Какие минеральные вещества входят в состав клетки. Минеральные вещества и микроэлементы

Из этого урока вы узнаете о роли минеральных соединений микро - и макроэлементов в жизнедеятельности живых организмов. Вы познакомитесь с водородным показателем среды - рН, узнаете, как этот показатель связан с физиологией организма, каким образом в организме поддерживается постоянный рН среды. Выясните роль неорганических анионов и катионов в процессах обмена веществ, узнаете подробности о функциях катионов Na, K и Са в организме, а также какие другие металлы входят в состав нашего тела и каковы их функции.

Введение

Тема: Основы цитологии

Урок: Минеральные вещества и их роль в жизнедеятельности клетки

1. Введение. Минеральные вещества в клетке

Минеральные вещества составляют от 1 до 1,5% от сырой массы клетки, и находятся в клетки в виде солей дислоцированных на ионы, либо в твердом состоянии (рис. 1).

Рис. 1. Химический состав клеток живых организмов

В цитоплазме любой клетки находятся кристаллические включения, которые представлены слаборастворимыми солями кальция и фосфора; кроме них могут находиться оксид кремния и другие неорганические соединения, которые участвуют в образовании опорных структур клетки - в случае минерального скелета радиолярий - и организма, то есть образуют минеральное вещество костной ткани.

2. Неорганические ионы: катионы и анионы

Неорганические ионы, имеют значение для жизнедеятельности клетки (рис. 2).

Рис. 2. Формулы основных ионов клетки

Катионы - калий, натрий, магний и кальций.

Анионы - хлорид анион, гидрокарбонат анион, гидрофосфат анион, дигидрофосфат анион, карбонат анион, фосфат анион и нитрат анион.

Рассмотрим значение ионов.

Ионы, располагаясь по разные стороны клеточных мембран, образуют так называемый трансмембранный потенциал. Многие ионы неравномерно распределены между клеткой и окружающей средой. Так, концентрация ионов калия (К+) в клетке в 20-30 раз выше, чем в окружающей среде; а концентрация ионов натрия (Na+) в десять раз ниже в клетке, чем в окружающей среде.

Благодаря существованию градиентов концентрации , осуществляются многие жизненно важные процессы, такие как сокращение мышечных волокон, возбуждение нервных клеток, перенос веществ через мембрану.

Катионы влияют на вязкость и текучесть цитоплазмы. Ионы калия уменьшают вязкость и увеличивают текучесть, ионы кальция (Са2+) обладают противоположным действием на цитоплазму клетки.

Анионы слабых кислот - гидрокарбонат анион (НСО3-), гидрофосфат анион (НРО42-) - участвуют в поддержании кислотно-щелочного баланса клетки, то есть pH среды . По своей реакции растворы могут быть кислыми , нейтральными и основными .

Кислотность или основность раствора определяется концентрацией в нем ионов водорода (рис. 3).

Рис. 3. Определение кислотности раствора при помощи универсального индикатора

Эту концентрацию выражают с помощью водородного показателя pH, протяженность шкалы от 0 до 14. Нейтральная среда pH - около 7. Кислая - меньше 7. Основная - больше 7. Быстро определить pH среды можно с помощью индикаторных бумажек, или полосок (см. видео).

Мы опускаем индикаторную бумажку в раствор, затем полоску вынимаем и сразу же сравниваем окрашивание индикаторной зоны полоски с цветами стандартной шкалы сравнения, которая входит в комплект, оценивая схожесть окрашивания и определяя значение pH (см. видео).

3. рН среды и роль ионов в его поддержании

Значение pH в клетке примерно равняется 7.

Изменение pH в ту или иную сторону губительно действует на клетку, поскольку сразу же изменяются биохимические процессы, проходящие в клетке.

Постоянство pH клетки поддерживается благодаря буферным свойствам её содержимого. Буферным называют раствор, который поддерживает постоянное значение pH среды. Обычно буферная система состоит из сильного и слабого электролита: соли и слабого основания или слабой кислоты, которые её образуют.

Действие буферного раствора заключается в том, что он противостоит изменениям pH среды. Изменение pH среды может возникнуть вследствие концентрирования раствора или разбавления его водой, кислотой или щелочью. Когда кислотность, то есть концентрация ионов водорода возрастает, свободные анионы, источником которых служит соль, взаимодействуют с протонами и удаляют их из раствора. Когда кислотность снижается, то усиливается тенденция к освобождению протонов. Таким образом поддерживается pH на определенном уровне, то есть поддерживается концентрация протонов на определенном постоянном уровне.

Некоторые органические соединения, в частности белки, также обладают буферными свойствами.

Катионы магния, кальция, железа, цинка, кобальта, марганца входят в состав ферментов и витаминов (см. видео).

Катионы металлов входят в состав гормонов.

Цинк входит в состав инсулина. Инсулин - это гормон поджелудочной железы, который регулирует уровень глюкозы в крови.

Магний входит в состав хлорофилла.

Железо входит в состав гемоглобина.

При недостатке этих катионов нарушается процессы жизнедеятельности клетки.

4. Ионы металлов как кофакторы

Значение ионов натрия и калия

Ионы натрия и калия распределены по всему объему организма, при этом ионы натрия входят, в основном, в состав межклеточной жидкости, а ионы калия содержатся внутри клеток: 95% ионов калия содержатся внутри клеток , а 95% ионов натрия содержатся в межклеточных жидкостях (рис. 4).

С ионами натрия связано осмотическое давление жидкостей, удержание воды тканями, а также перенос, или транспорт таких веществ как аминокислот и сахара через мембранну.

Значение кальция в организме человека

Кальций является одним из самых распространенных элементов в организме человека. Основная масса кальция входит в состав костей и зубов. Фракция вне костного кальция составляет 1% от общего количества кальция в организме. Внекостный кальций влияет на свертываемость крови, а также нервно-мышечную возбудимость и сокращение мышечных волокон.

Фосфатная буферная система

Фосфатная буферная система играет роль в поддержании кислотно-щелочного баланса организма, кроме этого она поддерживает баланс в просвете канальцев почек, а также внутриклеточной жидкости.

Фосфатная буферная система состоит из дигидрофосфата и гидрофосфата. Гидрофосфат связывает, то есть нейтрализует протон. Дигидрофосфат высвобождает протон и взаимодействует с поступившими в кровь щелочными продуктами.

Фосфатная буферная система входит в буферную систему крови (Рис. 5).

Буферная система крови

В организме человека всегда имеются определенные условия для сдвига нормальной реакции среды ткани, например, крови, в сторону ацидоза (закисления) или алкалоза (раскисления - смещения рН в большую сторону).

В кровь поступают различные продукты, например, молочная кислота, фосфорная кислота, сернистая кислота, образующиеся в результате окисления фосфорорганических соединений либо серосодержащих белков. При этом реакция крови, может сдвигаться в сторону кислых продуктов.

При употреблении мясных продуктов, в кровь поступают кислые соединения. При употреблении растительной пищи, в кровь поступают основания.

Тем не менее, pH крови остается на определенном постоянном уровне.

В крови имеются буферные системы , которые поддерживают pH на определенном уровне.

К буферным системам крови относятся:

Карбонатная буферная система,

Фосфатная буферная система,

Буферная система гемоглобина,

Буферная система белков плазмы (Рис. 6).

Взаимодействие этих буферных систем создает определенное постоянное pH крови.

Таким образом, сегодня мы с вами рассмотрели минеральные вещества и их роль в жизнедеятельности клетки.

Домашнее задание

Какие химические вещества называют минеральными? Каково значение минеральных веществ для живых организмов? Из каких веществ в основном состоят живые организмы? Какие катионы входят в состав живых организмов? Каковы их функции? Какие анионы входят в состав живых организмов? Какова их роль? Что такое буферная система? Какие буферные системы крови вам известны? С чем связано содержание минеральных веществ в организме?

1. Химический состав живых организмов.

2. Википедия.

3. Биология и медицина.

4. Образовательный центр.

Список литературы

1. Каменский А. А., Криксунов Е. А., Пасечник В. В. Общая биология 10-11 класс Дрофа, 2005.

2. Биология. 10 класс. Общая биология. Базовый уровень / П. В. Ижевский, О. А. Корнилова, Т. Е. Лощилина и др. - 2-е изд., переработанное. - Вентана-Граф, 2010. - 224 стр.

3. Беляев Д. К. Биология 10-11 класс. Общая биология. Базовый уровень. - 11-е изд., стереотип. - М.: Просвещение, 2012. - 304 с.

4. Агафонова И. Б., Захарова Е. Т., Сивоглазов В. И. Биология 10-11 класс. Общая биология. Базовый уровень. - 6-е изд., доп. - Дрофа, 2010. - 384 с.

Неорганические ионы, или минеральные вещества, выполняют в организме следующие функции:

1. Биоэлектрическая функция. Эта функция связана с воз­никновением разности потенциалов на клеточных мембранах. Градиент концентрации ионов по обе стороны мембраны создаёт в разных клетках потенциал порядка 60-80 мВ. Внутренняя сторона клеточной мембраны относительно наружной заряжена отрицательно. Электрический потен­циал мембраны тем выше, чем больше содержание белка и его иониза­ция (отрицательный заряд) внутри клетки и концентрация катионов вне клетки (диффузия ионов Na + и К + через мембрану внутрь клетки затруд­нена). Данная функция неорганических ионов используется для регуля­ции функций особенно возбудимых клеток (нервных, мышечных) и для проведения нервных импульсов.

2. Осмотическая функция используется для регуляции осмо­тического давления. Живая клетка подчиняется закону изоосмополярности: во всех средах организма, между которыми есть свободный обмен водой, устанавливается одинаковое осмотическое давление. Если число ионов в какой-то среде возрастает, то вслед за ними устремляется вода, пока не установится новое равновесие и новый уровень осмотического давления.

3. Структурная функция обусловлена комплексообразующими свойствами металлов. Ионы металлов взаимодействуют с анионными группами белков, нуклеиновых кислот и других макромолекул и тем са­мым обеспечивают наряду с другими факторами поддержание опреде­лённых конформаций этих молекул. Поскольку биологическая активность биополимеров зависит от их конформаций, то нормальное осуществление белками их функций, беспрепятственная реализация информации, зало­женной в нуклеиновых кислотах, образование надмолекулярных ком­плексов, формирование субклеточных структур и другие процессы не­мыслимы без участия катионов и анионов.

4. Регуляторная функция заключается в том, что ионы ме­таллов являются активаторами ферментов и тем самым регулируют ско­рость химических превращений в клетке. Это прямое регуляторное дей­ствие катионов. Косвенное заключается в том, что ионы металлов часто необходимы для действия другого регулятора, например, гормона. При­ведём несколько примеров. Формирование активной формы инсулина невозможно без ионов цинка. Третичная структура РНК в огромной сте­пени определяется ионной силой раствора, а такие катионы, как Сr 2+ , Ni 2+ , Fe 2+ , Zn 2+ ,Mn 2+ и другие, непосредственно участвуют в формирова­нии спиральной структуры нуклеиновых кислот. Концентрация ионов Мg 2+ влияет на формирование такой надмолекулярной структуры, как рибосомы.

5. Транспортная функция проявляется в участии некоторых металлов (в составе металлопротеидов) в переносе электронов или про­стых молекул. Например, катионы железа и меди входят в состав цитохромов, являющихся переносчиками электронов в дыхательной цепи, а железо в составе гемоглобина связывает кислород и участвует в его пе­реносе.

6. Энергетическая функция связана с использованием фос­фат-анионов в образовании АТФ и АДФ (АТФ - основной носитель энер­гии в живых организмах).

7. Механическая функция. Например, катион Са +2 и фосфат-анион входят в состав гидроксилапатита и фосфата кальция костей и определяют их механическую прочность.

8. Синтетическая функция. Многие неорганические ионы ис­пользуются в синтезах сложных молекул. Например, ионы йода I¯ участ­вуют в синтезе йодтиронинов в клетках щитовидной железы; анион (SО 4) 2- - в синтезе эфиросерных соединений (при обезвреживании в ор­ганизме вредных органических спиртов и кислот). Важное значение в механизме защиты от токсического действия пероксида имеет селен. Он образует селеноцистеин - аналог цистеина, в котором вместо атомов серы атомы селена. Селеноцистеин является составной частью фермента глутатион-пероксидазы, катализирующей восстановление пероксида во­дорода глутатионом (трипептид - γ-глутамил-цистеинилглицин)

Важно отметить, что в известных пределах возможна взаимоза­меняемость некоторых ионов. При недостатке какого-то иона металла он может заменяться ионом другого металла, близким по физико-химическим свойствам и ионному радиусу. Например, ион натрия заме­щается ионом лития; ион кальция - ионом стронция; ион молибдена - ионом ванадия; ион железа - ионом кобальта; иногда ионы магния - ио­нами марганца.

Благодаря тому, что минеральные вещества активируют дейст­вие ферментов, они влияют на все стороны обмена веществ. Рассмотрим, в чём выражается зависимость обмена нуклеиновых кислот, белков, уг­леводов и липидов от наличия тех или иных неорганических ионов.

>>> микроэлементы

Минеральные вещества играют исключительно важную роль в жизни живых организмов. Наряду с органическими веществами минералы входят в состав органов и тканей, а также участвуют в процессе обмена веществ.

В общей сложности в организме человека определяется до 70 химических элементов. Из них 43 элемента являются абсолютно необходимыми для нормального протекания обмена веществ.

Все минеральные вещества, исходя от их количественного содержания в организме человека, принято разделять на несколько подгрупп: макроэлементы, микроэлементы и ультраэлементы.

Макроэлементы представляют собой группу неорганических химических веществ, присутствующих в организме в значительных количествах (от нескольких десятков граммов до нескольких килограммов). К группе макроэлементов относятся натрий, калий, кальций , фосфор и др.

Микроэлементы встречаются в организме в гораздо меньших количествах (от нескольких граммов до десятых долей грамма и менее). К таким веществам относятся: железо, марганец, медь, цинк, кобальт, молибден, кремний, фтор, йод и др. Особой подгруппой микроэлементов являются ультрамикроэлементы, содержащиеся в организме в исключительно малых количествах (золото, уран, ртуть и др.).

Роль минеральных веществ в организме

Минеральные (неорганические) вещества входящие в структуру организма выполняют множество важных функций. Многие макро и микроэлементы являются кофакторами ферментов и витаминов . Это значит, что без молекул минеральных веществ витамины и ферменты неактивны и не могут катализировать биохимические реакции (основная роль ферментов и витаминов). Активация ферментов происходит посредством присоединения к их молекулам атомов неорганических (минеральных) веществ, при этом присоединенный атом неорганического вещества становится активным центром всего ферментативного комплекса. Так, например, железо из молекулы гемоглобина способно связывать кислород, для того чтобы переносить его к тканям, многие пищеварительные ферменты (пепсин, трипсин) для активации требуют присоединения атома цинка и т.д.

Многие минеральные вещества являются незаменимыми структурными элементами организма – кальция и фосфор слагают основную массу минерального вещества костей и зубов, натрий и хлор являются основными ионами плазмы, а калий, в больших количествах содержится внутри живых клеток.

Вся совокупность макро и микроэлементов обеспечивает процессы роста и развития организма. Минеральные вещества играют важную роль в регуляции иммунных процессов, поддерживают целостность клеточных мембран, обеспечивают дыхание тканей.

Поддержание постоянства внутренней среды (гомеостаза) организма, предусматривает в первую очередь поддержание качественного и количественного содержания минеральных веществ в тканях органах на физиологическом уровне. Даже небольшие отклонения от нормы могут повлечь самые тяжелые последствия для здоровья организма.

Источники минеральных веществ

Основным источником минеральных веществ для человека, является потребляемая вода и пища. Одни минеральные элементы распространены повсеместно, а другие встречаются реже, и в меньших количествах. В наши дни, при условии нарушенной экологии, лучшим источником могут быть БАД (биологически активные добавки) и очищенная минерализованная вода.

Различные пищевые продукты содержат различное количество минеральных веществ. Так, например, в коровьем молоке и молочных продуктах содержится более 20 различных минералов, среди них наиболее важными являются железо, марганец, фтор, цинк, йод. Мясо и мясные продукты содержат такие микроэлементы как серебро, титан, медь, цинк, а морские продукты – йод, фтор, никель.

Как уже упоминалось выше, постоянство внутренней среды (содержание в организме различных веществ) имеет огромное значение для нормального функционирования организма. Несмотря на широкую распространенность минеральных веществ в природе, нарушения в организме, связанные с их недостатком (или реже с избытков) встречаются довольно часто. Заболевания, вызванные недостачей минеральных веществ чаще всего встречаются в определенных регионах земного шара, где в силу геологических особенностей природная концентрация того или иного микроэлемента ниже чем в других районах. Хорошо известны так называемые эндемические зоны йододефицита, в которых часто встречается такое заболевание как Зоб – следствие недостатка йода.

Однако, гораздо чаще дефицит минеральных веществ в организме встречается из-за неправильного (несбалансированного) питания , а также в определенные периоды жизни и при некоторых физиологических и патологических состояниях, когда потребность в минеральных веществах возрастает (период роста у детей, беременность , кормления грудью, различные острые и хронические заболевания, менопауза и пр.).

Краткая характеристика наиболее важных минеральных веществ

Натрий – является самым распространенным ионом плазмы – жидкой части крови. На долю этого элемента приходится основная доля в создании осмотического давления плазмы. Поддержание нормального осмотического давления и объема циркулирующей крови – это жизненно важный процесс, который реализуется главным образом благодаря регуляции абсорбции или секреции (выделения) натрия на уровне почек . При снижении объема циркулирующей крови (например, при обезвоживании или после кровопотери) на уровне почек запускается сложный процесс, целью которого является сохранение и накопление ионов натрия в организме. Параллельно с ионами натрия в организме задерживается вода, (ионы металлов притягивают молекулы воды) вследствие чего объем циркулирующей крови восстанавливается. Также натрий участвует в электрической деятельности нервной и мышечной ткани. Благодаря разнице концентрации натрия между кровью и внутриклеточной средой живые клетки могут генерировать электрический ток лежащий в основе деятельности нервной системы, мышц и других органов. Дефицит натрия встречается очень редко. Обычно он возникает в случае сильного обезвоживания или крупной потери крови. Распространенность натрия в природе (поваренная соль состоит из натрия и хлора), делает возможным быстрое восполнение резервов организма в этом элементе. При некоторых заболеваниях (например, при гипертонии) рекомендуется снижать потребление соли (следовательно, натрия) для того, чтобы немого снизить объем циркулирующей крови и понизить артериальное давление .

Калий – является основным ионом внутриклеточной среды. Его концентрация в крови во много раз меньше чем внутри клеток. Этот факт является очень важным для нормального функционирования клеток организма. Подобно натрию, калий участвует в регуляции электрической деятельности органов и тканей. Концентрация калия в крови и внутри клеток поддерживается с большой точностью. Даже небольшие изменения концентрации этого элемента в крови способно вызвать серьезные нарушения деятельности внутренних органов (например, сердца). По сравнению с натрием калий менее распространен в природе, однако встречается в достаточных количествах. Основным источником калия для человека являются свежие овощи и фрукты.

Кальций . Общая масса кальция в организме взрослого человека составляет примерно 4 килограмма. Причем основная его часть сконцентрирована в костной ткани. Соли кальция и фосфорной кислоты являются минеральной основой костей. Помимо минералов, кости содержат и некоторое количество белков, образующих своеобразную сеть на которой осаждаются минеральные соли. Белки придают костям гибкость и упругость, а минеральные соли – твердость и жесткость. Несколько граммов кальция содержится в различных органах и тканях. Здесь кальций играет роль регулятора внутриклеточных процессов. Так, например, кальций участвует в механизмах передачи нервного импульса от одной нервной клетки к другой, участвует в механизме сокращения мышц и сердца и пр. Основным источником кальция для человека являются продукты животного происхождения. Особенно богаты кальцием молочные продукты. Кальция абсолютно необходим для нормального протекания процесса обмена веществ. Недостаток кальция является довольно распространенным явлением. Чаще всего он возникает вследствие неправильного питания (употребление малого количества молочных продуктов), а также во время беременности или кормления грудью. У детей недостаток кальция может развиться в период интенсивного роста.

Железо . В организме взрослого человека содержится около 4 граммов железа, причем основная масса его сконцентрирована в крови. Железо является незаменимым компонентом гемоглобина – пигмента эритроцитов, переносящего кислород о легких к тканям. Также железо входит в состав ферментов обеспечивающих клеточное дыхание (употребление кислорода клетками). Основным источником железа для человека являются пищевые продукты растительного и животного происхождения. Железом богаты яблоки, гранаты, мясо, печень. Дефицит железа проявляется анемией, а также шелушением кожи, расслоением ногтей, появлением трещин на губах, ломкостью волос. Чаще всего от недостатка железа страдают дети и женщины детородного возраста. Причиной недостатка железа у детей является неправильное питание и быстрый рост организма. У женщин дефицит железа развивается из-за постоянной потери крови во время менструации. Особенно опасен дефицит железа во время беременности. Анемия, как проявление недостатка железа, может вызвать даже гибель плода, из-за недостатка кислорода.

Различные заболевания пищеварительного тракта (хронические гастриты , энтериты) также могут привести способствовать развитию дефицита железа.

Йод – является незаменимым для человека микроэлементом. Основная роль йода в организме человека заключается в том, что йод является активной частью гормонов щитовидной железы. Гормоны щитовидной железы регулируют энергетические процессы организма – образование тепла, рост и развитие. При недостатке йода возникает тяжелое состояние – гипотиреоз, названное так из-за недостатка гормонов щитовидной железы (для их синтеза необходим йод). Основным источником йода для человека являются молоко, мясо, свежие овощи, рыба и морские продукты. Дефицит йода возникает в основном из-за неправильного питания. В некоторых регионах земного шара (например, Урал) гипотиреоз возникает особенно часто. Это связано с недостатком содержание йода в почве и воде.

Фтор полезен для организма только в небольших количествах. При низких концентрациях фтор стимулирует развитие и рост зубов, костной ткани, образование клеток крови, повышение иммунитета. Недостаток фтора повышает риск заболевания кариесом (особенно у детей) и негативно сказывается на иммунитете. В больших дозах фтор может вызывать заболевание флюороз, проявляющееся изменениями скелета. Основным источником фтора являются свежи овощи и молоко, а так же питьевая вода.

Медь . Роль меди в организме заключается в активации тканевых ферментов, которые участвуют в дыхании клеток и превращении веществ. Также важно отметить положительное влияние меди на процесс кроветворения. При помощи меди происходит перенос железа в костный мозг и созревание эритроцитов. При недостатке меди происходит нарушение развития костной и соединительной ткани, также тормозится умственное развитие детей, увеличиваются печень и селезенка, развивается анемия. Хлеб и мучные продукты, чай, кофе, фрукты и грибы являются основными источниками меди для человека.

Цинк входит в состав многих ферментов, оказывает стимулирующее действие процесс полового созревания, образования костей, распада жировой ткани. Недостаток цинка развивается довольно редко. Иногда дефицит цинка возникает при избыточном потреблении мучных продуктов, препятствующих всасыванию цинка из кишечника. Недостаток цинка (особенно в детском возрасте) может привести к тяжелым нарушениям развития: торможение полового созревания, выпадение волос, деформация скелета. Достаточные для человека количества цинка содержатся в печени животных, мясе, яичных желтках, сырах, горохе.

Кобальт – является фактором активации витамина В12, поэтому этот элемент незаменим для нормального протекания процесса образования крови. Также кобальт стимулирует синтез белков и рост мышц, активирует некоторые ферменты перерабатывающие углеводы . Недостаток кобальта может проявиться анемией (малокровие). Основными источниками кобальта являются хлеб и мучные продукты, фрукты и овощи, молоко, бобовые.

Библиография:

  • Идз М.Д. Витамины и минеральные вещества, Спб. : Комплект, 1995
  • Минделл Э. Справочник по витаминам и минеральным веществам, М. : Медицина и питание: Техлит, 1997
  • Беюл Е.А Cправочник по диетологии, М.: Медицина, 1992
Читать еще:





Клетка состоит из органических и минеральных веществ.

Минеральный состав клеток

Из неорганических веществ в состав клетки входят 86 элементов Периодической таблицы, около 16-18 элементов жизненно необходимы для нормального существования живой клетки.

Среди элементов выделяют: органогены, макроэлементы, микроэлементы и ультрамикроэлементы.

Органогены

Это вещества, из которых состоят органические вещества: кислород, углерод, водород и азот.

Кислород (65-75%) - содержится в огромном количестве органических молекул - белках, жирах, углеводах, нуклеиновых кислотах. В виде простого вещества (О2) образуется в процессе оксигенного фотосинтеза (цианобактерии, водоросли, растения).

Функции: 1. Кислород - сильный окислитель (окисляет глюкозу в процессе клеточного дыхания, в процессе выделяется энергия)

2. Входит в состав органических веществ клетки

3. Входит в состав молекулы воды

Углерод (15-18%) - является основой строения всех органических веществ. В виде углекислого газа выделяется в процессе дыхания, а поглощается в процессе фотосинтеза. Может быть в виде СО - угарного газа. В виде карбоната кальция (СаСО3) входит в состав костей.

Водород (8 - 10%) - как и углерод входит в состав любого органического соединения. А еще входит в состав воды.

Азот (2 - 3%) - входит в состав аминокислот, а значит и белков, нуклеиновых кислот, некоторых витаминов и пигментов. Фиксируется бактериями из атмосферы.

Макроэлементы

Магний (0,02 - 0,03%)

1. В клетке - входит в состав ферментов, участвует в синтезе ДНК и энергетическом обмене

2. У растений - входит в состав хлорофилла

3. У животных - входит в состав ферментов, участвующих в функционировании мышечной, нервной и костной тканей.

Натрий (0,02 - 0,03%)

1. В клетке - входит в состав калиево-натриевых каналов и насосов

2. У растений - участвует в осмосе, что обеспечивает поглощение воды из почвы

3. У животных - участвует в работе почек, поддержании сердечного ритма, входит в состав крови (NaCl), помогает поддерживать кислотно-щелочной баланс

Кальций (0,04 - 2,0%)

1. В клетке - участвует в избирательной проницаемости мембраны, в процессе соединения ДНК с белками

2. У растений - образует соли пектиновых веществ, придает твердость межклеточному веществу, соединяющему растительные клетки, а также участвует в формировании межклеточных контактов

3. У животных - входит в состав костей позвоночных, раковин моллюсков и коралловых полипов, участвует в образовании желчи, повышает рефлекторную возбудимость спинного мозга и центра слюноотделения, участвует в синаптической передаче нервного импульса, в процессах свертывания крови, является необходимым фактором сокращения поперечно-полосатой мускулатуры

Железо (0,02%)

1. В клетке - входит в состав цитохромов

2. У растений - участвует в синтезе хлорофилла, входит в состав ферментов, участвующих в дыхании, входят в состав цитохромов

3. У животных - входит в состав гемоглобина

Калий (0,15 - 0,4%)

1. В клетке - поддерживает коллоидные свойства цитоплазмы, входит в состав калиево-натриевых насосов и каналов, активизирует ферменты, участвующие в синтезе белка при гликолизе

2. У растений - участвует в регуляции водного обмена и фотосинтеза

3. Нужен для правильного сердечного ритма, участвует в проведении нервного импульса

Сера (0,15 - 0,2%)

1. В клетке - входит в состав некоторых аминокислот - цитина, цистеина и метионина, образует дисульфидные мостики в третичной структуре белка, входит в состав некоторых ферментов и кофермента А, входит в состав бактериохлорофилла, некоторые хемосинтетики используют соединения серы для получения энергии

2. У животных - входит в состав инсулина, витамина В1, биотина

Фосфор (0,2 - 1,0%)

1. В клетке - в виде остатков фосфорной кислоты входит в состав ДНК, РНК, АТФ, нуклеотидов, коферментов НАД, НАДФ, ФАД, фосфорилированных сахаров, фосфолипидов и многих ферментов, в составе фосфолипидов образует мембраны

2. У животных - входит в состав костей, зубов, у млекопитающих является компонентом буферной системы, поддерживает кислотный баланс тканевой жидкости относительно постоянным

Хлор (0,05 - 0,1%)

1. В клетке - участвует в поддержании электронейтральности клетки

2. У растений - участвует в регуляции тургорного давления

3. У животных - участвует в формировании осмотического потенциала плазмы крови, также в процессах возбуждения и торможения в нервных клетках, входит в состав желудочного сока в виде соляной кислоты

Микроэлементы

Медь

1. В клетке - входит в состав ферментов, участвующих в синтезе цитохромов

2. У растений - входит в состав ферментов, участвующих в реакциях темновой фазы фотосинтеза

3. У животных - участвует в синтезе гемоглобина, у беспозвоночных входит в состав гемоцианинов - переносчиков кислорода, у человека - входит в состав пигмента кожи - меланина

Цинк

1. Участвует в спиртовом брожении

2. У растений - входит в состав ферментов, участвующих в расщеплении угольной кислоты и в синтезе растительных гормонов-ауксинов

Йод

1. У позвоночных - входит в состав гормонов щитовидной железы (тироксин)

Кобальт

1. У животных - входит в состав витамина В12 (принимает участие в синтезе гемоглобина), его недостаток приводит к анемии

Фтор

1. У животных - придает прочность костям и зубной эмали

Марганец

1. В клетке - входит в состав ферментов, участвующих в дыхании, окислении жирных кислот, повышает активность карбоксилазы

2. У растений - в составе ферментов участвует в темновых реакциях фотосинтеза и в восстановлении нитратов

3. У животных - входит в состав фосфатаз-ферментов, необходимых для роста костей

Бром

1. В клетке - входит в состав витамина В1, который участвует в расщеплении пировиноградной кислоты

Молибден

1. В клетке - в составе ферментов участвует в фиксации атмосферного азота

2. У растений - в составе ферментов участвует в работе устьиц и ферментов, участвующих в синтезе аминокислот

Бор

1. Влияет на рост растений


Клетка – элементарная единица живого, обладающая всеми признаками организма: способностью к размножению, росту, обмену веществ и энергией с окружающей средой, раздражимостью, постоянством химического сотсава.
Макроэлементы – элементы, количество которых в клетке составляет до 0.001% от массы тела. Примеры – кислород, углерод, азот, фосфор, водород, сера, железо, натрий, кальций и др.
Микроэлементы – элементы, количество которых в клетке составляет от 0.001% до 0.000001% от массы тела. Примеры – бор, медь, кобальт, цинк, йод и др.
Ультрамикроэлементы – элементы, содержание которых в клетке не превышает 0.000001% от массы тела. Примеры – золото, ртуть, цезий, селен и др.

2. Составьте схему «Вещества клетки».

3. О чем говорит научный факт сходства элементарного химического состава живой и неживой природы?
Это указывает на общность живой и неживой природы.

Неорганические вещества. Роль воды и минеральных веществ в жизнедеятельности клетки.
1. Дайте определения понятий.
Неорганические вещества – это вода, минеральные соли, кислоты, анионы и катионы, присутствующие как в живых, так и в неживых организмах.
Вода – одно из самых распространенных неорганических веществ в природе, молекула которого состоит из двух атомов водорода и одного атом кислорода.

2. Нарисуйте схему «Строение воды».


3. Какие особенности строения молекул воды придают ей уникальные свойства, без которых невозможна жизнь?
Структура молекулы воды образована двумя атомами водорода и одним атомом кислорода, которые образуют диполь, то есть вода имеет две полярности "+"и"-".Это способствует ее проницаемости через стенки мембраны, способностью растворять химические вещества. Кроме того, диполи воды связываются водородными связями друг с другом, что обеспечивает ее способность быть в различных агрегатных состояниях, а также - растворять или не растворять различные вещества.

4. Заполните таблицу «Роль воды и минеральных веществ в клетке».


5. Каково значение относительного постоянства внутренней среды клетки в обеспечении процессов ее жизнедеятельности?
Постоянство внутренней среды клетки называется гомеостазом. Нарушение гомеостаза влечёт к повреждению клетки или к её смерти, в клетке постоянно происходит пластический обмен и энергетический обмен, это две составляющие метаболизма, и нарушение этого процесса ведёт к повреждению или к гибели всего организма.

6. В чем состоит назначение буферных систем живых организмов и каков принцип их функционирования?
Буферные системы поддерживают определенное значение рН (показатель кислотности) среды в биологических жидкостях. Принцип функционирования заключается в том, что рН среды зависит от концентрации протонов в этой среде (Н+). Буферная система способна поглощать или отдавать протоны в зависимости от их поступления в среду извне или, напротив, удаления из среды, при этом рН не будет изменяться. Наличие буферных систем необходимо в живом организме, так как из-за изменения условий окружающей среды рН может сильно меняться, а большинство ферментов работает только при определенном значении рН.
Примеры буферных систем:
карбонатно-гидрокарбонатная (смесь Na2СО3 и NaHCO3)
фосфатная (смесь K2HPO4 и KH2PO4).

Органические вещества. Роль углеводов, липидов и белков в жизнедеятельности клетки.
1. Дайте определения понятий.
Органические вещества – это вещества, в состав которых обязательно входит углерод; они входят в состав живых организмов и образуются только при их участии.
Белки – высокомолекулярные органические вещества, состоящие из альфа-аминокислот, соединённых в цепочку пептидной связью.
Липиды – обширная группа природных органических соединений, включающая жиры и жироподобные вещества. Молекулы простых липидов состоят из спирта и жирных кислот, сложных - из спирта, высокомолекулярных жирных кислот и других компонентов.
Углеводы – это органические вещества, в своем составе имеющие карбонильную и несколько гидроксильных групп и иначе называемые сахарами.

2. Впишите в таблицу недостающую информацию «Строение и функции органических веществ клетки».


3. Что понимают под денатурацией белка?
Денатурация белка – это утрата белком своей природной структуры.

Нуклеиновые кислоты, АТФ и другие органические соединения клетки.
1. Дайте определения понятий.
Нуклеиновые кислоты – это биополимеры, состоящие из мономеров – нуклеотидов.
АТФ – это соединение, состоящее из азотистого основания аденина, углевода рибозы и трех остатков фосфорной кислоты.
Нуклеотид – это мономер нуклеиновой кислоты, который состоит из фосфатной группы, пятиуглеродного сахара (пентозы) и азотистого основания.
Макроэргическая связь – это связь между остатками фосфорной кислоты в АТФ.
Комплементарность – это пространственное взаимное соответствие нуклеотидов.

2. Докажите, что нуклеиновые кислоты являются биополимерами.
Нуклеиновые кислоты состоят из большого количества повторяющихся нуклеотидов и имеют массу 10.000 до нескольких миллионов углеродных единиц.

3. Охарактеризуйте особенности строения молекулы нуклеотида.
Нуклеотид представляет собой соединение из трех компонентов: остатка фосфорной кислоты, пятиуглеродного сахара (рибозы), и одного из азотистых соединений (аденин, гуанин, цитозин, тимин или урацил).

4. Какое строение имеет молекула ДНК?
ДНК – двойная спираль, состоящая из множества нуклеотидов, которые последовательно соединяются между собой за счет ковалентных связей между дезоксирибозой одного и остатком фосфорной кислоты другого нуклеотида. Азотистые основания, которые располагаются по одну сторону от остова одной цепи, связаны Н-связями с азотистыми основаниями второй цепи по принципу комплементарности.

5. Применив принцип комплементарности, постройте вторую цепочку ДНК.
Т-А-Т-Ц-А-Г-А-Ц-Ц-Т-А-Ц
А-Т-А-Г-Т-Ц-Т-Г-Г-А-Т-Г.

6. Каковы основные функции ДНК в клетке?
При помощи четырех типов нуклеотидов в ДНК записана вся важная информация в клетке об организме, которая передается последующим поколениям.

7. Чем молекула РНК отличается от молекулы ДНК?
РНК представляет собой одинарную цепь меньшего, чем ДНК, размера. В нуклеотидах находится сахар рибоза, а не дезоксирибоза, как в ДНК. Азотистым основанием, вместо тимина, является урацил.

8. Что общего в строении молекул ДНК и РНК?
И РНК, и ДНК являются биополимерами, состоящими из нуклеотидов. В нуклеотидах общим в строении является наличие остатка фосфорной кислоты и оснований аденина, гуанина, цитозина.

9. Заполните таблицу «Типы РНК и их функции в клетке».


10. Что такое АТФ? Какова его роль в клетке?
АТФ – аденозинтрифосфат, макроэргическое соединение. Его функции – универсальный хранитель и переносчик энергии в клетке.

11. Каково строение молекулы АТФ?
АТФ состоит из трех остатков фосфорной кислоты, рибозы и аденина.

12. Что представляют собой витамины? На какие две большие группы их разделяют?
Витамины – биологически активные органические соединения, играющие важную роль в процессах обмена веществ. Их разделяют на водорастворимые (С, В1, В2 и др.) и жирорастворимые (А, Е и др.).

13. Заполните таблицу «Витамины и их роль в организме человека».