котором изменяется химический состав горной породы с образованием минералов, более стойких в условиях земной поверхности; органическое (биологическое) выветривание, сводящееся к механическому раздроблению или химическому изменению породы в результате жизнедеятельности организмов. Своеобразным типом выветривания является почвообразование, при котором особенно активную роль играют биологические факторы. Выветривание горных пород происходит под влиянием воды (атмосферные осадки и грунтовые воды), углекислоты и кислорода, водяных паров, атмосферного и грунтового воздуха, сезонных и суточных колебаний температуры, жизнедеятельности макро- и микроорганизмов и продуктов их разложения. На скорость и степень выветривания, мощность образующихся продуктов выветривания и на их состав кроме перечисленных агентов влияют также рельеф и геологическое строение местности, состав и структура материнских пород. Подавляющее число физических и химических процессов выветривания (окисление, сорбция, гидратация, коагуляция) происходит с выделением энергии. Обычно виды выветривания действуют одновременно, но в зависимости от климата тот или иной из них преобладает.

Физическое выветривание происходит главным образом в условиях сухого и жаркого климата и связано с резкими колебаниями температуры горных пород при нагревании солнечными лучами (инсоляция) и последующем ночном охлаждении; быстрое изменение объёма поверхностных частей пород ведёт к их растрескиванию. В областях с частыми колебаниями температуры около О °С механическое разрушение пород происходит под влиянием морозного выветривания; при замерзании воды, проникшей в трещины, объём ее увеличивается и порода разрывается.

Химические и органические типы выветривания свойственны главным образом пластам с влажным климатом. Основные факторы химического выветривания - воздух и особенно вода, содержащая соли, кислоты и щелочи. Водные растворы, циркулирующие в толще пород, помимо простого растворения способны производить также сложные химические изменения.

Физические и химические процессы выветривания происходят в тесной взаимосвязи с развитием и жизнедеятельностью животных и растений и действием продуктов их распада после смерти. Наиболее благоприятными для образования и сохранения продуктов выветривания (минералов) являются условия тропического или субтропического климата и незначительное эрозионное расчленение рельефа. При этом толще горных пород, подвергшихся выветриванию, свойственна (в направлении сверху вниз) геохимическая зональность, выраженная характерным для каждой зоны комплексом минералов. Последние образуются в результате следующих друг за другом процессов: распада пород под влиянием физического выветривания, выщелачивания оснований, гидратации, гидролиза и окисления. Эти процессы часто идут до полного разложения первичных минералов, вплоть до образования свободных оксидов и гидроксидов.

В зависимости от степени кислотности - щёлочности среды, а также участия биогенных факторов образуются минералы различного химического состава: от устойчивых в щелочной среде (в нижних горизонтах) до устойчивых в кислой или нейтральной среде (в верхних горизонтах). Разнообразие продуктов выветривания, представленных различными минералами, определяется составом минералов первичных горных пород. Например, на ультраосновных породах (серпентинитах) верхняя зона представлена породами, в трещинах которых образуются карбонаты (магнезит, доломит). Далее следуют горизонты карбонатизации (кальцит, доломит, арагонит), гидролиза, с которым связано образование нонтронита и накопление никеля (ЫЮ до 2,5 %), окремнения (кварц, опал, халцедон). Зона конечного гидролиза и окисления сложена гидрогётитом (охристым), гётитом, магнетитом, оксидами и гидроксидами марганца (никель- и кобальтсодержащими). С процессами выветривания связаны крупные месторождения никеля, кобальта, магнезита и природно-легированных железных руд.

В тех случаях, когда продукты выветривания не остаются на месте своего образования, а уносятся с поверхности выветривающихся пород водой или ветром, нередко возникают своеобразные формы рельефа, зависящие как от характера выветривания, так и от свойств горных пород, в которых процесс как бы проявляет и подчеркивает особенности их строения (рис. 15).

Рис. 15.

Россия (БСЭ).

Для изверженных пород (гранитов, диабазов и др.) характерны массивные округлённые формы выветривания; для слоистых осадочных и метаморфических - ступенчатые (карнизы, ниши и т. п.). Неоднородность пород и неодинаковая устойчивость их различных участков против выветривания ведёт к образованию останцев в виде изолированных гор, столбов (рис. 16), башен и т. п.

Во влажном климате на наклонных поверхностях однородных, сравнительно легко растворимых в воде пород, например, известняков, стекающие воды разъедают неправильной формы углубления, разделённые острыми выступами и гребнями, в результате чего образуется неровная поверхность, известная под названием карров.

Рис. 16.

реки Енисей у Красноярска (БСЭ).

В процессе перерождения остаточных продуктов выветривания образуется много растворимых соединений, которые сносятся грунтовой водой в водные бассейны и входят в состав растворённых солей или выпадают в осадок. Процессы выветривания приводят к образованию различных осадочных пород и многих полезных ископаемых: каолинов, охр, огнеупорных глин, песков, руд железа, алюминия, марганца, никеля, кобальта, россыпей золота, платины и др., зон окисления колчеданных месторождений с их полезными ископаемыми и др.

Дефляция (от позднелат. с 1 е/ 1 аИо - выдувание, сдувание) - развевание, разрушение горных пород и почв под действием ветра, сопровождающееся перенесением и обтачиванием оторванных частиц. Особенно сильна дефляция в пустынях, в тех их частях, со стороны которых дуют господствующие ветры (например, в южной части пустыни Каракумы). Совокупность процессов дефляции и физического выветривания приводит к образованию обточенных скал причудливой формы в виде башен, колонн, обелисков и т. п.

Эрозия почвы - разрушение почвы водой и ветром, перемещение продуктов разрушения и их переотложение.

Образование эоловых форм рельефа происходит под действием ветра преимущественно в районах с аридным климатом (пустыни, полупустыни); встречается также по берегам морей, озер и рек со скудным растительным покровом, не способным защитить от действия ветра рыхлые и разрушенные выветриванием породы субстрата. Наиболее распространены аккумулятивные и аккумулятивнодефляционные формы , образующиеся в результате перемещения и отложения ветром песчаных частиц, а также выработанные (дефляционные) эоловые формы рельефа, возникающие за счет выдувания (дефляции) рыхлых продуктов выветривания, разрушения горных пород под воздействием динамических ударов самого ветра и особенно под действием ударов мелких частиц, переносимых ветром в ветропесчаном потоке.

Форма и величина аккумулятивных и аккумулятивно-дефляционных образований зависит от режима ветров (силы, частоты, направления, структуры ветрового потока), преобладающего в данной местности и действовавшего в прошлом, от насыщенности песчаными частицами ветропесчаного потока, степени связности рыхлого субстрата растительностью, от увлажнения и других факторов, а также от характера подстилающего рельефа. Наибольшее влияние на облик эоловых форм рельефа в песчаных пустынях оказывает режим активных ветров, действующих аналогично водному потоку с турбулентным движением среды близ твердой поверхности. Для средне- и мелкозернистого сухого песка (при диаметре зерен 0,5-0,25 мм) минимальная скорость активного ветра составляет 4 м/с. Аккумулятивные и дефляционно-аккумулятивные формы, как правило, перемещаются в соответствии с сезонно господствующим направлением ветров: поступательно при годовом воздействии активных ветров одного или близких направлений; колебательно и колебательно-поступательно, если направления этих ветров в течение года существенно меняются (на противоположные, перпендикулярные и т. п.). Особенно интенсивно (со скоростью до нескольких десятков метров в год) происходит перемещение оголенных песчаных аккумулятивных форм.

Для аккумулятивных и дефляционно-аккумулятивных эоловых форм рельефа пустынь характерно одновременное присутствие наложенных друг на друга форм нескольких категорий величин: 1 -я категория - ветровая рябь, высотой от долей миллиметра до 0,5 м, расстоянием между гребнями от нескольких миллиметров до 2,5 м; 2-я категория - щитовидные скопления высотой не менее 40 см; 3-я категория - барханы до 2-3 м высотой, соединяющиеся в продольную ветрам гряду или в поперечную ветрам барханную цепь; 4-я категория -барханный рельеф высотой до 10-30 м; 5-я и 6-я категории - крупные формы (высотой до 500 м), образующиеся в основном восходящими потоками воздуха. В пустынях умеренного пояса, где большую роль играет растительность, сдерживающая работу ветра, рельефообразо-вание идет замедленнее и самые крупные формы не превышают 60-70 м, наиболее характерны здесь прикустовые косички, холмики-косы и прикустовые бугры высотой от нескольких дециметров до 10-20 м.

Поскольку господствующий режим ветров (пассатный, муссонно-бризный, циклональный и др.) и скрепленность рыхлого субстрата в первую очередь определяются зонально-географическими факторами, аккумулятивные и аккумулятивно-дефляционные эоловые формы рельефа распределяются в целом зонально. Согласно классификации, предложенной географом Б. А. Федоровичем, оголенные легкоподвижные песчаные формы характерны, главным образом, для тропических экстрааридных пустынь (Сахара, пустыни Аравийского полуострова, Ирана, Афганистана, Такла-Макан); полузаросшие слабоподвижные - преимущественно для внетропических пустынь (пустыни Средней Азии и Казахстана, Джунгарии, Монголии, Австралии); заросшие в основном неподвижные дюнные формы - для внепустын-ных территорий (главным образом древнеледниковых областей Европы, Западной Сибири, Северной Америки). Детальная классификация аккумулятивных и дефляционно-аккумулятивных эоловых форм рельефа в зависимости от режима ветров дана при описании дюн и барханов.

Среди выработанных микроформ (до нескольких десятков сантиметров в поперечнике) наиболее распространены решетчатые или сотовые скалы, сложенные в основном терригенными породами; среди форм средней величины (метры и десятки метров) - ярданги, ложбины, котлы и ниши выдувания, скалы причудливой формы (грибообразные, кольцевые и др.), скопления которых нередко образуют целые эоловые «города»; к крупным выработанным формам (несколько километров в поперечнике) относят котловины выдувания и солончаково-дефляционные впадины, образующиеся при совместном воздействии интенсивно протекающих процессов физикохимического (солевого) выветривания и дефляции (в том числе огромные площади до сотен километров; например, впадина Карагие в Западном Казахстане). Всестороннее изучение эоловых форм рельефа, их морфологии, происхождения, динамики имеет важное значение при хозяйственном освоении пустынь.

Абразия (от лат. аЪгаяю - соскабливание, сбривание) - разрушение волнами и прибоем берегов морей, озёр и крупных водохранилищ. Интенсивность абразии зависит от степени волнового воздействия водоёма. Важнейшим условием, предопределяющим абразионное развитие берега, является относительно крутой угол исходного откоса (больше 1 °) прибрежной части дна моря или озера. Абразия создаёт на берегах абразионную террасу, или бенч, и абразионный уступ, или клиф (рис. 17). Образующиеся при этом в результате разрушения горных пород песок, гравии, галька могут вовлекаться в процессы перемещения наносов и служить материалом для береговых аккумулятивных форм. Часть материала сносится волнами и течениями к подножию абразионного подводного склона и образует здесь прислонённую аккумулятивную террасу. По мере расширения абразионной террасы абразия постепенно затухает (так как расширяется полоса мелководья, на преодоление которой расходуется энергия волн) и при поступлении наносов может смениться аккумуляцией. На склонах искусственных водохранилищ, уклоны которых в прошлом формировались иными, не абразионными факторами, темп абразии особенно высок - до десяти метров в год.


Рис. 17.

К - клиф; АТ - абразионная терраса (бенч); ПАТ - подводная аккумулятивная терраса; УВ - уровень воды. Пунктирной линией обозначен доабрази-онный рельеф (БСЭ).

Экзарация (от позднелат. ехагайо - выпахивание) - ледниковое выпахивание, разрушение ледником горных пород, слагающих его ложе, и удаление продуктов разрушения (отторженцев, валунов, гальки, песка, глины и др.) движущимся ледником. В результате экзарации возникают троги, озёрные котловины, «бараньи лбы», «курчавые скалы», ледниковые шрамы, штриховка. Наряду с разрушением горных пород происходят их сглаживание, полировка и шлифовка.

Главные формы проявления экзогенных процессов на поверхности Земли:

  • - разрушение горных пород и химическое преобразование слагающих их минералов (физическое, химическое, органическое выветривание);
  • - удаление и перенос разрыхлённых и растворимых продуктов разрушения горных пород водой, ветром и ледниками;
  • - отложение (аккумуляция) этих продуктов в виде осадков на суше или на дне водных бассейнов и постепенное их преобразование в осадочные горные породы в результате последовательных процессов се-диментогенеза, диагенеза и катагенеза.

Экзогенные процессы в сочетании с эндогенными участвуют в формировании рельефа Земли, в образовании толщ осадочных горных пород и связанных с ними месторождений полезных ископаемых. Например, в условиях проявления специфических процессов выветривания и осадконакопления образуются руды алюминия (бокситы), железа, никеля и др.; в результате селективного отложения минералов водными потоками формируются россыпи золота и алмазов; в условиях, благоприятствующих накоплению органического вещества и обогащенных им толщ осадочных горных пород, возникают горючие полезные ископаемые.

Вопросы

1.Эндогенные и экзогенные процессы

.Землетрясение

.Физические свойства минералов

.Эпейрогенические движения

.Список используемой литературы

1. ЭКЗОГЕННЫЕ И ЭНДОГЕННЫЕ ПРОЦЕССЫ

Экзогенные процессы - геологические процессы, происходящие на поверхности Земли и в самых верхних частях земной коры (выветривание, эрозия, деятельность ледников и др.); обусловлены главным образом энергией солнечной радиации, силой тяжести и жизнедеятельностью организмов.

Эрозия (от лат. erosio - разъедание) - разрушение горных пород и почв поверхностными водными потоками и ветром, включающее в себя отрыв и вынос обломков материала и сопровождающееся их отложением.

Часто, особенно в зарубежной литературе, под эрозией понимают любую разрушительную деятельность геологических сил, таких, как морской прибой, ледники, гравитация; в таком случае эрозия выступает синонимом денудации. Для них, однако, существуют и специальные термины: абразия (волновая эрозия), экзарация (ледниковая эрозия), гравитационные процессы, солифлюкция и т. д. Такой же термин (дефляция) используется параллельно с понятием ветровая эрозия, но последнее гораздо более распространено.

По скорости развития эрозию делят на нормальную и ускоренную. Нормальная имеет место всегда при наличии сколько-либо выраженного стока, протекает медленнее почвообразования и не приводит к заметным изменением уровня и формы земной поверхности. Ускоренная идет быстрее почвообразования, приводит к деградации почв и сопровождается заметным изменением рельефа. По причинам выделяют естественную и антропогенную эрозию. Следует отметить, что антропогенная эрозия не всегда является ускоренной, и наоборот.

Работа ледников - рельефообразующая деятельность горных и покровных ледников, состоящая в захвате частиц горных пород движущимся ледником, переносе и отложении их при таянии льда.

Эндогенные процессы Эндогенные процессы - геологические процессы, связанные с энергией, возникающей в недрах твердой Земли. К эндогенным процессам относятся тектонические процессы, магматизм, метаморфизм, сейсмическая активность.

Тектонические процессы - образование разломов и складок.

Магматизм - термин, объединяющий эффузивные (вулканизм) и интрузивные (плутонизм) процессы в развитии складчатых и платформенных областей. Под магматизмом понимают совокупность всех геологических процессов, движущей силой которых является магма и её производные.

Магматизм является проявлением глубинной активности Земли; он тесно связан с ее развитием, тепловой историей и тектонической эволюцией.

Выделяют магматизм:

геосинклинальный

платформенный

океанический

магматизм областей активизации

По глубине проявления:

абиссальный

гипабиссальный

поверхностный

По составу магмы:

ультраосновной

основной

щелочной

В современную геологическую эпоху магматизм особенно развит в пределах Тихоокеанского геосинклинального пояса, срединно-океанических хребтов, рифовых зон Африки и Средиземноморья и др. С магматизмом связано образование большого количества разнообразных месторождений полезных ископаемых.

Сейсмическая активность - это количественная мера сейсмического режима, определяемая средним числом очагов землетрясений в некотором диапазоне энергетической величины, которые возникают на рассматриваемой территории за определенное время наблюдения.

2. ЗЕМЛЕТРЯСЕНИЯ

геологический земной кора эпейрогенический

Наиболее отчетливо действие внутренних сил Земли обнаруживается в явлении землетрясений, под которыми понимаются сотрясения земной коры, вызванные смещениями горных пород в недрах Земли.

Землетрясение - явление достаточно распространенное. Оно наблюдается на многих участках материков, а также на дне океанов и морей (в последнем случае говорят о «моретрясении»). Количество землетрясений на земном шаре достигает нескольких сотен тысяч в год, т. е. в среднем совершается одно два землетрясения в минуту. Сила землетрясения различна: большинство из них улавливается только высокочувствительными приборами -сейсмографами, другие ощущаются человеком непосредственно. Количество последних достигает двух-трех тысяч в год, причем распределяются они очень неравномерно - в одних районах такие сильные землетрясения очень часты, а в других необычайно редки или даже практически отсутствуют.

Землетрясения можно подразделить на эндогенные , связанные с процессами, происходящими в глубине Земли, и экзогенные , зависящие от процессов, происходящих вблизи поверхности Земли.

К зндогенным землетрясениям относятся вулканические землетрясения, вызванные процессами извержения вулканов, и тектонические, обусловленные перемещением вещества в глубоких недрах Земли.

К экзогенным землетрясениям относятся землетрясения, происходящие в результате подземных обвалов, связанных с карстовыми и некоторыми другими явлениями, взрыво газов и т.п. Экзогенные землетрясения могут вызываться также процессами, происходящими на самой поверхности Земли: обвалами скал, ударами метеоритов, падением воды с большой высоты и другими явлениями, а также факторами, связанными с деятельностью человека (искусственными взрывами, работой машин и т.п.).

Генетически землетрясения можно классифицировать следующим образом:. Естественные

Эндогенные: а) тектонические, б) вулканические. Экзогенные: а) карстово-обвальные, б) атмосферные в) от ударов волн, водопадов и т. п.. Искусственные

а) от взрывов, б) от артиллерийской стрельбы, в) от искусственного обрушения горных пород, г) от транспорта и т. п.

В курсе геологии рассматриваются только землетрясения, связанные с эндогенными процессами.

В тех случаях, когда сильные землетрясения происходят в густонаселенных районах, они наносят огромный вред человеку. По бедствиям, причиняемым человеку, землетрясения не могут сравниться ни с каким другим явлением природы. Так например, в Японии во время землетрясения 1 сентября 1923 г., продолжавшегося всего несколько секунд, было полностью уничтожено 128266 домов и 126233 частично разрушено, погибло около 800 судов, были убиты и пропали без вести 142 807 человек. Более 100 тыс. человек получили ранения.

Описать явление землетрясения необычайно трудно, так как весь процесс длится всего несколько секунд или минут, и человек не успевает воспринять все многообразие перемен, совершающихся за это время в природе. Внимание фиксируется обычно только на тех колоссальных разрушениях, которые появляются в результате землетрясения.

Вот как описывает М. Горький землетрясение, происшедшее в Италии в 1908 г., очевидцем которого он был: «Земля глухо гудела, стонала, горбилась под ногами и волновалась, образуя глубокие трещины - как будто в глубине проснулся и ворочается веками дремавший некий огромный червь... Вздрогнув и пошатываясь, здания наклонялись, по их белым стенам, как молнии, змеились трещины и стены рассыпались, засыпая узкие улицы и людей среди них... Подземный гул, грохот камней, визг дерева заглушают вопли о помощи, крики безумия. Земля волнуется, как море, сбрасывая с груди своей дворцы, лачуги, храмы, казармы, тюрьмы, школы, каждым содроганием уничтожая сотни и тысячи женщин, детей, богатых и бедных. ».

В результате этого землетрясения был разрушен г. Мессина и ряд других населенных пунктов.

Общая последовательность всех явлений при землетрясении была изучена И. В. Мушкетовым во время крупнейшего из среднеазиатских Алма-Атинского землетрясения 1887 г.

27 мая 1887 г. вечером, как писали очевидцы, никаких признаков землетрясения не было, но домашние животные вели себя неспокойно, не принимали корма, рвались с привязи и т. п. Утром 28 мая в 4 часа 35 минут послышался подземный гул и довольно сильный толчок. Сотрясение продолжалось не более секунды. Через несколько минут гул возобновился, он напоминал глухой звон мощных многочисленных колоколов или грохот проезжающей тяжелой артиллерии. За гулом последовали сильные сокрушительные удары: в домах сыпалась штукатурка, вылетали стекла, рушились печи, падали стены и потолки: улицы наполнились серой пылью. Наиболее сильно пострадали массивные каменные постройки. У домов, расположенных по меридиану, вываливались северные и южные стены, тогда как западные и восточные сохранялись. В первую минуту казалось, что города больше не существует, что разрушены все здания без исключения. Удары и сотрясения, но менее сильные, продолжались в течение всего дня. Многие поврежденные, но ранее устоявшие дома, падали от этих более слабых толчков.

В горах образовались обвалы и трещины, по которым местами на поверхность вышли потоки подземной воды. Глинистая почва на склонах гор, и до того уже сильно смоченная дождями, начала ползти, ч загромождая русла рек. Подхваченная потоками вся эта масса земли, щебня, валунов Б виде густых селевых потоков устремилась к подножию гор. Один из таких потоков протянулся на 10 км при ширине 0,5 км.

Разрушения в самом г. Алма-Ата были огромны: из 1800 домов уцелели единичные дома, но количество человеческих жертв было относительно невелико (332 человека).

Многочисленные наблюдения показали, что в домах сначала (на какую-то долю секунды раньше) разваливались южные стены, а затем уже северные, что колокола в Покровской церкви (в северной части города) ударили через несколько секунд после разрушений, происшедших в южной части города. Все это свидетельствовало, что центр землетрясения находился к югу от города.

Большинство трещин в домах было наклонено также на юг или точнее на юго-восток (170°) под углом 40-60°. Анализируя направление трещин, И. В. Мушкетов пришел к выводу, что источник волн землетрясения располагался на глубине 10- 12 км п в 15 км к югу от г. Алма-Ата.

Глубинный центр, или очаг землетрясения, называется гипоцентром. В плане он очерчивается как округлая или овальная площадь.

Область, расположенная на поверхности Земли над гипоцентром носит название эпицентра. Она характёризуётся максимальными разрушениями, причем многие предметы здесь смещаются вертикально (подпрыгивают), и трещины в домах располагаются очень круто, почти вертикально.

Площадь эпицентра Алма-Атинского землетрясения определялась в 288 км² (36 *8 км), а область, где землетрясение было наиболее сильным, охватила площадь в 6000 км². Такая область получила название плейстосейстовой («плейсто» - наибольший и « сейстос» - сотрясенный).

Алма-Атинское землетрясение продолжалось не один день: вслед за толчками 28 мая 1887 г. в течение более двух лет происходили толчки меньшей силы с. интервалами сначала в несколько часов, а затем дней. Всего за два года было свыше 600 ударов, все более и более ослабевающих.

В истории Земли описаны землетрясения с еще большим количеством толчков. Так, например, в 1870 г. в провинции Фокида в Греции начались толчки, которые продолжались в течение трех лет. В первые три дня толчки следовали через 3 минуты, в течение первых пяти месяцев произошло около 500 тыс. толчков, из них 300 обладали разрушительной силой и следовали друг за другом со средним интервалом в 25 секунд. За три года всего произошло свыше 750 тыс. ударов.

Таким образом, землетрясение происходит не в результате единовременного акта, совершающегося на глубине, но вследствие какого-то длительно развивающегося процесса движения материи во внутренних частях земного шара.

Обычно за начальным крупным толчком следует цепь более мелких толчков, и весь этот период можно назвать периодом землетрясения. Все толчки одного периода исходят из общего гипоцентра, который иногда в процессе развития может смещаться, в связи с чем смещается и эпицентр.

Это хорошо видно на ряде примеров кавказских землетрясений, а также землетрясения в районе г. Ашхабада, которое произошло 6 октября 1948 г. Основной толчок последовал в 1 час 12 минут без предварительных толчков и продолжался 8-10 секунд. За это время в городе и окрестных селениях произошли огромные разрушения. Одноэтажные дома из кирпича-сырца рассыпались, и крыши накрыли эти груды кирпича, домашней утвари и т. п. У более прочно построенных домов вылетели отдельные стены, развалились трубы и печи. Интересно отметить, что здания круглой формы (элеватор, мечеть, собор и др.) противостояли толчку лучше, чем обычные четырехугольные постройки.

Эпицентр землетрясения располагался в 25 км. к юго-востоку от Ашхабада, в районе совхоза «Карагаудан». Эпицентральная область оказалась вытянутой в северо-западном направлении. Гипоцентр располагался на глубине 15-20 км. Длина плейстосейстовой области достигала 80 км, а ширина- 10 км. Период Ашхабадского землетрясения был длителен и состоял из множества (более 1000) толчков, эпицентры которых располагались к северо-западу от главного в пределах узкой полосы, расположенной в предгорьях Копет-Дага

Гипоцентры всех этих повторных толчков находились на той же малой глубине (порядка 20-30 км), что и гипоцентр основного толчка.

Гипоцентры землетрясений могут располагаться не только под поверхностью материков, но и под дном морей и океанов. При моретрясениях разрушения приморских городов бывают тоже весьма значительными и сопровождаются человеческими жертвами.

Сильнейшее землетрясение произошло в 1775 г. в Португалии. Плейстосейстовая область этого землетрясения охватила огромную площадь; эпицентр располагался под дном Бискайского залива вблизи столицы Португалии г. Лиссабона, пострадавшего наиболее сильно.

Первый толчок произошел днем 1 ноября и сопровождался страшным грохотом. По свидетельству очевидцев, земля на целый локоть то поднималась вверх, то опускалась. Дома падали со страшным треском. Огромный монастырь на горе так сильно качался из стороны в сторону, что каждую минуту грозил рухнуть. Толчки продолжались 8 минут. Через несколько часов землетрясение возобновилось.

Мраморная набережная провалилась и ушла под воду. В образовавшуюся водяную воронку были увлечены люди и корабли, стоявшие у берега. После землетрясения глубина залива на месте набережной достигала 200 м.

Море вначале землетрясения отступило, но затем огромная волна высотой 26 м обрушилась на берег и затопила побережье на ширину до 15 км. Таких волн, следовавших одна за другой, было три. То, что уцелело от землетрясения, было смыто и унесено в море. Только в гавани Лиссабона было уничтожено или повреждено свыше 300 судов.

Волны Лиссабонского землетрясения прошли через весь Атлантический океан: у Кадикса их высота достигала 20 м, на Африканском побережье, у берегов Танжера и Марокко - 6 м, на о-вах Фуншал и Мадера -до 5 м. Волны пересекли Атлантический океан и ощущались у берегов Америки на о-вах Мартиника, Барбадос, Антигуа и др. При Лиссабонском землетрясении погибло свыше 60 тыс. человек.

Подобные волны довольно часто возникают при моретрясениях, они называаются цуцнами. Скорость распространения этих волн колеблется от 20 до 300 м/сек в зависимости:от глубины океана; высота волн достигает 30 м.

Появление цунами и волн отлива объясняется следующим образом. В эпицентральной области из-за деформации дна образуется волна давления, распространяющаяся вверх. Море в этом месте только сильно вспучивается, на поверхности образуются кратковременные течения, расходящиеся во всех направлениях, или «вскипает» с подбрасыванием воды вверх на высоту до 0,3м. Все это сопровождается гулом. Затем волна давления преобразуется на поверхности в волны цунами, разбегающиеся в разных направлениях. Отливы перед цунами объясняются тем, что вначале вода устремляется в подводный провал, из которого затем выталкивается в эпицентральную область.

В случае, когда эпицентры приходятся на густонаселенные районы, землетрясения приносят огромные бедствия. Особенно разрушительными были землетрясения Японии, где за 1500 лет зафиксировано 233 крупных землетрясения с количеством толчков, превышающим 2 млн.

Большие бедствия причиняют землетрясения в Китае. Во время катастрофы 16 декабря 1920 г. в районе Кансу погибло свыше 200 тыс. человек, причем главной причиной гибели были обвалы жилищ, вырытых в лёссе. Землетрясения исключительной силы происходили в Америке. При землетрясении в районе Риобамба в 1797 г. погибло 40 тыс. человек и было разрушено 80% зданий. В 1812 г. город Каракас (Венесуэла) был разрушен полностью в течение 15 секунд. Неоднократно почти полностью разрушался г. Консепсион в Чили, Сильно пострадал г. Сан-Франциско в 1906 г. В Европе наибольшие разрушения наблюдались после землетрясения в Сицилии, где в 1693 г. было уничтожено 50 селений и погибло свыше 60 тыс. человек.

На территории СССР наиболее разрушительными были землетрясения на юге Средней Азии, в Крыму (1927 г.) и на Кавказе. Особенно часто страдал от землетрясений г. Шемаха в Закавказье. Он разрушался в 1669, 1679, 1828, 1856, 1859, 1872, 1902 гг. До 1859 г. город Шемаха был губернским центром Восточного Закавказья, но из-за землетрясения столицу пришлось перенести в Баку. На рис. 173 показано размещение эпицентров Шемахинских землетрясений. Так же, как и в Туркмении, они располагаются вдоль определенной линии, вытянутой в северо-западном направлении.

При землетрясениях происходят существенные изменения на поверхности Земли, выражающиеся в образовании трещин, провалов, складок, поднятии отдельных участков на суше, в образовании островов на море и т. п. Эти нарушения, называемые сейсмическими, часто способствуют образованию мощных обвалов, осыпей, оползней, оплывин и селевых потоков в горах, появлению новых источников, прекращению старых, образованию грязевых сопок, газовых выбросов и др. Нарушения, образующиеся после землетрясений называются постсейсмическими.

Явления. связанные с землетрясениями как на поверхности Земли, так и в ее недрах, называются сейсмическими явлениями. Наука, изучающая сейсмические явления, называется сейсмологией.

3. ФИЗИЧЕСКИЕ СВОЙСТВА МИНЕРАЛОВ

Хотя главные характеристики минералов (химический состав и внутренняя кристаллическая структура) устанавливаются на основе химических анализов и рентгеноструктурного метода, косвенно они отражаются в свойствах, которые легко наблюдаются или измеряются. Для диагностики большинства минералов достаточно определить их блеск, цвет, спайность, твердость, плотность.

Блеск (металлический, полуметаллический и неметаллический - алмазный, стеклянный, жирный, восковой, шелковистый, перламутровый и др.) обусловлен количеством отражаемого от поверхности минерала света и зависит от его показателя преломления. По прозрачности минералы разделяются на прозрачные, полупрозрачные, просвечивающие в тонких осколках и непрозрачные. Количественное определение светопреломления и светоотражения возможно только под микроскопом. Некоторые непрозрачные минералы сильно отражают свет и имеют металлический блеск. Это характерно для рудных минералов, например, галенита (минерал свинца), халькопирита и борнита (минералы меди), аргентита и акантита (минералы серебра). Большинство минералов поглощают или пропускают значительную часть падающего на них света и обладают неметаллическим блеском. Некоторые минералы имеют блеск, переходный от металлического к неметаллическому, который называется полуметаллическим.

Минералы с неметаллическим блеском обычно светлоокрашенные, некоторые из них прозрачны. Часто бывают прозрачными кварц, гипс и светлая слюда. Другие минералы (например, молочно-белый кварц), пропускающие свет, но сквозь которые нельзя четко различить предметы, называют просвечивающими. Минералы, содержащие металлы, отличаются от прочих по светопропусканию. Если свет проходит сквозь минерал, хотя бы в самых тонких краях зерен, то он, как правило, нерудный; если же свет не проходит, то он - рудный. Бывают, впрочем, и исключения: например, светлоокрашенный сфалерит (минерал цинка) или киноварь (минерал ртути) нередко прозрачны или просвечивают.

Минералы различаются по качественным характеристикам неметаллического блеска. Глина имеет тусклый землистый блеск. Кварц на гранях кристаллов или на поверхностях излома - стеклянный, тальк, разделяющийся на тонкие листочки по плоскостям спайности, - перламутровый. Яркий, сверкающий, как у алмаза, блеск называется алмазным.

Когда свет падает на минерал с неметаллическим блеском, то он частично отражается от поверхности минерала, а частично преломляется на этой границе. Каждое вещество характеризуется определенным показателем преломления. Поскольку этот показатель может быть измерен с высокой точностью, он является весьма полезным диагностическим признаком минералов.

Характер блеска зависит от показателя преломления, а оба они - от химического состава и кристаллической структуры минерала. В общем случае прозрачные минералы, содержащие атомы тяжелых металлов, отличаются сильным блеском и высоким показателем преломления. К этой группе относятся такие распространенные минералы, как англезит (сульфат свинца), касситерит (оксид олова) и титанит, или сфен (силикат кальция и титана). Минералы, состоящие из относительно легких элементов, также могут иметь сильный блеск и высокий показатель преломления, если их атомы плотно упакованы и удерживаются сильными химическими связями. Ярким примером является алмаз, состоящий только из одного легкого элемента углерода. В меньшей степени это справедливо и для минерала корунда (Al2O3), прозрачные цветные разновидности которого - рубин и сапфиры - являются драгоценными камнями. Хотя корунд состоит из легких атомов алюминия и кислорода, они так крепко связаны между собой, что минерал имеет довольно сильный блеск и относительно высокий показатель преломления.

Некоторые блески (жирный, восковой, матовый, шелковистый и др.) зависят от состояния поверхности минерала или от строения минерального агрегата; смоляной блеск характерен для многих аморфных веществ (в том числе минералов, содержащих радиоактивные элементы уран или торий).

Цвет - простой и удобный диагностический признак. В качестве примеров можно привести латунно-желтый пирит (FeS2), свинцово-серый галенит (PbS) и серебристо-белый арсенопирит (FeAsS2). У других рудных минералов с металлическим или полуметаллическим блеском характерный цвет может быть замаскирован игрой света в тонкой поверхностной пленке (побежалостью). Это свойственно большинству минералов меди, особенно борниту, который называют «павлиньей рудой» из-за его радужной сине-зеленой побежалости, быстро возникающей на свежем изломе. Однако другие медные минералы окрашены в хорошо всем знакомые цвета: малахит - в зеленый, азурит - в синий.

Некоторые неметаллические минералы безошибочно узнаются по цвету, обусловленному главным химическим элементом (желтому - серы и черному - темно-серому - графита и др.). Многие неметаллические минералы состоят из элементов, которые не обеспечивают им специфической окраски, но у них известны окрашенные разновидности, цвет которых обусловлен присутствием примесей химических элементов в малых количествах, не сопоставимых с интенсивностью вызываемой ими окраски. Такие элементы называют хромофорами; их ионы отличаются избирательным поглощением света. Например, густо-фиолетовый аметист обязан своей окраской ничтожной примеси железа в кварце, а густой зеленый цвет изумруда связан с небольшим содержанием хрома в берилле. Окраска обычно бесцветных минералов может появляться вследствие дефектов кристаллической структуры (обусловленных незаполненными позициями атомов в решетке или вхождением посторонних ионов), которые могут вызвать селективное поглощение некоторых длин волн в спектре белого света. Тогда минералы окрашиваются в дополнительные цвета. Рубины, сапфиры и александриты обязаны своей окраской именно таким световым эффектам.

Бесцветные минералы могут быть окрашены механическими включениями. Так, тонкая рассеянная вкрапленность гематита придает кварцу красный цвет, хлорита - зеленый. Молочный кварц замутнен газово-жидкими включениями. Хотя цвет минералов - одно из самых легко определяемых свойств при диагностике минералов, его надо использовать с осторожностью, так как он зависит от многих факторов.

Несмотря на изменчивость окраски многих минералов, цвет порошка минерала весьма постоянен, а потому является важным диагностическим признаком. Обычно цвет порошка минерала устанавливают по черте (т.н. «цвету черты»), которую оставляет минерал, если им провести по неглазурованной фарфоровой пластинке (бисквиту). Например, минерал флюорит бывает окрашен в разные цвета, но черта у него всегда белая.

Спайность - весьма совершенная, совершенная, средняя (ясная), несовершенная (неясная) и весьма несовершенная - выражается в способности минералов раскалываться по определённым направлениям. Излом (ровный ступенчатый, неровный, занозистый, раковистый и др.) характеризуют поверхности раскола минерала, произошедшего не по спайности. Например, кварц и турмалин, поверхность излома которых напоминает скол стекла, имеют раковистый излом. У других минералов излом может быть описан как шероховатый, неровный или занозистый. Для многих минералов характеристикой служит не излом, а спайность. Это означает, что они раскалываются по гладким плоскостям, непосредственно связанным с их кристаллической структурой. Силы связи между плоскостями кристаллической решетки могут быть различными в зависимости от кристаллографического направления. Если в каких-то направлениях они гораздо больше, чем в других, то минерал будет раскалываться поперек самой слабой связи. Так как спайность всегда параллельна атомным плоскостям, она может быть обозначена с указанием кристаллографических направлений. Например, галит (NaCl) имеет спайность по кубу, т.е. три взаимоперпендикулярных направления возможного раскола. Спайность характеризуется также легкостью проявления и качеством возникающей спайной поверхности. Слюда обладает весьма совершенной спайностью в одном направлении, т.е. легко расщепляется на очень тонкие листочки с гладкой блестящей поверхностью. У топаза спайность совершенная в одном направлении. Минералы могут иметь два, три, четыре или шесть направлений спайности, по которым они одинаково легко раскалываются, либо несколько направлений спайности разной степени. У некоторых минералов спайность вообще отсутствует. Поскольку спайность как проявление внутренней структуры минералов является их неизменным свойством, она служит важным диагностическим признаком.

Твердость - сопротивление, которое минерал оказывает при царапании. Твердость зависит от кристаллической структуры: чем прочнее связаны между собой атомы в структуре минерала, тем труднее его поцарапать. Тальк и графит - мягкие пластинчатые минералы, построенные из слоев атомов, связанных между собой очень слабыми силами. Они жирные на ощупь: при трении о кожу руки происходит соскальзывание отдельных тончайших слоев. Самый твердый минерал - алмаз, в котором атомы углерода так прочно связаны, что его можно поцарапать только другим алмазом. В начале 19 в. австрийский минералог Ф.Моос расположил 10 минералов в порядке возрастания их твердости. С тех пор они используются как эталоны относительной твердости минералов, т.н. шкала Мооса (табл. 1)

Таблица 1. ШКАЛА ТВЕРДОСТИ МООСА

МинералОтносительная твердость Тальк 1Гипс2Кальцит3Флюорит4Апатит5Ортоклаз6Кварц7Топаз8Корунд9Алмаз10

Чтобы определить твердость минерала, необходимо выявить самый твердый минерал, который он может поцарапать. Твердость исследуемого минерала будет больше твердости поцарапанного им минерала, но меньше твердости следующего по шкале Мооса минерала. Силы связи могут меняться в зависимости от кристаллографического направления, а поскольку твердость является грубой оценкой этих сил, она может различаться в разных направлениях. Эта разница обычно невелика, исключение составляет кианит, у которого твердость 5 в направлении, параллельном длине кристалла, и 7 - в поперечном направлении.

Для менее точного определения твердости можно пользоваться следующей, более простой, практической шкалой.

2 -2,5Ноготь большого пальца3Серебряная монета3,5Бронзовая монета5,5-6Лезвие перочинного ножа5,5-6Оконное стекло6,5-7Напильник

В минералогической практике используется также измерение абсолютных значений твердости (т.н. микротвердости) при помощи прибора склерометра, которая выражается в кг/мм2.

Плотность. Масса атомов химических элементов меняется от водорода (самый легкий) до урана (самый тяжелый). При прочих равных условиях масса вещества, состоящего из тяжелых атомов, больше, чем у вещества, состоящего из легких атомов. Например, два карбоната - арагонит и церуссит - имеют сходную внутреннюю структуру, но в состав арагонита входят легкие атомы кальция, а в состав церуссита - тяжелые атомы свинца. В результате масса церуссита превышает массу арагонита того же объема. Масса единицы объема минерала зависит также от плотности упаковки атомов. Кальцит, как и арагонит, представляет собой карбонат кальция, но в кальците атомы упакованы менее плотно, потому он имеет меньшую массу единицы объема, чем арагонит. Относительная масса, или плотность, зависит от химического состава и внутренней структуры. Плотность - это отношение массы вещества к массе того же объема воды при 4° С. Так, если масса минерала составляет 4 г, а масса того же объема воды - 1 г, то плотность минерала равна 4. В минералогии принято выражать плотность в г/см3.

Плотность - важный диагностический признак минералов, и ее нетрудно измерить. Сначала образец взвешивается в воздушной среде, а затем - в воде. Поскольку на образец, погруженный в воду, действует выталкивающая сила, направленная вверх, его вес там меньше, чем в воздухе. Потеря веса равна весу вытесненной воды. Таким образом, плотность определяется отношением массы образца на воздухе к потере его веса в воде.

Пироэлектричество. Некоторые минералы, например турмалин, каламин и др., при нагревании или охлаждении электризуются. Это явление можно наблюдать с помощью опыления охлаждающегося минерала смесью порошков серы и сурика. При этом сера покрывает положительно заряженные участки поверхности минерала, а сурик - участки с отрицательным зарядом.

Магнитность - это свойство некоторых минералов действовать на магнитную стрелку или притягиваться магнитом. Для определения магнитности используют магнитную стрелку, помещенную на остром штативе, или магнитную подковку, брусок. Очень удобно также пользоваться магнитной иглой или ножом.

При испытании на магнитность возможны три случая:

а) когда минерал в естественном виде («сам по себе») действует на магнитную стрелку,

б) когда минерал становится магнитным лишь после прокаливания в восстановительном пламени паяльной трубки

в) когда минерал ни до, ни после прокаливания в восстановительном пламени магнитности не проявляет. Для прокаливания восстановительном пламени нужно брать мелкие кусочки величиной 2-3 мм.

Свечение. Многие минералы, не светящиеся сами по себе, начинают светиться при некоторых специальных условиях.

Различают фосфоресценцию, люминесценцию, термолюминесценцию и триболюминесценцию минералов. Фосфоресценция-способность минерала светиться после воздействия на него теми или другими лучами (виллемит). Люминесценция - способность светиться в момент облучения (шеелит при облучении ультрафиолетовыми и катодными луча кальцит и др.). Термолюминесценция - свечение при нагревании (флюорит, апатит).

Триболюминесценция - свечение в момент царапания иглой или раскалывания (слюды, корунд).

Радиоактивность. Многие минералы, содержащие такие элементы как ниобий, тантал, цирконий, редкие земли, уран, торий часто имеют довольно значительную радиоактивность, легко обнаруживаемую даже бытовыми радиометрами, которая может служить важным диагностическим признаком.

Для проверки радиоактивности сначала измеряют и записывают величину фона, затем минерал подносят, возможно, ближе к детектору прибора. Увеличение показаний более чем на 10-15% может служить показателем радиоактивности минерала.

Электропроводность. Целый ряд минералов обладает значительной электропроводностью, которая позволяет их однозначно отличить от похожих минералов. Может проверяться обычным бытовым тестером.

4. ЭПЕЙРОГЕНИЧЕСКИЕ ДВИЖЕНИЯ ЗЕМНОЙ КОРЫ

Эпейрогенические движения - медленные вековые поднятия и опускания земной коры, не вызывающие изменения первичного залегания пластов. Эти вертикальные движения имеют колебательный характер и обратимы, т.е. поднятие может сменится опусканием. Среди этих движений различают:

Современные, которые зафиксированы в памяти человека и их можно измерить инструментально путем проведения повторного нивелирования. Скорость современных колебательных движений в среднем не превышает 1-2 см/год, а в горных районах она может достигать и 20 см/год.

Неотектонические движения - это движения за неоген-четвертичное время (25 млн. лет). Принципиально они ничем не отличаются от современных. Неотектонические движения зафиксированы в современном рельефе и главный метод их изучения - геоморфологический. Скорость их движения на порядок меньше, в горных районах - 1 см/год; на равнинах - 1 мм/год.

Древние медленные вертикальные движения зафиксированы в разрезах осадочных пород. Скорость древних колебательных движений по оценке ученых меньше 0.001 мм/год.

Орогенические движения происходят в двух направлениях - горизонтальном и вертикальном. Первое приводит к смятию пород и образованию складок и надвигов, т.е. к сокращению земной поверхности. Вертикальные движения приводят к поднятию области проявления складкобразования и возникновению нередко горных сооружений. Орогенические движения протекают значительно быстрее, чем колебательные.

Они сопровождаются активными эффузивным и интрузивным магматизмом, а также метаморфизмом. В последние десятилетия эти движения объясняют столкновением крупных литосферных плит, которые перемещаются в горизонтальном направлении по астеносферному слою верхней мантии.

ТИПЫ ТЕКТОНИЧЕСКИХ НАРУШЕНИЙ

Виды тектонических нарушений

а - складчатые (пликатпвные) формы;

В большинстве случаев образование их связано с уплотнением или сжатием вещества Земли. Складчатые нарушения морфологически подразделяются на два основных типа: выпуклые и вогнутые. В случае горизонтального среза в ядре выпуклой складки располагаются более древние по возрасту пласты, а на крыльях - более молодые. Вогнутые изгибы, наоборот, имеют в ядре более молодые отложения. В складках выпуклые крылья обычно наклонены в стороны от осевой поверхности.

б - разрывные (дизъюнктивные) формы

Разрывными тектоническими нарушениями называют такие изменения, при которых нарушается сплошность (целостность) горных пород.

Разрывные нарушения разделяются на две группы: разрывы без смещения разделенных ими пород относительно друг друга и разрывы со смещением. Первые называются тектоническими трещинами, или диаклазами, вторые - параклазами

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

1. Белоусов В.В. Очерки истории геологии. У истоков науки о Земле (геология до конца ХVIII в.). - М., - 1993.

Вернадский В.И. Избранные труды по истории науки. - М.: Наука, - 1981.

Поваренных А.С., Оноприенко В.И. Минералогия: прошлое, настоящее, будущее. - Киев: Наукова Думка, - 1985.

Современные идеи теоретической геологии. - Л.: Недра, - 1984.

Хаин В.Е. Основные проблемы современной геологии (геология на пороге ХХI века). - М.: Научный мир, 2003..

Хаин В.Е., Рябухин А.Г. История и методология геологических наук. - М.: МГУ, - 1996.

Хэллем А. Великие геологические споры. М.: Мир,1985.

1. ЭКЗОГЕННЫЕ И ЭНДОГЕННЫЕ ПРОЦЕССЫ

Экзогенные процессы – геологические процессы, происходящие на поверхности Земли и в самых верхних частях земной коры (выветривание, эрозия, деятельность ледников и др.); обусловлены главным образом энергией солнечной радиации, силой тяжести и жизнедеятельностью организмов.

Эрозия (от лат. erosio – разъедание) – разрушение горных пород и почв поверхностными водными потоками и ветром, включающее в себя отрыв и вынос обломков материала и сопровождающееся их отложением.

Часто, особенно в зарубежной литературе, под эрозией понимают любую разрушительную деятельность геологических сил, таких, как морской прибой, ледники, гравитация; в таком случае эрозия выступает синонимом денудации. Для них, однако, существуют и специальные термины: абразия (волновая эрозия), экзарация (ледниковая эрозия), гравитационные процессы, солифлюкция и т. д. Такой же термин (дефляция) используется параллельно с понятием ветровая эрозия, но последнее гораздо более распространено.

По скорости развития эрозию делят на нормальную и ускоренную. Нормальная имеет место всегда при наличии сколько-либо выраженного стока, протекает медленнее почвообразования и не приводит к заметным изменением уровня и формы земной поверхности. Ускоренная идет быстрее почвообразования, приводит к деградации почв и сопровождается заметным изменением рельефа. По причинам выделяют естественную и антропогенную эрозию. Следует отметить, что антропогенная эрозия не всегда является ускоренной, и наоборот.

Работа ледников – рельефообразующая деятельность горных и покровных ледников, состоящая в захвате частиц горных пород движущимся ледником, переносе и отложении их при таянии льда.

Эндогенные процессы Эндогенные процессы – геологические процессы, связанные с энергией, возникающей в недрах твердой Земли. К эндогенным процессам относятся тектонические процессы, магматизм, метаморфизм, сейсмическая активность.

Тектонические процессы – образование разломов и складок.

Магматизм – термин, объединяющий эффузивные (вулканизм) и интрузивные (плутонизм) процессы в развитии складчатых и платформенных областей. Под магматизмом понимают совокупность всех геологических процессов, движущей силой которых является магма и её производные.

Магматизм является проявлением глубинной активности Земли; он тесно связан с ее развитием, тепловой историей и тектонической эволюцией.

Выделяют магматизм:

геосинклинальный

платформенный

океанический

магматизм областей активизации

По глубине проявления:

абиссальный

гипабиссальный

поверхностный

По составу магмы:

ультраосновной

основной

кислый

щелочной

В современную геологическую эпоху магматизм особенно развит в пределах Тихоокеанского геосинклинального пояса, срединно-океанических хребтов, рифовых зон Африки и Средиземноморья и др. С магматизмом связано образование большого количества разнообразных месторождений полезных ископаемых.

Сейсмическая активность – это количественная мера сейсмического режима, определяемая средним числом очагов землетрясений в некотором диапазоне энергетической величины, которые возникают на рассматриваемой территории за определенное время наблюдения.

2. ЗЕМЛЕТРЯСЕНИЯ

геологический земной кора эпейрогенический

Наиболее отчетливо действие внутренних сил Земли обнаруживается в явлении землетрясений, под которыми понимаются сотрясения земной коры, вызванные смещениями горных пород в недрах Земли.

Землетрясение – явление достаточно распространенное. Оно наблюдается на многих участках материков, а также на дне океанов и морей (в последнем случае говорят о «моретрясении»). Количество землетрясений на земном шаре достигает нескольких сотен тысяч в год, т. е. в среднем совершается одно два землетрясения в минуту. Сила землетрясения различна: большинство из них улавливается только высокочувствительными приборами -сейсмографами, другие ощущаются человеком непосредственно. Количество последних достигает двух-трех тысяч в год, причем распределяются они очень неравномерно – в одних районах такие сильные землетрясения очень часты, а в других необычайно редки или даже практически отсутствуют.

Землетрясения можно подразделить на эндогенные, связанные с процессами, происходящими в глубине Земли, и экзогенные, зависящие от процессов, происходящих вблизи поверхности Земли.

К зндогенным землетрясениям относятся вулканические землетрясения, вызванные процессами извержения вулканов, и тектонические, обусловленные перемещением вещества в глубоких недрах Земли.

К экзогенным землетрясениям относятся землетрясения, происходящие в результате подземных обвалов, связанных с карстовыми и некоторыми другими явлениями, взрыво газов и т.п. Экзогенные землетрясения могут вызываться также процессами, происходящими на самой поверхности Земли: обвалами скал, ударами метеоритов, падением воды с большой высоты и другими явлениями, а также факторами, связанными с деятельностью человека (искусственными взрывами, работой машин и т.п.).

Генетически землетрясения можно классифицировать следующим образом:. Естественные

Эндогенные: а) тектонические, б) вулканические. Экзогенные: а) карстово-обвальные, б) атмосферные в) от ударов волн, водопадов и т. п.. Искусственные

а) от взрывов, б) от артиллерийской стрельбы, в) от искусственного обрушения горных пород, г) от транспорта и т. п.

В курсе геологии рассматриваются только землетрясения, связанные с эндогенными процессами.

В тех случаях, когда сильные землетрясения происходят в густонаселенных районах, они наносят огромный вред человеку. По бедствиям, причиняемым человеку, землетрясения не могут сравниться ни с каким другим явлением природы. Так например, в Японии во время землетрясения 1 сентября 1923 г., продолжавшегося всего несколько секунд, было полностью уничтожено 128266 домов и 126233 частично разрушено, погибло около 800 судов, были убиты и пропали без вести 142 807 человек. Более 100 тыс. человек получили ранения.

Описать явление землетрясения необычайно трудно, так как весь процесс длится всего несколько секунд или минут, и человек не успевает воспринять все многообразие перемен, совершающихся за это время в природе. Внимание фиксируется обычно только на тех колоссальных разрушениях, которые появляются в результате землетрясения.

Вот как описывает М. Горький землетрясение, происшедшее в Италии в 1908 г., очевидцем которого он был: «Земля глухо гудела, стонала, горбилась под ногами и волновалась, образуя глубокие трещины – как будто в глубине проснулся и ворочается веками дремавший некий огромный червь… Вздрогнув и пошатываясь, здания наклонялись, по их белым стенам, как молнии, змеились трещины и стены рассыпались, засыпая узкие улицы и людей среди них… Подземный гул, грохот камней, визг дерева заглушают вопли о помощи, крики безумия. Земля волнуется, как море, сбрасывая с груди своей дворцы, лачуги, храмы, казармы, тюрьмы, школы, каждым содроганием уничтожая сотни и тысячи женщин, детей, богатых и бедных. ».

В результате этого землетрясения был разрушен г. Мессина и ряд других населенных пунктов.

Общая последовательность всех явлений при землетрясении была изучена И. В. Мушкетовым во время крупнейшего из среднеазиатских Алма-Атинского землетрясения 1887 г.

27 мая 1887 г. вечером, как писали очевидцы, никаких признаков землетрясения не было, но домашние животные вели себя неспокойно, не принимали корма, рвались с привязи и т. п. Утром 28 мая в 4 часа 35 минут послышался подземный гул и довольно сильный толчок. Сотрясение продолжалось не более секунды. Через несколько минут гул возобновился, он напоминал глухой звон мощных многочисленных колоколов или грохот проезжающей тяжелой артиллерии. За гулом последовали сильные сокрушительные удары: в домах сыпалась штукатурка, вылетали стекла, рушились печи, падали стены и потолки: улицы наполнились серой пылью. Наиболее сильно пострадали массивные каменные постройки. У домов, расположенных по меридиану, вываливались северные и южные стены, тогда как западные и восточные сохранялись. В первую минуту казалось, что города больше не существует, что разрушены все здания без исключения. Удары и сотрясения, но менее сильные, продолжались в течение всего дня. Многие поврежденные, но ранее устоявшие дома, падали от этих более слабых толчков.

В горах образовались обвалы и трещины, по которым местами на поверхность вышли потоки подземной воды. Глинистая почва на склонах гор, и до того уже сильно смоченная дождями, начала ползти, ч загромождая русла рек. Подхваченная потоками вся эта масса земли, щебня, валунов Б виде густых селевых потоков устремилась к подножию гор. Один из таких потоков протянулся на 10 км при ширине 0,5 км.

Разрушения в самом г. Алма-Ата были огромны: из 1800 домов уцелели единичные дома, но количество человеческих жертв было относительно невелико (332 человека).

Многочисленные наблюдения показали, что в домах сначала (на какую-то долю секунды раньше) разваливались южные стены, а затем уже северные, что колокола в Покровской церкви (в северной части города) ударили через несколько секунд после разрушений, происшедших в южной части города. Все это свидетельствовало, что центр землетрясения находился к югу от города.

Большинство трещин в домах было наклонено также на юг или точнее на юго-восток (170°) под углом 40-60°. Анализируя направление трещин, И. В. Мушкетов пришел к выводу, что источник волн землетрясения располагался на глубине 10- 12 км п в 15 км к югу от г. Алма-Ата.

Глубинный центр, или очаг землетрясения, называется гипоцентром. В плане он очерчивается как округлая или овальная площадь.

Область, расположенная на поверхности Земли над гипоцентром носит название эпицентра. Она характёризуётся максимальными разрушениями, причем многие предметы здесь смещаются вертикально (подпрыгивают), и трещины в домах располагаются очень круто, почти вертикально.

Площадь эпицентра Алма-Атинского землетрясения определялась в 288 км² (36 *8 км), а область, где землетрясение было наиболее сильным, охватила площадь в 6000 км². Такая область получила название плейстосейстовой («плейсто» – наибольший и « сейстос» – сотрясенный).

Алма-Атинское землетрясение продолжалось не один день: вслед за толчками 28 мая 1887 г. в течение более двух лет происходили толчки меньшей силы с. интервалами сначала в несколько часов, а затем дней. Всего за два года было свыше 600 ударов, все более и более ослабевающих.

В истории Земли описаны землетрясения с еще большим количеством толчков. Так, например, в 1870 г. в провинции Фокида в Греции начались толчки, которые продолжались в течение трех лет. В первые три дня толчки следовали через 3 минуты, в течение первых пяти месяцев произошло около 500 тыс. толчков, из них 300 обладали разрушительной силой и следовали друг за другом со средним интервалом в 25 секунд. За три года всего произошло свыше 750 тыс. ударов.

Таким образом, землетрясение происходит не в результате единовременного акта, совершающегося на глубине, но вследствие какого-то длительно развивающегося процесса движения материи во внутренних частях земного шара.

Обычно за начальным крупным толчком следует цепь более мелких толчков, и весь этот период можно назвать периодом землетрясения. Все толчки одного периода исходят из общего гипоцентра, который иногда в процессе развития может смещаться, в связи с чем смещается и эпицентр.

Это хорошо видно на ряде примеров кавказских землетрясений, а также землетрясения в районе г. Ашхабада, которое произошло 6 октября 1948 г. Основной толчок последовал в 1 час 12 минут без предварительных толчков и продолжался 8-10 секунд. За это время в городе и окрестных селениях произошли огромные разрушения. Одноэтажные дома из кирпича-сырца рассыпались, и крыши накрыли эти груды кирпича, домашней утвари и т. п. У более прочно построенных домов вылетели отдельные стены, развалились трубы и печи. Интересно отметить, что здания круглой формы (элеватор, мечеть, собор и др.) противостояли толчку лучше, чем обычные четырехугольные постройки.

Эпицентр землетрясения располагался в 25 км. к юго-востоку от Ашхабада, в районе совхоза «Карагаудан». Эпицентральная область оказалась вытянутой в северо-западном направлении. Гипоцентр располагался на глубине 15-20 км. Длина плейстосейстовой области достигала 80 км, а ширина- 10 км. Период Ашхабадского землетрясения был длителен и состоял из множества (более 1000) толчков, эпицентры которых располагались к северо-западу от главного в пределах узкой полосы, расположенной в предгорьях Копет-Дага

Гипоцентры всех этих повторных толчков находились на той же малой глубине (порядка 20-30 км), что и гипоцентр основного толчка.

Гипоцентры землетрясений могут располагаться не только под поверхностью материков, но и под дном морей и океанов. При моретрясениях разрушения приморских городов бывают тоже весьма значительными и сопровождаются человеческими жертвами.

Сильнейшее землетрясение произошло в 1775 г. в Португалии. Плейстосейстовая область этого землетрясения охватила огромную площадь; эпицентр располагался под дном Бискайского залива вблизи столицы Португалии г. Лиссабона, пострадавшего наиболее сильно.

Первый толчок произошел днем 1 ноября и сопровождался страшным грохотом. По свидетельству очевидцев, земля на целый локоть то поднималась вверх, то опускалась. Дома падали со страшным треском. Огромный монастырь на горе так сильно качался из стороны в сторону, что каждую минуту грозил рухнуть. Толчки продолжались 8 минут. Через несколько часов землетрясение возобновилось.

Мраморная набережная провалилась и ушла под воду. В образовавшуюся водяную воронку были увлечены люди и корабли, стоявшие у берега. После землетрясения глубина залива на месте набережной достигала 200 м.

Море вначале землетрясения отступило, но затем огромная волна высотой 26 м обрушилась на берег и затопила побережье на ширину до 15 км. Таких волн, следовавших одна за другой, было три. То, что уцелело от землетрясения, было смыто и унесено в море. Только в гавани Лиссабона было уничтожено или повреждено свыше 300 судов.

Волны Лиссабонского землетрясения прошли через весь Атлантический океан: у Кадикса их высота достигала 20 м, на Африканском побережье, у берегов Танжера и Марокко – 6 м, на о-вах Фуншал и Мадера -до 5 м. Волны пересекли Атлантический океан и ощущались у берегов Америки на о-вах Мартиника, Барбадос, Антигуа и др. При Лиссабонском землетрясении погибло свыше 60 тыс. человек.

Подобные волны довольно часто возникают при моретрясениях, они называаются цуцнами. Скорость распространения этих волн колеблется от 20 до 300 м/сек в зависимости:от глубины океана; высота волн достигает 30 м.

Осушение берега перед цунами длится обычно несколько минут и в исключительных случаях достигает чяса. Возникают цунами только при тех моретрясениях, когда происходит провал или поднятие определенного участка дна.

Появление цунами и волн отлива объясняется следующим образом. В эпицентральной области из-за деформации дна образуется волна давления, распространяющаяся вверх. Море в этом месте только сильно вспучивается, на поверхности образуются кратковременные течения, расходящиеся во всех направлениях, или «вскипает» с подбрасыванием воды вверх на высоту до 0,3м. Все это сопровождается гулом. Затем волна давления преобразуется на поверхности в волны цунами, разбегающиеся в разных направлениях. Отливы перед цунами объясняются тем, что вначале вода устремляется в подводный провал, из которого затем выталкивается в эпицентральную область.

В случае, когда эпицентры приходятся на густонаселенные районы, землетрясения приносят огромные бедствия. Особенно разрушительными были землетрясения Японии, где за 1500 лет зафиксировано 233 крупных землетрясения с количеством толчков, превышающим 2 млн.

Большие бедствия причиняют землетрясения в Китае. Во время катастрофы 16 декабря 1920 г. в районе Кансу погибло свыше 200 тыс. человек, причем главной причиной гибели были обвалы жилищ, вырытых в лёссе. Землетрясения исключительной силы происходили в Америке. При землетрясении в районе Риобамба в 1797 г. погибло 40 тыс. человек и было разрушено 80% зданий. В 1812 г. город Каракас (Венесуэла) был разрушен полностью в течение 15 секунд. Неоднократно почти полностью разрушался г. Консепсион в Чили, Сильно пострадал г. Сан-Франциско в 1906 г. В Европе наибольшие разрушения наблюдались после землетрясения в Сицилии, где в 1693 г. было уничтожено 50 селений и погибло свыше 60 тыс. человек.

На территории СССР наиболее разрушительными были землетрясения на юге Средней Азии, в Крыму (1927 г.) и на Кавказе. Особенно часто страдал от землетрясений г. Шемаха в Закавказье. Он разрушался в 1669, 1679, 1828, 1856, 1859, 1872, 1902 гг. До 1859 г. город Шемаха был губернским центром Восточного Закавказья, но из-за землетрясения столицу пришлось перенести в Баку. На рис. 173 показано размещение эпицентров Шемахинских землетрясений. Так же, как и в Туркмении, они располагаются вдоль определенной линии, вытянутой в северо-западном направлении.

При землетрясениях происходят существенные изменения на поверхности Земли, выражающиеся в образовании трещин, провалов, складок, поднятии отдельных участков на суше, в образовании островов на море и т. п. Эти нарушения, называемые сейсмическими, часто способствуют образованию мощных обвалов, осыпей, оползней, оплывин и селевых потоков в горах, появлению новых источников, прекращению старых, образованию грязевых сопок, газовых выбросов и др. Нарушения, образующиеся после землетрясений называютсяпостсейсмическими.

Явления. связанные с землетрясениями как на поверхности Земли, так и в ее недрах, называются сейсмическими явлениями. Наука, изучающая сейсмические явления, называется сейсмологией.

3. ФИЗИЧЕСКИЕ СВОЙСТВА МИНЕРАЛОВ

Хотя главные характеристики минералов (химический состав и внутренняя кристаллическая структура) устанавливаются на основе химических анализов и рентгеноструктурного метода, косвенно они отражаются в свойствах, которые легко наблюдаются или измеряются. Для диагностики большинства минералов достаточно определить их блеск, цвет, спайность, твердость, плотность.

Блеск (металлический, полуметаллический и неметаллический – алмазный, стеклянный, жирный, восковой, шелковистый, перламутровый и др.) обусловлен количеством отражаемого от поверхности минерала света и зависит от его показателя преломления. По прозрачности минералы разделяются на прозрачные, полупрозрачные, просвечивающие в тонких осколках и непрозрачные. Количественное определение светопреломления и светоотражения возможно только под микроскопом. Некоторые непрозрачные минералы сильно отражают свет и имеют металлический блеск. Это характерно для рудных минералов, например, галенита (минерал свинца), халькопирита и борнита (минералы меди), аргентита и акантита (минералы серебра). Большинство минералов поглощают или пропускают значительную часть падающего на них света и обладают неметаллическим блеском. Некоторые минералы имеют блеск, переходный от металлического к неметаллическому, который называется полуметаллическим.

Минералы с неметаллическим блеском обычно светлоокрашенные, некоторые из них прозрачны. Часто бывают прозрачными кварц, гипс и светлая слюда. Другие минералы (например, молочно-белый кварц), пропускающие свет, но сквозь которые нельзя четко различить предметы, называют просвечивающими. Минералы, содержащие металлы, отличаются от прочих по светопропусканию. Если свет проходит сквозь минерал, хотя бы в самых тонких краях зерен, то он, как правило, нерудный; если же свет не проходит, то он – рудный. Бывают, впрочем, и исключения: например, светлоокрашенный сфалерит (минерал цинка) или киноварь (минерал ртути) нередко прозрачны или просвечивают.

Минералы различаются по качественным характеристикам неметаллического блеска. Глина имеет тусклый землистый блеск. Кварц на гранях кристаллов или на поверхностях излома – стеклянный, тальк, разделяющийся на тонкие листочки по плоскостям спайности, – перламутровый. Яркий, сверкающий, как у алмаза, блеск называется алмазным.

Когда свет падает на минерал с неметаллическим блеском, то он частично отражается от поверхности минерала, а частично преломляется на этой границе. Каждое вещество характеризуется определенным показателем преломления. Поскольку этот показатель может быть измерен с высокой точностью, он является весьма полезным диагностическим признаком минералов.

Характер блеска зависит от показателя преломления, а оба они – от химического состава и кристаллической структуры минерала. В общем случае прозрачные минералы, содержащие атомы тяжелых металлов, отличаются сильным блеском и высоким показателем преломления. К этой группе относятся такие распространенные минералы, как англезит (сульфат свинца), касситерит (оксид олова) и титанит, или сфен (силикат кальция и титана). Минералы, состоящие из относительно легких элементов, также могут иметь сильный блеск и высокий показатель преломления, если их атомы плотно упакованы и удерживаются сильными химическими связями. Ярким примером является алмаз, состоящий только из одного легкого элемента углерода. В меньшей степени это справедливо и для минерала корунда (Al2O3), прозрачные цветные разновидности которого – рубин и сапфиры – являются драгоценными камнями. Хотя корунд состоит из легких атомов алюминия и кислорода, они так крепко связаны между собой, что минерал имеет довольно сильный блеск и относительно высокий показатель преломления.

Некоторые блески (жирный, восковой, матовый, шелковистый и др.) зависят от состояния поверхности минерала или от строения минерального агрегата; смоляной блеск характерен для многих аморфных веществ (в том числе минералов, содержащих радиоактивные элементы уран или торий).

Цвет- простой и удобный диагностический признак. В качестве примеров можно привести латунно-желтый пирит (FeS2), свинцово-серый галенит (PbS) и серебристо-белый арсенопирит (FeAsS2). У других рудных минералов с металлическим или полуметаллическим блеском характерный цвет может быть замаскирован игрой света в тонкой поверхностной пленке (побежалостью). Это свойственно большинству минералов меди, особенно борниту, который называют «павлиньей рудой» из-за его радужной сине-зеленой побежалости, быстро возникающей на свежем изломе. Однако другие медные минералы окрашены в хорошо всем знакомые цвета: малахит – в зеленый, азурит – в синий.

Некоторые неметаллические минералы безошибочно узнаются по цвету, обусловленному главным химическим элементом (желтому – серы и черному – темно-серому – графита и др.). Многие неметаллические минералы состоят из элементов, которые не обеспечивают им специфической окраски, но у них известны окрашенные разновидности, цвет которых обусловлен присутствием примесей химических элементов в малых количествах, не сопоставимых с интенсивностью вызываемой ими окраски. Такие элементы называют хромофорами; их ионы отличаются избирательным поглощением света. Например, густо-фиолетовый аметист обязан своей окраской ничтожной примеси железа в кварце, а густой зеленый цвет изумруда связан с небольшим содержанием хрома в берилле. Окраска обычно бесцветных минералов может появляться вследствие дефектов кристаллической структуры (обусловленных незаполненными позициями атомов в решетке или вхождением посторонних ионов), которые могут вызвать селективное поглощение некоторых длин волн в спектре белого света. Тогда минералы окрашиваются в дополнительные цвета. Рубины, сапфиры и александриты обязаны своей окраской именно таким световым эффектам.

Бесцветные минералы могут быть окрашены механическими включениями. Так, тонкая рассеянная вкрапленность гематита придает кварцу красный цвет, хлорита – зеленый. Молочный кварц замутнен газово-жидкими включениями. Хотя цвет минералов – одно из самых легко определяемых свойств при диагностике минералов, его надо использовать с осторожностью, так как он зависит от многих факторов.

Несмотря на изменчивость окраски многих минералов, цвет порошка минерала весьма постоянен, а потому является важным диагностическим признаком. Обычно цвет порошка минерала устанавливают по черте (т.н. «цвету черты»), которую оставляет минерал, если им провести по неглазурованной фарфоровой пластинке (бисквиту). Например, минерал флюорит бывает окрашен в разные цвета, но черта у него всегда белая.

Спайность – весьма совершенная, совершенная, средняя (ясная), несовершенная (неясная) и весьма несовершенная – выражается в способности минералов раскалываться по определённым направлениям. Излом (ровный ступенчатый, неровный, занозистый, раковистый и др.) характеризуют поверхности раскола минерала, произошедшего не по спайности. Например, кварц и турмалин, поверхность излома которых напоминает скол стекла, имеют раковистый излом. У других минералов излом может быть описан как шероховатый, неровный или занозистый. Для многих минералов характеристикой служит не излом, а спайность. Это означает, что они раскалываются по гладким плоскостям, непосредственно связанным с их кристаллической структурой. Силы связи между плоскостями кристаллической решетки могут быть различными в зависимости от кристаллографического направления. Если в каких-то направлениях они гораздо больше, чем в других, то минерал будет раскалываться поперек самой слабой связи. Так как спайность всегда параллельна атомным плоскостям, она может быть обозначена с указанием кристаллографических направлений. Например, галит (NaCl) имеет спайность по кубу, т.е. три взаимоперпендикулярных направления возможного раскола. Спайность характеризуется также легкостью проявления и качеством возникающей спайной поверхности. Слюда обладает весьма совершенной спайностью в одном направлении, т.е. легко расщепляется на очень тонкие листочки с гладкой блестящей поверхностью. У топаза спайность совершенная в одном направлении. Минералы могут иметь два, три, четыре или шесть направлений спайности, по которым они одинаково легко раскалываются, либо несколько направлений спайности разной степени. У некоторых минералов спайность вообще отсутствует. Поскольку спайность как проявление внутренней структуры минералов является их неизменным свойством, она служит важным диагностическим признаком.

Твердость – сопротивление, которое минерал оказывает при царапании. Твердость зависит от кристаллической структуры: чем прочнее связаны между собой атомы в структуре минерала, тем труднее его поцарапать. Тальк и графит – мягкие пластинчатые минералы, построенные из слоев атомов, связанных между собой очень слабыми силами. Они жирные на ощупь: при трении о кожу руки происходит соскальзывание отдельных тончайших слоев. Самый твердый минерал – алмаз, в котором атомы углерода так прочно связаны, что его можно поцарапать только другим алмазом. В начале 19 в. австрийский минералог Ф.Моос расположил 10 минералов в порядке возрастания их твердости. С тех пор они используются как эталоны относительной твердости минералов, т.н. шкала Мооса (табл. 1)

ШКАЛА ТВЕРДОСТИ МООСА

Плотность и Масса атомов химических элементов меняется от водорода (самый легкий) до урана (самый тяжелый). При прочих равных условиях масса вещества, состоящего из тяжелых атомов, больше, чем у вещества, состоящего из легких атомов. Например, два карбоната – арагонит и церуссит – имеют сходную внутреннюю структуру, но в состав арагонита входят легкие атомы кальция, а в состав церуссита – тяжелые атомы свинца. В результате масса церуссита превышает массу арагонита того же объема. Масса единицы объема минерала зависит также от плотности упаковки атомов. Кальцит, как и арагонит, представляет собой карбонат кальция, но в кальците атомы упакованы менее плотно, потому он имеет меньшую массу единицы объема, чем арагонит. Относительная масса, или плотность, зависит от химического состава и внутренней структуры. Плотность – это отношение массы вещества к массе того же объема воды при 4° С. Так, если масса минерала составляет 4 г, а масса того же объема воды – 1 г, то плотность минерала равна 4. В минералогии принято выражать плотность в г/см3.

Плотность – важный диагностический признак минералов, и ее нетрудно измерить. Сначала образец взвешивается в воздушной среде, а затем – в воде. Поскольку на образец, погруженный в воду, действует выталкивающая сила, направленная вверх, его вес там меньше, чем в воздухе. Потеря веса равна весу вытесненной воды. Таким образом, плотность определяется отношением массы образца на воздухе к потере его веса в воде.

Пироэлектричество. Некоторые минералы, например турмалин, каламин и др., при нагревании или охлаждении электризуются. Это явление можно наблюдать с помощью опыления охлаждающегося минерала смесью порошков серы и сурика. При этом сера покрывает положительно заряженные участки поверхности минерала, а сурик – участки с отрицательным зарядом.

Магнитность – это свойство некоторых минералов действовать на магнитную стрелку или притягиваться магнитом. Для определения магнитности используют магнитную стрелку, помещенную на остром штативе, или магнитную подковку, брусок. Очень удобно также пользоваться магнитной иглой или ножом.

При испытании на магнитность возможны три случая:

а) когда минерал в естественном виде («сам по себе») действует на магнитную стрелку,

б) когда минерал становится магнитным лишь после прокаливания в восстановительном пламени паяльной трубки

в) когда минерал ни до, ни после прокаливания в восстановительном пламени магнитности не проявляет. Для прокаливания восстановительном пламени нужно брать мелкие кусочки величиной 2-3 мм.

Свечение. Многие минералы, не светящиеся сами по себе, начинают светиться при некоторых специальных условиях.

Различают фосфоресценцию, люминесценцию, термолюминесценцию и триболюминесценцию минералов. Фосфоресценция-способность минерала светиться после воздействия на него теми или другими лучами (виллемит). Люминесценция – способность светиться в момент облучения (шеелит при облучении ультрафиолетовыми и катодными луча кальцит и др.). Термолюминесценция – свечение при нагревании (флюорит, апатит).

Триболюминесценция – свечение в момент царапания иглой или раскалывания (слюды, корунд).

Радиоактивность. Многие минералы, содержащие такие элементы как ниобий, тантал, цирконий, редкие земли, уран, торий часто имеют довольно значительную радиоактивность, легко обнаруживаемую даже бытовыми радиометрами, которая может служить важным диагностическим признаком.

Для проверки радиоактивности сначала измеряют и записывают величину фона, затем минерал подносят, возможно, ближе к детектору прибора. Увеличение показаний более чем на 10-15% может служить показателем радиоактивности минерала.

Электропроводность. Целый ряд минералов обладает значительной электропроводностью, которая позволяет их однозначно отличить от похожих минералов. Может проверяться обычным бытовым тестером.

ЭПЕЙРОГЕНИЧЕСКИЕ ДВИЖЕНИЯ ЗЕМНОЙ КОРЫ

Эпейрогенические движения – медленные вековые поднятия и опускания земной коры, не вызывающие изменения первичного залегания пластов. Эти вертикальные движения имеют колебательный характер и обратимы, т.е. поднятие может сменится опусканием. Среди этих движений различают:

Современные, которые зафиксированы в памяти человека и их можно измерить инструментально путем проведения повторного нивелирования. Скорость современных колебательных движений в среднем не превышает 1-2 см/год, а в горных районах она может достигать и 20 см/год.

Неотектонические движения – это движения за неоген-четвертичное время (25 млн. лет). Принципиально они ничем не отличаются от современных. Неотектонические движения зафиксированы в современном рельефе и главный метод их изучения – геоморфологический. Скорость их движения на порядок меньше, в горных районах – 1 см/год; на равнинах – 1 мм/год.

Древние медленные вертикальные движения зафиксированы в разрезах осадочных пород. Скорость древних колебательных движений по оценке ученых меньше 0.001 мм/год.

Орогенические движения происходят в двух направлениях – горизонтальном и вертикальном. Первое приводит к смятию пород и образованию складок и надвигов, т.е. к сокращению земной поверхности. Вертикальные движения приводят к поднятию области проявления складкобразования и возникновению нередко горных сооружений. Орогенические движения протекают значительно быстрее, чем колебательные.

Они сопровождаются активными эффузивным и интрузивным магматизмом, а также метаморфизмом. В последние десятилетия эти движения объясняют столкновением крупных литосферных плит, которые перемещаются в горизонтальном направлении по астеносферному слою верхней мантии.

ТИПЫ ТЕКТОНИЧЕСКИХ НАРУШЕНИЙ

Виды тектонических нарушений:

а – складчатые (пликатпвные) формы;

В большинстве случаев образование их связано с уплотнением или сжатием вещества Земли. Складчатые нарушения морфологически подразделяются на два основных типа: выпуклые и вогнутые. В случае горизонтального среза в ядре выпуклой складки располагаются более древние по возрасту пласты, а на крыльях – более молодые. Вогнутые изгибы, наоборот, имеют в ядре более молодые отложения. В складках выпуклые крылья обычно наклонены в стороны от осевой поверхности.

б – разрывные (дизъюнктивные) формы

Разрывными тектоническими нарушениями называют такие изменения, при которых нарушается сплошность (целостность) горных пород.

Разрывные нарушения разделяются на две группы: разрывы без смещения разделенных ими пород относительно друг друга и разрывы со смещением. Первые называются тектоническими трещинами, или диаклазами, вторые – параклазами

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

1. Белоусов В.В. Очерки истории геологии. У истоков науки о Земле (геология до конца ХVIII в.). – М., – 1993.

Вернадский В.И. Избранные труды по истории науки. – М.: Наука, – 1981.

Поваренных А.С., Оноприенко В.И. Минералогия: прошлое, настоящее, будущее. – Киев: Наукова Думка, – 1985.

Современные идеи теоретической геологии. – Л.: Недра, – 1984.

Хаин В.Е. Основные проблемы современной геологии (геология на пороге ХХI века). – М.: Научный мир, 2003..

Хаин В.Е., Рябухин А.Г. История и методология геологических наук. – М.: МГУ, – 1996.

Хэллем А. Великие геологические споры. М.: Мир,1985.