Общая характеристика эндогенных и экзогенных процессов. Эндогенные и экзогенные факторы заболевания

Геологические процессы – это процессы, изменяющие состав, структуру, рельеф и глубинное строение земной коры. Геологическим процессам, за небольшим исключением, свойственны масштабность и большая длительность (до сотен млн лет); в сравнении с ними существование человечества – весьма краткий эпизод в жизни Земли. В связи с этим преобладающее большинство геологических процессов непосредственно недоступно для наблюдения. Судить о них можно лишь по результатам их воздействия на те или иные геологические объекты – горные породы, геологические структуры, типы рельефа континентов и дна океанов. Большое значение имеют наблюдения над современными геологическими процессами, которые, согласно принципу актуализма, можно использовать в качестве моделей, позволяющих познавать процессы и события прошлого, учитывая их изменчивость. В настоящее время геолог может наблюдать разные стадии одних и тех же геологических процессов, что существенно облегчает их изучение.

Все геологические процессы, происходящие в недрах Земли и на её поверхности, подразделяются на эндогенные и экзогенные . Эндогенные геологические процессы происходят за счет внутренней энергии Земли. Согласно современным представлениям (Сорохтин, Ушаков, 1991), главным планетарным источником этой энергии является гравитационная дифференциация земного вещества. (Компоненты с повышенным удельным весом под действием сил гравитации стремятся к центру Земли, в то время как более легкие концентрируются у поверхности). В результате этого процесса в центре планеты выделилось плотное железо-никелевое ядро, а в мантии возникли конвективные течения. Второстепенным источником энергии является энергия радиоактивного распада вещества. На её долю приходится всего 12 % энергии, идущей на тектоническое развитие Земли, а на долю гравитационной дифференциации – 82 %. Некоторые авторы считают, что главным источником энергии эндогенных процессов является взаимодействие внешнего ядра Земли, находящегося в расплавленном состоянии, с внутренним ядром и мантией. К эндогенным процессам относятся тектонические, магматические, пневматолито-гидротермальные и метаморфические.

Тектоническими называются процессы, под воздействием которых формируются тектонические структуры земной коры – горно-скла-дчатые пояса, прогибы, впадины, глубинные разломы и т.д. Вертикальные и горизонтальные движения земной коры также относятся к тектоническим процессам.

Магматические процессы (магматизм) – это совокупность всех геологических процессов, связанных с деятельностью магмы и её производных. Магма – огненно-жидкая расплавленная масса, образующаяся в земной коре или верхней мантии и превращающаяся при застывании в магматические горные породы. По происхождению магматизм делится на интрузивный и эффузивный. Термин «интрузивный магматизм» объединяет процессы формирования и раскристаллизации магмы на глубине с образованием интрузивных тел. Эффузивный магматизм (вулканизм) – совокупность процессов и явлений, связанных с перемещением магмы из глубины на поверхность с образованием вулканических построек.

В особую группу выделяют гидротермальные процессы. Это процессы образования минералов в результате отложения их в трещинах или порах горных пород из гидротермальных растворов. Гидротермы – жидкие горячие водные растворы, циркулирующие в земной коре и участвующие в процессах перемещения и отложения минеральных веществ. Гидротермы часто более или менее обогащены газами; если содержание газов велико, то такие растворы называются пневматолито-гидротермальными. В настоящее время многие исследователи считают, что гидротермы образуются при смешении подземных вод глубокой циркуляции и ювенильных вод, образующихся при сгущении водяного пара магмы. Гидротермы движутся по трещинам и пустотам в горных породах в сторону пониженного давления – к земной поверхности. Являясь слабыми растворами кислот или щелочей, гидротермы характеризуются высокой химической активностью. В результате взаимодействия гидротерм с вмещающими породами образуются минералы гидротермального происхождения.

Метаморфизм – комплекс эндогенных процессов, обусловливающих изменения в структуре, минеральном и химическом составе горных пород в условиях высокого давления и температуры; плавления пород при этом не происходит. Главными факторами метаморфизма являются температура, давление (гидростатическое и одностороннее) и флюиды. Метаморфические изменения заключаются в распаде первоначальных минералов, в молекулярной перегруппировке и образовании новых минералов, более устойчивых в данных условиях среды. Метаморфизму подвергаются все типы горных пород; образующиеся при этом породы называются метаморфическими.

Экзогенные процессыгеологические процессы, происходящие за счет внешних источников энергии, главным образом Солнца. Они происходят на поверхности Земли и в самых верхних частях литосферы (в зоне действия факторов гипергенеза или выветривания). К экзогенным процессам относятся: 1) механическое дробление горных пород до составляющих их минеральных зерен, в основном под влиянием суточного перепада температуры воздуха и за счет морозного выветривания. Этот процесс называется физическим выветриванием ; 2) химическое взаимодействие минеральных зерен с водой, кислородом, углекислым газом и органическими соединениями, приводящее к образованию новых минералов – химическое выветривание; 3) процесс перемещения продуктов выветривания (так называемый перенос ) под действием силы тяжести, посредством движущихся воды, ледников и ветра в области осадконакопления (океанические впадины, моря, реки, озера, понижения рельефа); 4) накопление толщ осадков и преобразование их за счет уплотнения и обезвоживания в осадочные горные породы. В ходе этих процессов образуются месторождения осадочных полезных ископаемых.

Многообразие форм взаимодействия экзогенных и эндогенных процессов обусловливает разнообразие структур земной коры и рельефа её поверхности. Эндогенные и экзогенные процессы находятся между собой в неразрывной связи. По своей сути эти процессы антагонистичны, но в то же время неразделимы, и весь этот комплекс процессов можно условно назвать геологической формой движения материи. Она также в последнее время включает в себя деятельность человека.

В течение последнего столетия наблюдается возрастание роли техногенного (антропогенного) фактора в составе общего комплекса геологических процессов. Техногенез – совокупность геоморфологических процессов, вызванных производственной деятельностью человека. По направленности деятельность человека подразделяется на сельскохозяйственную, эксплуатацию месторождений полезных ископаемых, возведение различных сооружений, оборонную и прочие. Результатом техногенеза является техногенный рельеф. Границы техносферы непрерывно расширяются. Так, всё возрастают глубины бурения на нефть и газ на суше и шельфе. Заполнение водохранилищ в горных сейсмически опасных районах вызывает в ряде случаев искусственные землетрясения. Добыча полезных ископаемых сопровождается выдачей на дневную поверхность огромных объемов «пустых» пород, в результате создается «лунный» ландшафт (например, в районе г.г. Прокопьевска, Киселёвска, Ленинск-Кузнецкого и других городов Кузбасса). Отвалы шахт и прочих производств, свалки мусора создают новые формы техногенного рельефа, захватывая всё большую часть сельскохозяйственных угодий. Рекультивация этих земель проводится очень медленно.

Таким образом, хозяйственная деятельность человека стала в настоящее время неотъемлемой частью всех современных геологических процессов.

Экзогенными (от греч. éxo - вне, снаружи) называют геологические процессы, которые обусловлены внешними по отношению к Земле источниками энергии: солнечной радиацией и гравитационным полем. Они протекают на поверхности земного шара или в приповерхностной зоне литосферы. К ним относятся гипергенез (выветривание), эрозия, абразия, седиментогенез и др.

Противоположные экзогенным процессам эндогенные (от греч. éndon - внутри) геологические процессы связаны с энергией, возникающей в недрах твердой части земного шара. Главными источниками эндогенных процессов считаются тепло и гравитационная дифференциация вещества по плотности с погружением более тяжелых составляющих элементов. К эндогенным процессам относятся вулканизм, сейсмичность, метаморфизм и др.

Использование представлений об экзогенных и эндогенных процессах, красочно иллюстрирующих динамику процессов в каменной оболочке в борьбе противоположностей, подтверждает справедливость высказывания Ж. Бодрийяра, что «Всякая унитарная система, если она хочет выжить, должна обрести бинарную регуляцию». Если имеется оппозиция, то существование симулякра, т. е. представления, скрывающего, что его нет, возможно.

В модели реального мира природы, очертывающейся законами естествознания, которые не имеют исключений, бинарность объяснений недопустима. Например, два человека держат в руке по камню. Один из них заявляет, что когда опустит камень, тот полетит к Луне. Это его мнение. Другой говорит, что камень упадет вниз. Спорить им, кто из них прав, не нужно. Есть закон всемирного тяготения, по которому в 100% случаев камень упадет вниз.

Согласно второму началу термодинамики нагретое тело на контакте с холодным в 100 % случаев остынет, нагревая холодное.

Если реально наблюдаемое строение литосферы из аморфного базальта, ниже глины, потом сцементированной глины - аргиллита, мелкокристаллического сланца, среднекристаллического гнейса и крупнокристаллического граница, то перекристаллизация вещества с глубиной с увеличением размера кристаллов однозначно свидетельствует о не поступлении из-под гранита тепловой энергии. В противном случае на глубине были бы аморфные горные породы, сменяющиеся к поверхности все более крупнокристаллическими образованиями.

Отсюда, глубинной тепловой энергии нет, а, стало быть, и эндогенных геологических процессов. Если нет эндогенных процессов, то теряет смысл выделение и противоположных им экзогенных геологических процессов.

А что же есть? В каменной оболочке земного шара, как и в атмосфере, гидросфере и биосфере, взаимосвязанных между собой, составляющих единую систему планеты Земля, происходит круговорот энергии и вещества, вызванный поступлением солнечной радиации и наличием энергии гравитационного поля. Этот круговорот энергии и вещества в литосфере и составляет систему геологических процессов.

Круговорот энергии состоит из трех звеньев. 1. Начальное звено - накопление веществом энергии. 2. Промежуточное звено - освобождение накопленной энергии. 3. Заключительное звено - удаление освобожденной тепловой энергии.

Круговорот вещества также состоит из трех звеньев. 1. Начальное звено - перемешивание разных веществ с усреднением химического состава. 2. Промежуточное звено - разделение усредненного вещества на две части разного химического состава. 3. Заключительное звено - удаление одной части, которая поглотила выделившееся тепло и стала разуплотненной, легкой.

Суть начального звена круговорота энергии вещества в литосфере в поглощении горными породами на поверхности суши поступающей солнечной радиации, что приводит к разрушению их до глины и обломков (процесс гипергенеза). Продукты разрушения накапливают громадное количество солнечной радиации в виде потенциальной свободной поверхностной, внутренней, геохимической энергии. Под действием силы тяжести продукты гипергенеза сносятся в пониженные участки, перемешиваясь, усредняя свой химический состав. В конечном счете, глина и пески сносятся на дно морей, где накапливаются слоями (процесс седиментогенеза). Формируется слоистая оболочка литосферы, около 80% которой приходится на глину. Химический состав глины = (гранит + базальт)/2.

На промежуточном звене круговорота слои глины погружаются в недра, перекрываясь новыми слоями. Возрастающее литостатическое давление (массы вышележащих слоев) приводит к отжатию из глины воды с растворенными солями и газами, сдавливанию глинистых минералов, уменьшению расстояний между их атомами. Это вызывает перекристаллизацию глинистой массы до кристаллических сланцев, гнейсов и гранитов. При перекристаллизации потенциальная энергия (аккумулированная солнечная) переходит в кинетическую тепловую, которая выделяется из кристаллического гранита и поглощается водно-силикатным раствором базальтового состава, находящимся в порах между кристаллами гранита.

На заключительное звено круговорота приходится удаление нагретого базальтового раствора на поверхность литосферы, где люди называют его лавой. Вулканизм - заключительное звено круговорота энергии и вещества в литосфере, суть которого в удалении нагретого базальтового раствора, образовавшегося при перекристаллизации глины в гранит.

Образующаяся при перекристаллизации глины тепловая энергия, поднимаясь на поверхность литосферы, создает для человека иллюзию поступления глубинной (эндогенной) энергии. На самом деле, это освобожденная солнечная энергия, преобразованная в тепловую. Как только тепловая энергия возникает при перекристаллизации, она сразу же удаляет вверх, поэтому на глубине нет эндогенной энергии (эндогенных процессов).

Таким образом, представление об экзогенных и эндогенных процессах представляет собой симулякр.

Ноотик - круговорот энергии и вещества в литосфере, вызванный поступлением солнечной энергии и наличием гравитационного поля.

Представление об экзогенных и эндогенных процессах в геологии является результатом восприятия мира каменной оболочки земного шара таким, каким его видит (хочет видеть) человек. Это и определило дедуктивный и фрагментарный способ мышления геологов.

Но, мир природы не создан человеком, и какой он, неизвестно. Для познания его необходимо применять индуктивный и системный способ мышления, что и реализовано в модели круговорота энергии и вещества в литосфере, как системе геологических процессов.

1. ЭКЗОГЕННЫЕ И ЭНДОГЕННЫЕ ПРОЦЕССЫ

Экзогенные процессы – геологические процессы, происходящие на поверхности Земли и в самых верхних частях земной коры (выветривание, эрозия, деятельность ледников и др.); обусловлены главным образом энергией солнечной радиации, силой тяжести и жизнедеятельностью организмов.

Эрозия (от лат. erosio – разъедание) – разрушение горных пород и почв поверхностными водными потоками и ветром, включающее в себя отрыв и вынос обломков материала и сопровождающееся их отложением.

Часто, особенно в зарубежной литературе, под эрозией понимают любую разрушительную деятельность геологических сил, таких, как морской прибой, ледники, гравитация; в таком случае эрозия выступает синонимом денудации. Для них, однако, существуют и специальные термины: абразия (волновая эрозия), экзарация (ледниковая эрозия), гравитационные процессы, солифлюкция и т. д. Такой же термин (дефляция) используется параллельно с понятием ветровая эрозия, но последнее гораздо более распространено.

По скорости развития эрозию делят на нормальную и ускоренную. Нормальная имеет место всегда при наличии сколько-либо выраженного стока, протекает медленнее почвообразования и не приводит к заметным изменением уровня и формы земной поверхности. Ускоренная идет быстрее почвообразования, приводит к деградации почв и сопровождается заметным изменением рельефа. По причинам выделяют естественную и антропогенную эрозию. Следует отметить, что антропогенная эрозия не всегда является ускоренной, и наоборот.

Работа ледников – рельефообразующая деятельность горных и покровных ледников, состоящая в захвате частиц горных пород движущимся ледником, переносе и отложении их при таянии льда.

Эндогенные процессы Эндогенные процессы – геологические процессы, связанные с энергией, возникающей в недрах твердой Земли. К эндогенным процессам относятся тектонические процессы, магматизм, метаморфизм, сейсмическая активность.

Тектонические процессы – образование разломов и складок.

Магматизм – термин, объединяющий эффузивные (вулканизм) и интрузивные (плутонизм) процессы в развитии складчатых и платформенных областей. Под магматизмом понимают совокупность всех геологических процессов, движущей силой которых является магма и её производные.

Магматизм является проявлением глубинной активности Земли; он тесно связан с ее развитием, тепловой историей и тектонической эволюцией.

Выделяют магматизм:

геосинклинальный

платформенный

океанический

магматизм областей активизации

По глубине проявления:

абиссальный

гипабиссальный

поверхностный

По составу магмы:

ультраосновной

основной

кислый

щелочной

В современную геологическую эпоху магматизм особенно развит в пределах Тихоокеанского геосинклинального пояса, срединно-океанических хребтов, рифовых зон Африки и Средиземноморья и др. С магматизмом связано образование большого количества разнообразных месторождений полезных ископаемых.

Сейсмическая активность – это количественная мера сейсмического режима, определяемая средним числом очагов землетрясений в некотором диапазоне энергетической величины, которые возникают на рассматриваемой территории за определенное время наблюдения.

2. ЗЕМЛЕТРЯСЕНИЯ

геологический земной кора эпейрогенический

Наиболее отчетливо действие внутренних сил Земли обнаруживается в явлении землетрясений, под которыми понимаются сотрясения земной коры, вызванные смещениями горных пород в недрах Земли.

Землетрясение – явление достаточно распространенное. Оно наблюдается на многих участках материков, а также на дне океанов и морей (в последнем случае говорят о «моретрясении»). Количество землетрясений на земном шаре достигает нескольких сотен тысяч в год, т. е. в среднем совершается одно два землетрясения в минуту. Сила землетрясения различна: большинство из них улавливается только высокочувствительными приборами -сейсмографами, другие ощущаются человеком непосредственно. Количество последних достигает двух-трех тысяч в год, причем распределяются они очень неравномерно – в одних районах такие сильные землетрясения очень часты, а в других необычайно редки или даже практически отсутствуют.

Землетрясения можно подразделить на эндогенные, связанные с процессами, происходящими в глубине Земли, и экзогенные, зависящие от процессов, происходящих вблизи поверхности Земли.

К зндогенным землетрясениям относятся вулканические землетрясения, вызванные процессами извержения вулканов, и тектонические, обусловленные перемещением вещества в глубоких недрах Земли.

К экзогенным землетрясениям относятся землетрясения, происходящие в результате подземных обвалов, связанных с карстовыми и некоторыми другими явлениями, взрыво газов и т.п. Экзогенные землетрясения могут вызываться также процессами, происходящими на самой поверхности Земли: обвалами скал, ударами метеоритов, падением воды с большой высоты и другими явлениями, а также факторами, связанными с деятельностью человека (искусственными взрывами, работой машин и т.п.).

Генетически землетрясения можно классифицировать следующим образом:. Естественные

Эндогенные: а) тектонические, б) вулканические. Экзогенные: а) карстово-обвальные, б) атмосферные в) от ударов волн, водопадов и т. п.. Искусственные

а) от взрывов, б) от артиллерийской стрельбы, в) от искусственного обрушения горных пород, г) от транспорта и т. п.

В курсе геологии рассматриваются только землетрясения, связанные с эндогенными процессами.

В тех случаях, когда сильные землетрясения происходят в густонаселенных районах, они наносят огромный вред человеку. По бедствиям, причиняемым человеку, землетрясения не могут сравниться ни с каким другим явлением природы. Так например, в Японии во время землетрясения 1 сентября 1923 г., продолжавшегося всего несколько секунд, было полностью уничтожено 128266 домов и 126233 частично разрушено, погибло около 800 судов, были убиты и пропали без вести 142 807 человек. Более 100 тыс. человек получили ранения.

Описать явление землетрясения необычайно трудно, так как весь процесс длится всего несколько секунд или минут, и человек не успевает воспринять все многообразие перемен, совершающихся за это время в природе. Внимание фиксируется обычно только на тех колоссальных разрушениях, которые появляются в результате землетрясения.

Вот как описывает М. Горький землетрясение, происшедшее в Италии в 1908 г., очевидцем которого он был: «Земля глухо гудела, стонала, горбилась под ногами и волновалась, образуя глубокие трещины – как будто в глубине проснулся и ворочается веками дремавший некий огромный червь… Вздрогнув и пошатываясь, здания наклонялись, по их белым стенам, как молнии, змеились трещины и стены рассыпались, засыпая узкие улицы и людей среди них… Подземный гул, грохот камней, визг дерева заглушают вопли о помощи, крики безумия. Земля волнуется, как море, сбрасывая с груди своей дворцы, лачуги, храмы, казармы, тюрьмы, школы, каждым содроганием уничтожая сотни и тысячи женщин, детей, богатых и бедных. ».

В результате этого землетрясения был разрушен г. Мессина и ряд других населенных пунктов.

Общая последовательность всех явлений при землетрясении была изучена И. В. Мушкетовым во время крупнейшего из среднеазиатских Алма-Атинского землетрясения 1887 г.

27 мая 1887 г. вечером, как писали очевидцы, никаких признаков землетрясения не было, но домашние животные вели себя неспокойно, не принимали корма, рвались с привязи и т. п. Утром 28 мая в 4 часа 35 минут послышался подземный гул и довольно сильный толчок. Сотрясение продолжалось не более секунды. Через несколько минут гул возобновился, он напоминал глухой звон мощных многочисленных колоколов или грохот проезжающей тяжелой артиллерии. За гулом последовали сильные сокрушительные удары: в домах сыпалась штукатурка, вылетали стекла, рушились печи, падали стены и потолки: улицы наполнились серой пылью. Наиболее сильно пострадали массивные каменные постройки. У домов, расположенных по меридиану, вываливались северные и южные стены, тогда как западные и восточные сохранялись. В первую минуту казалось, что города больше не существует, что разрушены все здания без исключения. Удары и сотрясения, но менее сильные, продолжались в течение всего дня. Многие поврежденные, но ранее устоявшие дома, падали от этих более слабых толчков.

В горах образовались обвалы и трещины, по которым местами на поверхность вышли потоки подземной воды. Глинистая почва на склонах гор, и до того уже сильно смоченная дождями, начала ползти, ч загромождая русла рек. Подхваченная потоками вся эта масса земли, щебня, валунов Б виде густых селевых потоков устремилась к подножию гор. Один из таких потоков протянулся на 10 км при ширине 0,5 км.

Разрушения в самом г. Алма-Ата были огромны: из 1800 домов уцелели единичные дома, но количество человеческих жертв было относительно невелико (332 человека).

Многочисленные наблюдения показали, что в домах сначала (на какую-то долю секунды раньше) разваливались южные стены, а затем уже северные, что колокола в Покровской церкви (в северной части города) ударили через несколько секунд после разрушений, происшедших в южной части города. Все это свидетельствовало, что центр землетрясения находился к югу от города.

Большинство трещин в домах было наклонено также на юг или точнее на юго-восток (170°) под углом 40-60°. Анализируя направление трещин, И. В. Мушкетов пришел к выводу, что источник волн землетрясения располагался на глубине 10- 12 км п в 15 км к югу от г. Алма-Ата.

Глубинный центр, или очаг землетрясения, называется гипоцентром. В плане он очерчивается как округлая или овальная площадь.

Область, расположенная на поверхности Земли над гипоцентром носит название эпицентра. Она характёризуётся максимальными разрушениями, причем многие предметы здесь смещаются вертикально (подпрыгивают), и трещины в домах располагаются очень круто, почти вертикально.

Площадь эпицентра Алма-Атинского землетрясения определялась в 288 км² (36 *8 км), а область, где землетрясение было наиболее сильным, охватила площадь в 6000 км². Такая область получила название плейстосейстовой («плейсто» – наибольший и « сейстос» – сотрясенный).

Алма-Атинское землетрясение продолжалось не один день: вслед за толчками 28 мая 1887 г. в течение более двух лет происходили толчки меньшей силы с. интервалами сначала в несколько часов, а затем дней. Всего за два года было свыше 600 ударов, все более и более ослабевающих.

В истории Земли описаны землетрясения с еще большим количеством толчков. Так, например, в 1870 г. в провинции Фокида в Греции начались толчки, которые продолжались в течение трех лет. В первые три дня толчки следовали через 3 минуты, в течение первых пяти месяцев произошло около 500 тыс. толчков, из них 300 обладали разрушительной силой и следовали друг за другом со средним интервалом в 25 секунд. За три года всего произошло свыше 750 тыс. ударов.

Таким образом, землетрясение происходит не в результате единовременного акта, совершающегося на глубине, но вследствие какого-то длительно развивающегося процесса движения материи во внутренних частях земного шара.

Обычно за начальным крупным толчком следует цепь более мелких толчков, и весь этот период можно назвать периодом землетрясения. Все толчки одного периода исходят из общего гипоцентра, который иногда в процессе развития может смещаться, в связи с чем смещается и эпицентр.

Это хорошо видно на ряде примеров кавказских землетрясений, а также землетрясения в районе г. Ашхабада, которое произошло 6 октября 1948 г. Основной толчок последовал в 1 час 12 минут без предварительных толчков и продолжался 8-10 секунд. За это время в городе и окрестных селениях произошли огромные разрушения. Одноэтажные дома из кирпича-сырца рассыпались, и крыши накрыли эти груды кирпича, домашней утвари и т. п. У более прочно построенных домов вылетели отдельные стены, развалились трубы и печи. Интересно отметить, что здания круглой формы (элеватор, мечеть, собор и др.) противостояли толчку лучше, чем обычные четырехугольные постройки.

Эпицентр землетрясения располагался в 25 км. к юго-востоку от Ашхабада, в районе совхоза «Карагаудан». Эпицентральная область оказалась вытянутой в северо-западном направлении. Гипоцентр располагался на глубине 15-20 км. Длина плейстосейстовой области достигала 80 км, а ширина- 10 км. Период Ашхабадского землетрясения был длителен и состоял из множества (более 1000) толчков, эпицентры которых располагались к северо-западу от главного в пределах узкой полосы, расположенной в предгорьях Копет-Дага

Гипоцентры всех этих повторных толчков находились на той же малой глубине (порядка 20-30 км), что и гипоцентр основного толчка.

Гипоцентры землетрясений могут располагаться не только под поверхностью материков, но и под дном морей и океанов. При моретрясениях разрушения приморских городов бывают тоже весьма значительными и сопровождаются человеческими жертвами.

Сильнейшее землетрясение произошло в 1775 г. в Португалии. Плейстосейстовая область этого землетрясения охватила огромную площадь; эпицентр располагался под дном Бискайского залива вблизи столицы Португалии г. Лиссабона, пострадавшего наиболее сильно.

Первый толчок произошел днем 1 ноября и сопровождался страшным грохотом. По свидетельству очевидцев, земля на целый локоть то поднималась вверх, то опускалась. Дома падали со страшным треском. Огромный монастырь на горе так сильно качался из стороны в сторону, что каждую минуту грозил рухнуть. Толчки продолжались 8 минут. Через несколько часов землетрясение возобновилось.

Мраморная набережная провалилась и ушла под воду. В образовавшуюся водяную воронку были увлечены люди и корабли, стоявшие у берега. После землетрясения глубина залива на месте набережной достигала 200 м.

Море вначале землетрясения отступило, но затем огромная волна высотой 26 м обрушилась на берег и затопила побережье на ширину до 15 км. Таких волн, следовавших одна за другой, было три. То, что уцелело от землетрясения, было смыто и унесено в море. Только в гавани Лиссабона было уничтожено или повреждено свыше 300 судов.

Волны Лиссабонского землетрясения прошли через весь Атлантический океан: у Кадикса их высота достигала 20 м, на Африканском побережье, у берегов Танжера и Марокко – 6 м, на о-вах Фуншал и Мадера -до 5 м. Волны пересекли Атлантический океан и ощущались у берегов Америки на о-вах Мартиника, Барбадос, Антигуа и др. При Лиссабонском землетрясении погибло свыше 60 тыс. человек.

Подобные волны довольно часто возникают при моретрясениях, они называаются цуцнами. Скорость распространения этих волн колеблется от 20 до 300 м/сек в зависимости:от глубины океана; высота волн достигает 30 м.

Осушение берега перед цунами длится обычно несколько минут и в исключительных случаях достигает чяса. Возникают цунами только при тех моретрясениях, когда происходит провал или поднятие определенного участка дна.

Появление цунами и волн отлива объясняется следующим образом. В эпицентральной области из-за деформации дна образуется волна давления, распространяющаяся вверх. Море в этом месте только сильно вспучивается, на поверхности образуются кратковременные течения, расходящиеся во всех направлениях, или «вскипает» с подбрасыванием воды вверх на высоту до 0,3м. Все это сопровождается гулом. Затем волна давления преобразуется на поверхности в волны цунами, разбегающиеся в разных направлениях. Отливы перед цунами объясняются тем, что вначале вода устремляется в подводный провал, из которого затем выталкивается в эпицентральную область.

В случае, когда эпицентры приходятся на густонаселенные районы, землетрясения приносят огромные бедствия. Особенно разрушительными были землетрясения Японии, где за 1500 лет зафиксировано 233 крупных землетрясения с количеством толчков, превышающим 2 млн.

Большие бедствия причиняют землетрясения в Китае. Во время катастрофы 16 декабря 1920 г. в районе Кансу погибло свыше 200 тыс. человек, причем главной причиной гибели были обвалы жилищ, вырытых в лёссе. Землетрясения исключительной силы происходили в Америке. При землетрясении в районе Риобамба в 1797 г. погибло 40 тыс. человек и было разрушено 80% зданий. В 1812 г. город Каракас (Венесуэла) был разрушен полностью в течение 15 секунд. Неоднократно почти полностью разрушался г. Консепсион в Чили, Сильно пострадал г. Сан-Франциско в 1906 г. В Европе наибольшие разрушения наблюдались после землетрясения в Сицилии, где в 1693 г. было уничтожено 50 селений и погибло свыше 60 тыс. человек.

На территории СССР наиболее разрушительными были землетрясения на юге Средней Азии, в Крыму (1927 г.) и на Кавказе. Особенно часто страдал от землетрясений г. Шемаха в Закавказье. Он разрушался в 1669, 1679, 1828, 1856, 1859, 1872, 1902 гг. До 1859 г. город Шемаха был губернским центром Восточного Закавказья, но из-за землетрясения столицу пришлось перенести в Баку. На рис. 173 показано размещение эпицентров Шемахинских землетрясений. Так же, как и в Туркмении, они располагаются вдоль определенной линии, вытянутой в северо-западном направлении.

При землетрясениях происходят существенные изменения на поверхности Земли, выражающиеся в образовании трещин, провалов, складок, поднятии отдельных участков на суше, в образовании островов на море и т. п. Эти нарушения, называемые сейсмическими, часто способствуют образованию мощных обвалов, осыпей, оползней, оплывин и селевых потоков в горах, появлению новых источников, прекращению старых, образованию грязевых сопок, газовых выбросов и др. Нарушения, образующиеся после землетрясений называютсяпостсейсмическими.

Явления. связанные с землетрясениями как на поверхности Земли, так и в ее недрах, называются сейсмическими явлениями. Наука, изучающая сейсмические явления, называется сейсмологией.

3. ФИЗИЧЕСКИЕ СВОЙСТВА МИНЕРАЛОВ

Хотя главные характеристики минералов (химический состав и внутренняя кристаллическая структура) устанавливаются на основе химических анализов и рентгеноструктурного метода, косвенно они отражаются в свойствах, которые легко наблюдаются или измеряются. Для диагностики большинства минералов достаточно определить их блеск, цвет, спайность, твердость, плотность.

Блеск (металлический, полуметаллический и неметаллический – алмазный, стеклянный, жирный, восковой, шелковистый, перламутровый и др.) обусловлен количеством отражаемого от поверхности минерала света и зависит от его показателя преломления. По прозрачности минералы разделяются на прозрачные, полупрозрачные, просвечивающие в тонких осколках и непрозрачные. Количественное определение светопреломления и светоотражения возможно только под микроскопом. Некоторые непрозрачные минералы сильно отражают свет и имеют металлический блеск. Это характерно для рудных минералов, например, галенита (минерал свинца), халькопирита и борнита (минералы меди), аргентита и акантита (минералы серебра). Большинство минералов поглощают или пропускают значительную часть падающего на них света и обладают неметаллическим блеском. Некоторые минералы имеют блеск, переходный от металлического к неметаллическому, который называется полуметаллическим.

Минералы с неметаллическим блеском обычно светлоокрашенные, некоторые из них прозрачны. Часто бывают прозрачными кварц, гипс и светлая слюда. Другие минералы (например, молочно-белый кварц), пропускающие свет, но сквозь которые нельзя четко различить предметы, называют просвечивающими. Минералы, содержащие металлы, отличаются от прочих по светопропусканию. Если свет проходит сквозь минерал, хотя бы в самых тонких краях зерен, то он, как правило, нерудный; если же свет не проходит, то он – рудный. Бывают, впрочем, и исключения: например, светлоокрашенный сфалерит (минерал цинка) или киноварь (минерал ртути) нередко прозрачны или просвечивают.

Минералы различаются по качественным характеристикам неметаллического блеска. Глина имеет тусклый землистый блеск. Кварц на гранях кристаллов или на поверхностях излома – стеклянный, тальк, разделяющийся на тонкие листочки по плоскостям спайности, – перламутровый. Яркий, сверкающий, как у алмаза, блеск называется алмазным.

Когда свет падает на минерал с неметаллическим блеском, то он частично отражается от поверхности минерала, а частично преломляется на этой границе. Каждое вещество характеризуется определенным показателем преломления. Поскольку этот показатель может быть измерен с высокой точностью, он является весьма полезным диагностическим признаком минералов.

Характер блеска зависит от показателя преломления, а оба они – от химического состава и кристаллической структуры минерала. В общем случае прозрачные минералы, содержащие атомы тяжелых металлов, отличаются сильным блеском и высоким показателем преломления. К этой группе относятся такие распространенные минералы, как англезит (сульфат свинца), касситерит (оксид олова) и титанит, или сфен (силикат кальция и титана). Минералы, состоящие из относительно легких элементов, также могут иметь сильный блеск и высокий показатель преломления, если их атомы плотно упакованы и удерживаются сильными химическими связями. Ярким примером является алмаз, состоящий только из одного легкого элемента углерода. В меньшей степени это справедливо и для минерала корунда (Al2O3), прозрачные цветные разновидности которого – рубин и сапфиры – являются драгоценными камнями. Хотя корунд состоит из легких атомов алюминия и кислорода, они так крепко связаны между собой, что минерал имеет довольно сильный блеск и относительно высокий показатель преломления.

Некоторые блески (жирный, восковой, матовый, шелковистый и др.) зависят от состояния поверхности минерала или от строения минерального агрегата; смоляной блеск характерен для многих аморфных веществ (в том числе минералов, содержащих радиоактивные элементы уран или торий).

Цвет- простой и удобный диагностический признак. В качестве примеров можно привести латунно-желтый пирит (FeS2), свинцово-серый галенит (PbS) и серебристо-белый арсенопирит (FeAsS2). У других рудных минералов с металлическим или полуметаллическим блеском характерный цвет может быть замаскирован игрой света в тонкой поверхностной пленке (побежалостью). Это свойственно большинству минералов меди, особенно борниту, который называют «павлиньей рудой» из-за его радужной сине-зеленой побежалости, быстро возникающей на свежем изломе. Однако другие медные минералы окрашены в хорошо всем знакомые цвета: малахит – в зеленый, азурит – в синий.

Некоторые неметаллические минералы безошибочно узнаются по цвету, обусловленному главным химическим элементом (желтому – серы и черному – темно-серому – графита и др.). Многие неметаллические минералы состоят из элементов, которые не обеспечивают им специфической окраски, но у них известны окрашенные разновидности, цвет которых обусловлен присутствием примесей химических элементов в малых количествах, не сопоставимых с интенсивностью вызываемой ими окраски. Такие элементы называют хромофорами; их ионы отличаются избирательным поглощением света. Например, густо-фиолетовый аметист обязан своей окраской ничтожной примеси железа в кварце, а густой зеленый цвет изумруда связан с небольшим содержанием хрома в берилле. Окраска обычно бесцветных минералов может появляться вследствие дефектов кристаллической структуры (обусловленных незаполненными позициями атомов в решетке или вхождением посторонних ионов), которые могут вызвать селективное поглощение некоторых длин волн в спектре белого света. Тогда минералы окрашиваются в дополнительные цвета. Рубины, сапфиры и александриты обязаны своей окраской именно таким световым эффектам.

Бесцветные минералы могут быть окрашены механическими включениями. Так, тонкая рассеянная вкрапленность гематита придает кварцу красный цвет, хлорита – зеленый. Молочный кварц замутнен газово-жидкими включениями. Хотя цвет минералов – одно из самых легко определяемых свойств при диагностике минералов, его надо использовать с осторожностью, так как он зависит от многих факторов.

Несмотря на изменчивость окраски многих минералов, цвет порошка минерала весьма постоянен, а потому является важным диагностическим признаком. Обычно цвет порошка минерала устанавливают по черте (т.н. «цвету черты»), которую оставляет минерал, если им провести по неглазурованной фарфоровой пластинке (бисквиту). Например, минерал флюорит бывает окрашен в разные цвета, но черта у него всегда белая.

Спайность – весьма совершенная, совершенная, средняя (ясная), несовершенная (неясная) и весьма несовершенная – выражается в способности минералов раскалываться по определённым направлениям. Излом (ровный ступенчатый, неровный, занозистый, раковистый и др.) характеризуют поверхности раскола минерала, произошедшего не по спайности. Например, кварц и турмалин, поверхность излома которых напоминает скол стекла, имеют раковистый излом. У других минералов излом может быть описан как шероховатый, неровный или занозистый. Для многих минералов характеристикой служит не излом, а спайность. Это означает, что они раскалываются по гладким плоскостям, непосредственно связанным с их кристаллической структурой. Силы связи между плоскостями кристаллической решетки могут быть различными в зависимости от кристаллографического направления. Если в каких-то направлениях они гораздо больше, чем в других, то минерал будет раскалываться поперек самой слабой связи. Так как спайность всегда параллельна атомным плоскостям, она может быть обозначена с указанием кристаллографических направлений. Например, галит (NaCl) имеет спайность по кубу, т.е. три взаимоперпендикулярных направления возможного раскола. Спайность характеризуется также легкостью проявления и качеством возникающей спайной поверхности. Слюда обладает весьма совершенной спайностью в одном направлении, т.е. легко расщепляется на очень тонкие листочки с гладкой блестящей поверхностью. У топаза спайность совершенная в одном направлении. Минералы могут иметь два, три, четыре или шесть направлений спайности, по которым они одинаково легко раскалываются, либо несколько направлений спайности разной степени. У некоторых минералов спайность вообще отсутствует. Поскольку спайность как проявление внутренней структуры минералов является их неизменным свойством, она служит важным диагностическим признаком.

Твердость – сопротивление, которое минерал оказывает при царапании. Твердость зависит от кристаллической структуры: чем прочнее связаны между собой атомы в структуре минерала, тем труднее его поцарапать. Тальк и графит – мягкие пластинчатые минералы, построенные из слоев атомов, связанных между собой очень слабыми силами. Они жирные на ощупь: при трении о кожу руки происходит соскальзывание отдельных тончайших слоев. Самый твердый минерал – алмаз, в котором атомы углерода так прочно связаны, что его можно поцарапать только другим алмазом. В начале 19 в. австрийский минералог Ф.Моос расположил 10 минералов в порядке возрастания их твердости. С тех пор они используются как эталоны относительной твердости минералов, т.н. шкала Мооса (табл. 1)

ШКАЛА ТВЕРДОСТИ МООСА

Плотность и Масса атомов химических элементов меняется от водорода (самый легкий) до урана (самый тяжелый). При прочих равных условиях масса вещества, состоящего из тяжелых атомов, больше, чем у вещества, состоящего из легких атомов. Например, два карбоната – арагонит и церуссит – имеют сходную внутреннюю структуру, но в состав арагонита входят легкие атомы кальция, а в состав церуссита – тяжелые атомы свинца. В результате масса церуссита превышает массу арагонита того же объема. Масса единицы объема минерала зависит также от плотности упаковки атомов. Кальцит, как и арагонит, представляет собой карбонат кальция, но в кальците атомы упакованы менее плотно, потому он имеет меньшую массу единицы объема, чем арагонит. Относительная масса, или плотность, зависит от химического состава и внутренней структуры. Плотность – это отношение массы вещества к массе того же объема воды при 4° С. Так, если масса минерала составляет 4 г, а масса того же объема воды – 1 г, то плотность минерала равна 4. В минералогии принято выражать плотность в г/см3.

Плотность – важный диагностический признак минералов, и ее нетрудно измерить. Сначала образец взвешивается в воздушной среде, а затем – в воде. Поскольку на образец, погруженный в воду, действует выталкивающая сила, направленная вверх, его вес там меньше, чем в воздухе. Потеря веса равна весу вытесненной воды. Таким образом, плотность определяется отношением массы образца на воздухе к потере его веса в воде.

Пироэлектричество. Некоторые минералы, например турмалин, каламин и др., при нагревании или охлаждении электризуются. Это явление можно наблюдать с помощью опыления охлаждающегося минерала смесью порошков серы и сурика. При этом сера покрывает положительно заряженные участки поверхности минерала, а сурик – участки с отрицательным зарядом.

Магнитность – это свойство некоторых минералов действовать на магнитную стрелку или притягиваться магнитом. Для определения магнитности используют магнитную стрелку, помещенную на остром штативе, или магнитную подковку, брусок. Очень удобно также пользоваться магнитной иглой или ножом.

При испытании на магнитность возможны три случая:

а) когда минерал в естественном виде («сам по себе») действует на магнитную стрелку,

б) когда минерал становится магнитным лишь после прокаливания в восстановительном пламени паяльной трубки

в) когда минерал ни до, ни после прокаливания в восстановительном пламени магнитности не проявляет. Для прокаливания восстановительном пламени нужно брать мелкие кусочки величиной 2-3 мм.

Свечение. Многие минералы, не светящиеся сами по себе, начинают светиться при некоторых специальных условиях.

Различают фосфоресценцию, люминесценцию, термолюминесценцию и триболюминесценцию минералов. Фосфоресценция-способность минерала светиться после воздействия на него теми или другими лучами (виллемит). Люминесценция – способность светиться в момент облучения (шеелит при облучении ультрафиолетовыми и катодными луча кальцит и др.). Термолюминесценция – свечение при нагревании (флюорит, апатит).

Триболюминесценция – свечение в момент царапания иглой или раскалывания (слюды, корунд).

Радиоактивность. Многие минералы, содержащие такие элементы как ниобий, тантал, цирконий, редкие земли, уран, торий часто имеют довольно значительную радиоактивность, легко обнаруживаемую даже бытовыми радиометрами, которая может служить важным диагностическим признаком.

Для проверки радиоактивности сначала измеряют и записывают величину фона, затем минерал подносят, возможно, ближе к детектору прибора. Увеличение показаний более чем на 10-15% может служить показателем радиоактивности минерала.

Электропроводность. Целый ряд минералов обладает значительной электропроводностью, которая позволяет их однозначно отличить от похожих минералов. Может проверяться обычным бытовым тестером.

ЭПЕЙРОГЕНИЧЕСКИЕ ДВИЖЕНИЯ ЗЕМНОЙ КОРЫ

Эпейрогенические движения – медленные вековые поднятия и опускания земной коры, не вызывающие изменения первичного залегания пластов. Эти вертикальные движения имеют колебательный характер и обратимы, т.е. поднятие может сменится опусканием. Среди этих движений различают:

Современные, которые зафиксированы в памяти человека и их можно измерить инструментально путем проведения повторного нивелирования. Скорость современных колебательных движений в среднем не превышает 1-2 см/год, а в горных районах она может достигать и 20 см/год.

Неотектонические движения – это движения за неоген-четвертичное время (25 млн. лет). Принципиально они ничем не отличаются от современных. Неотектонические движения зафиксированы в современном рельефе и главный метод их изучения – геоморфологический. Скорость их движения на порядок меньше, в горных районах – 1 см/год; на равнинах – 1 мм/год.

Древние медленные вертикальные движения зафиксированы в разрезах осадочных пород. Скорость древних колебательных движений по оценке ученых меньше 0.001 мм/год.

Орогенические движения происходят в двух направлениях – горизонтальном и вертикальном. Первое приводит к смятию пород и образованию складок и надвигов, т.е. к сокращению земной поверхности. Вертикальные движения приводят к поднятию области проявления складкобразования и возникновению нередко горных сооружений. Орогенические движения протекают значительно быстрее, чем колебательные.

Они сопровождаются активными эффузивным и интрузивным магматизмом, а также метаморфизмом. В последние десятилетия эти движения объясняют столкновением крупных литосферных плит, которые перемещаются в горизонтальном направлении по астеносферному слою верхней мантии.

ТИПЫ ТЕКТОНИЧЕСКИХ НАРУШЕНИЙ

Виды тектонических нарушений:

а – складчатые (пликатпвные) формы;

В большинстве случаев образование их связано с уплотнением или сжатием вещества Земли. Складчатые нарушения морфологически подразделяются на два основных типа: выпуклые и вогнутые. В случае горизонтального среза в ядре выпуклой складки располагаются более древние по возрасту пласты, а на крыльях – более молодые. Вогнутые изгибы, наоборот, имеют в ядре более молодые отложения. В складках выпуклые крылья обычно наклонены в стороны от осевой поверхности.

б – разрывные (дизъюнктивные) формы

Разрывными тектоническими нарушениями называют такие изменения, при которых нарушается сплошность (целостность) горных пород.

Разрывные нарушения разделяются на две группы: разрывы без смещения разделенных ими пород относительно друг друга и разрывы со смещением. Первые называются тектоническими трещинами, или диаклазами, вторые – параклазами

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

1. Белоусов В.В. Очерки истории геологии. У истоков науки о Земле (геология до конца ХVIII в.). – М., – 1993.

Вернадский В.И. Избранные труды по истории науки. – М.: Наука, – 1981.

Поваренных А.С., Оноприенко В.И. Минералогия: прошлое, настоящее, будущее. – Киев: Наукова Думка, – 1985.

Современные идеи теоретической геологии. – Л.: Недра, – 1984.

Хаин В.Е. Основные проблемы современной геологии (геология на пороге ХХI века). – М.: Научный мир, 2003..

Хаин В.Е., Рябухин А.Г. История и методология геологических наук. – М.: МГУ, – 1996.

Хэллем А. Великие геологические споры. М.: Мир,1985.

Эндогенные – это внутренние процессы; экзогенные – внешние, поверхностные, для них источник энергии – это энергия Солнца и сила тяжести (гравитационное поле Земли).

К эндогенным процессам относятся:

Магматизм (от слова магма) – процесс, с которым связано рождение, движение и превращение магмы в магматическую горную породу;

Тектоника (тектонические движения) – любые механические движения земной коры – поднятия, опускания, горизонтальные перемещения и т.д.;

Землетрясения – являются следствием тектонических движений, но обычно рассматриваются самостоятельно;

Метаморфизм – процессы, приводящие к изменению состава, строения горных пород внутри Земли при изменении физико-химических параметров (давление, температура и пр.).

К экзогенным процессам относятся процессы, протекающие на поверхности или вблизи нее, изменяющие облик Земли и связанные с деятельностью атмосферы, гидросферы и биосферы:

Выветривание (гипергенез);

Геологическая деятельность ветра;

Геологическая деятельность текучих вод;

Геологическая деятельность подземных вод;

Геологическая деятельность снега, льда, вечной мерзлоты;

Геологическая деятельность морей, озер, болот;

Геологическая деятельность человека.

Эндогенные процессы создают неровности поверхности Земли. Самые крупные из них создаются тектоническими движениями. При нисходящих движениях (опускании) участков земной коры возникают впадины крупных озер, морей, океанов. При восходящих движениях (поднятии) отдельных участков земной коры возникают горные поднятия, горные страны и целые континенты.

Экзогенные процессы разрушают приподнятые участки земной поверхности и стремятся заполнить возникающие впадины. Таким образом, рельеф Земли является ареной никогда не прекращающейся борьбы эндогенных и экзогенных сил, причем проявление, противоборство этих сил невозможны друг без друга. Такую неразрывную связь называют диалектической.

Денудация и пенепелнизация

Под денудацией подразумевается процесс разрушения пород на поверхности Земли, сопровождаемый удалением разрушаемой массы. Естественно денудация приводит к понижению приподнятых участков рельефа (рисунок 4).

Рисунок 4 – Схема понижения рельефа в процессе денудации: 1 – первоначальная поверхность, 2 – поверхность после денудации

В результате денудации воздействию экзогенных процессов и разрушению подвергаются все новые порции пород, ранее прикрытые от воздействия вышележащими массами.

На ограниченных территориях денудация протекает чаще всего как результат деятельности какого-либо из внешних факторов: речной эрозии, морской абразии и т.д. Обширные пространства понижаются под совокупным воздействием многих внешних геодинамических процессов. Денудация горных стран протекает тем быстрее, чем они выше, и может достигать скорости 5-6 см в год для наиболее высоких хребтов (Кавказ, Альпы). На равнинах скорость денудации много меньше (доли миллиметров в год), а местами сменяется накоплением осадков. Приблизительные расчеты показывают, что горные страны постепенно снижаются, когда денудация перебарывает тектоническое воздымание, и на их месте могут возникнуть холмистые равнины – пенеплены, как их принято называть, а необходимое для этого время составляет от 20 до 50 млн лет. Эти же расчеты показывают, что для полного разрушения континентов, при допущении прекращения действия тектонических сил, потребуется 200-250 млн лет. Разрушаться континенты могут до уровня океанических вод. Ниже этого уровня процессы денудации практически прекращаются: уровень океана принят в качестве предела денудации.

Самостоятельные – местные – уровни денудации могут существовать на континентах, как правило, это уровень крупных бессточных впадин (Каспийское, Аральское, Мертвое моря).

Плутонизм и вулканизм

Магматизмом называют явления, связанные с образованием, изменением состава и движением магмы из недр Земли к ее поверхности.

Магма представляет собой природный высокотемпературный расплав, образующийся в виде отдельных очагов в литосфере и верхней мантии (главным образом, в астеносфере). Основной причиной плавления вещества и возникновения магматических очагов в литосфере является повышение температуры. Подъем магмы и прорыв ее в вышележащие горизонты происходят вследствие так называемой инверсии плотностей, при которой внутри, литосферы появляются очаги менее плотного, но мобильного расплава. Таким образом, магматизм - это глубинный процесс, обусловленный тепловым и гравитационным полями Земли.

В зависимости от характера движения магмы различают магматизм интрузивный и эффузивный. При интрузивном магматизме (плутонизме) магма не достигает земной поверхности, а активно внедряется во вмещающие вышележащие породы, частично расплавляя их, и застывает в трещинах и полостях коры. При эффузивном магматизме (вулканизме) магма через подводящий канал достигает поверхности Земли, где образует вулканы различных типов, и застывает на поверхности. В обоих случаях при застывании расплава образуются магматические горные породы. Температуры магматических расплавов, находящихся внутри земной коры, судя по экспериментальным данным и результатам изучения минерального состава магматических пород, находятся в пределах 700-1100°С. Измеренные температуры магм, излившихся на поверхность, в большинстве случаев колеблются в интервале 900-1100°С, изредка достигая 1350 °С. Более высокая температура наземных расплавов обусловлена тем, что в них протекают процессы окисления под воздействием атмосферного кислорода.

С точки зрения химического состава магма представляет сложную многокомпонентную систему, образованную в основном кремнеземом SiO2 и веществами, химически эквивалентными силикатам Al, Na, K, Ca. Преобладающим компонентом магмы является кремнезем. В природе существует несколько типов магм, различающихся по химическому составу. Состав магм зависит от состава материала, за счет плавления которого они образуются. Однако при подъеме магмы происходит частичное плавление и растворение вмещающих пород земной коры, или их ассимиляция; при этом первичный ее состав меняется. Таким образом, состав магм изменяется в процессе как внедрения их в верхние горизонты коры, так и кристаллизации. На больших глубинах в магмах в растворенном состоянии присутствуют летучие компоненты - пары воды и газов (H2S, H2, CO2, HCl, и др.) В условиях высоких давлений их содержание может достигать 12 %. Они являются химически очень активными, подвижными веществами и удерживаются в магме только благодаря высокому внешнему давлению.

В процессе подъема магмы к поверхности, по мере снижения температур и давлений происходит распад системы на две фазы - расплав и газы. Если движение магмы медленное, ее кристаллизация начинается в процессе подъема, и тогда она превращается в трехфазную систему: газы, расплав и плавающие в нем кристаллы минералов. Дальнейшее охлаждение магмы приводит к переходу всего расплава в твердую фазу и к образованию магматической породы. При этом выделяются летучие компоненты, основная часть которых удаляется по трещинам, окружающим магматическую камеру, или непосредственно в атмосферу в случае излияния магмы на поверхность. В затвердевшей породе сохраняется лишь незначительная часть газовой фазы в виде мельчайших включений в минеральных зернах. Таким образом, состав исходной магмы определяет состав главных, породообразующих минералов сформировавшейся породы, но не является строго идентичным ему в отношении содержания летучих компонентов.