Решение систем тригонометрических уравнений с двумя переменными. Методы решения тригонометрических уравнений

В данном практическом уроке будут рассмотрены несколько типовых примеров, которые демонстрируют методы решения тригонометрических уравнений и их систем.

Данный урок поможет Вам подготовиться к одному из типов задания В5 и С1 .

Подготовка к ЕГЭ по математике

Эксперимент

Урок 10. Тригонометрические функции. Тригонометрические уравнения и их системы.

Практика

Конспект урока

Основную часть урока мы посвятим решению тригонометрических уравнений и систем, но начнем с заданий на свойства тригонометрических функций, которые с решением уравнений не связаны. Рассмотрим вычисление периода тригонометрических функций со сложным аргументом.

Задача №1 . Вычислить период функций а) ; б) .

Воспользуемся указанными в лекции формулами.

а) Для функции период . В нашем случае , т.е. .

б) Для функции период . У нас , т.к. аргумент можно представить не только разделенным на три, но и умноженным на . Остальные действия с функцией (умножение на , добавление 1) не влияет на аргумент, поэтому нас не интересуют.

Получаем, что

Ответ. а) ; б) .

Переходим к основной части нашей практики и начинаем решение тригонометрических уравнений. Для удобства разберем решение тех же примеров, которые мы упоминали в лекции, когда перечисляли основные виды уравнений.

Задача №2 . Решить уравнение: а) ; б) ; в) ; г) .

Для нахождения корней таких уравнений пользуемся формулами общих решений.

Для вычисления значений аркфункции пользуемся нечетностью арктангенса и таблицей значений тригонометрических функций, что мы подробно рассматривали на предыдущем уроке. Далее не будем отдельно останавливаться на этих действиях.

г) При решении уравнения хочется написать по общей формуле, что , но этого делать нельзя. Здесь принципиально важна проверка области значений косинуса, которая проверяется вначале решения уравнения.

Поскольку , что не лежит в области значений функции, следовательно, уравнение не имеет решений.

Важно не перепутать значение с табличным значением косинуса , будьте внимательны!

Замечание . Достаточно часто в задачах на решение тригонометрических уравнений и систем требуется указать не общее решение, демонстрирующее бесконечное семейство корней, а выбрать только несколько из них, которые лежат в определенном диапазоне значений. Давайте проделаем эти действия на примере ответа к пункту «в».

Дополнительная задача к пункту «в» . Указать количество корней уравнения , которые принадлежат промежутку и перечислить их.

Общее решение нам уже известно:

Для того чтобы указать корни, принадлежащие указанному промежутку, их необходимо по очереди выписать, подставляя конкретные значения параметра. Подставлять будем целые числа, начиная с , т.к. корни нас интересуют из диапазона, который близок к нулю.

При подстановке мы получим еще большее значение корня, поэтому нет смысла этого делать. Теперь подставим отрицательные значения:

Подставлять по тем же соображениям не имеет смысла. Следовательно, мы нашли единственный корень уравнения, который принадлежит указанному диапазону.

Ответ. ; указанному диапазону принадлежит одно значение корня уравнения.

Аналогичная постановка вопроса о поиске определенных значений корней уравнений может встречаться и в заданиях других типов, далее мы не будем тратить на это время. Поиск необходимых корней всегда будет выполняться аналогично. Иногда для этого изображают тригонометрическую окружность. Попробуйте сами нанести на окружность корни уравнений из пунктов «а» и «б», которые попадают в диапазон .

Задача №3 . Решить уравнение .

Воспользуемся методом нахождения корней с использованием тригонометрической окружности, как это было показано на лекции.

Наносим на окружность точки, соответствующие углам, при которых . Такой угол один.

Первое значение угла, соответствующего указанной точке - точка находится на луче, который является началом отсчета. Далее, чтобы попасть еще раз в эту же точку, но уже при другом значении угла, необходимо к первому найденному корню прибавить и получим следующий корень . Для получения следующего корня необходимо проделать ту же операцию и т.д.

Таким образом, можем указать общее решение, которое будет демонстрировать, что для получения всех корней уравнения к первому значению необходимо любое целое количество раз добавлять :

Напомним, что аналогичным способом решаются уравнения вида:

Задача №4 . Решить уравнение .

Наличие сложного аргумента не меняет того, что уравнение, по сути, является простейшим, и подход к решению сохраняется. Просто теперь в роли аргумента выступает . Его и пишем в формуле общего решения:

Задача №5 . Решить уравнение .

Самое главное, это не допустить типичную ошибку и не сократить обе стороны уравнения на , т.к. при этом мы потеряем корни уравнения, соответствующие . Грамотный подход к решению предполагает перенос всех выражений в одну сторону и вынесение общего множителя.

На этом этапе необходимо вспомнить, что если произведение равно нулю, то это возможно в том случае, если либо один из множителей равен нулю, либо другой. Таким образом, наше уравнение превращается в совокупность уравнений:

Первое уравнение решаем, как частный случай простейшего уравнения. Проделайте это самостоятельно, мы выпишем готовый результат. Во втором уравнении выполним действия, чтобы привести его к простейшему виду со сложным аргументом и решим по общей формуле корней.

Обратите внимание на такой нюанс - при записи общей формулы корней второго уравнения мы используем другой параметр «». Это связано с тем, что мы решаем совокупность независимых уравнений и в них не должно быть общих параметров. В результате получаем два независимых семейства решений.

Ответ. ; .

Задача №6 . Решить уравнение .

Для упрощения воспользуемся формулой преобразования произведения тригонометрических функций в сумму

Воспользуемся четностью косинуса и взаимоуничтожим одинаковое слагаемое в двух частях уравнения.

Перенесем все в одну сторону и воспользуемся формулой разности косинусов, чтобы получить произведение функций, которое будет равно нулю. Применим для этого формулу .

Cократим обе стороны уравнения на :

Мы свели уравнение к форме произведения, которая у нас получилась в предыдущем примере. Предлагаем вам самим дорешать его до конца. Укажем окончательный ответ.

В принципе, это уже окончательный ответ. Однако его можно записать компактнее в виде одного семейства решений, а не двух. В первом решении указаны все четверти частей , а во втором все половины частей , но половины входят в четверти, поскольку половина - это две четверти. Таким образом, второе семейство корней входит в первое, и итоговый ответ можно описать первым семейством решений.

Чтобы лучше разобраться в этих рассуждениях, попробуйте нанести полученные корни на тригонометрическую окружность.

Ответ. или .

Мы рассмотрели одно уравнение с использованием преобразований тригонометрических функций, однако их огромное множество, как и типов преобразований. Уравнение на использование универсальной тригонометрической подстановки, пример которой мы не приводили на позапрошлом уроке, мы рассмотрим после того, как разберем метод замены.

Задача №7 . Решить уравнение .

В данном случае необходимо сначала попробовать свести уравнение к использованию одной тригонометрической функции. Т.к. легко выражается через с использованием тригонометрической единицы, мы легко сведем уравнение к синусам.

Подставим выражение в наше уравнение:

Поскольку все сведено к одной функции можем выполнить замену: .

Получили квадратное уравнение, которое легко решить любыми удобными для вас способами, например, с использованием теоремы Виета легко получить, что:

Первое уравнение не имеет решений, т.к. значение синуса выходит за допустимую область .

Второе уравнение предлагаем вам решить самостоятельно, т.к. это уже рассмотренный нами тип частных случаев простейших уравнений. Выпишем его корни:

Ответ..

Задача №8 . Решить уравнение .

В указанном уравнении сразу не видны способы решения, которые мы уже рассмотрели. В таких случаях надо попробовать применить формулы универсальной тригонометрической подстановки, которые помогут привести уравнение к одной функции.

Воспользуемся формулами: и , которые приведут все уравнение к .

Сейчас видно, что можно выполнить замену .

Сложим дроби и умножим обе части уравнения на знаменатель, т.к. он , не равен нулю.

Мы привели уравнение к уже рассмотренной ранее форме, т.е. к произведению множителей, которое равно нулю.

Выполним обратную подстановку:

Оба полученных семейства решений можно легко объединить в одно:

Ответ..

Задача №9 . Решите уравнение . В ответ укажите только корни, кратные .

Указанное уравнение усложняется после приведения к синусам или косинусам, как это хочется сделать с помощью формулы тригонометрической единицы. Поэтому используется другой способ.

Указанное уравнение мы назвали однородным, так называют уравнения, в которых после перестановки местами неизвестных функций или переменных ничего не изменится. Переставьте местами синус с косинусом, и вы убедитесь, что это наш случай.

Решают однородные уравнения делением обеих частей на старшую степень функции. В нашем случае это или или . Выбираем ту, которая нам больше нравится, и делим на нее обе стороны уравнения. Возьмем, например, для этого . При этом обязательно необходимо проверить, не потеряем ли мы при таком делении корни, соответствующие , т.е. . Для этого сначала подставим в исходное уравнение.

Поскольку мы получили не тождество, то не будут соответствовать корни нашего уравнения.

Теперь можем смело делить на :

Мы свели уравнение к замене, а такой метод решения уже был рассмотрен. Как говорится «выливаем воду из чайника» и сводим задачу к уже известной. Дорешайте далее сами. Мы укажем окончательный ответ:

Поскольку в условии задачи от нас требуют указать только корни кратные , то в ответ запишем только первое семейство решений.

Задача №10 . Решить уравнение .

Указанное уравнение удивляет тем, что в нем две неизвестные, а как мы знаем, решить в общем случае такое уравнение нельзя. Другая проблема заключается в том, что это уравнение принципиально отличается от всех рассмотренных ранее, т.к. неизвестная в нем находится не только в аргументе тригонометрической функции.

Чтобы его решить, обратим внимание на свойства функций, которые приравниваются слева и справа. Конкретно нас интересует, какими значениями ограничены эти функции.

Для косинуса нам известна область значений:

Для квадратичной функции:

Из этого можно сделать вывод, что эти выражения могут иметь только одно общее значение, когда каждое из них равно 1. Получаем систему уравнений:

Оба уравнения получаются независимыми и содержат по одной переменной, поэтому легко решаются уже известными нам методами.

Конечно же указанный способ неочевиден, а задача относится к заданиям повышенной сложности. Данный метод иногда называют «мини-макс», т.к. используется равенство минимального и максимального значения функций.

Теперь рассмотрим отдельно методы решения систем тригонометрических уравнений. Методы их решений стандартны, просто мы еще будем пользоваться формулами преобразований тригонометрических функций. Разберем самые часто встречающиеся типы таких систем.

Задача №11 . Решить систему уравнений .

Решаем методом подстановки, выражаем из более простого линейного уравнения, например, и подставляем его во второе уравнение:

Во втором уравнении пользуемся тем, что является периодом синуса, т.е. его можно убрать, и синус нечетная функция, т.е. из нее выносится минус.

По формуле сложения гармонических колебаний приводим к одной тригонометрической функции второе уравнение. Попробуйте выполнить эти преобразования самостоятельно.

Подставим полученное решение в выражение для :

В данном случае мы используем один и тот же параметр для обоих семейств решений, т.к. они зависимы друг от друга.

Системы из простейших тригонометрических уравнений.

Задача №12 . Решить систему уравнений .

Оба уравнения в системе являются частными случаями простейших уравнений, мы умеем их решать, и система быстро сводится к линейной.

Параметры в обоих уравнениях различны, т.к. мы решили уравнения независимо друг от друга и переменные еще не выражались одна через другую.

Теперь решаем линейную систему методом подстановки или сложения, как вам больше нравится, проделайте эти действия самостоятельно. Укажем конечный результат.

Обратите внимание на запись решения системы, когда переменные зависят одновременно от двух параметров. Для того чтобы выписать численные значения корней в таком случае подставляются по очереди все целые значения параметров , которые не зависят друг от друга.

В этой практической части урока мы с вами рассмотрели несколько типовых примеров, в которых продемонстрировали методы решения тригонометрических уравнений и их систем.


Готовые работы

ДИПЛОМНЫЕ РАБОТЫ

Многое уже позади и теперь ты - выпускник, если, конечно, вовремя напишешь дипломную работу. Но жизнь - такая штука, что только сейчас тебе становится понятно, что, перестав быть студентом, ты потеряешь все студенческие радости, многие из которых, ты так и не попробовал, всё откладывая и откладывая на потом. И теперь, вместо того, чтобы навёрстывать упущенное, ты корпишь над дипломной работой? Есть отличный выход: скачать нужную тебе дипломную работу с нашего сайта - и у тебя мигом появится масса свободного времени!
Дипломные работы успешно защищены в ведущих Университетах РК.
Стоимость работы от 20 000 тенге

КУРСОВЫЕ РАБОТЫ

Курсовой проект - это первая серьезная практическая работа. Именно с написания курсовой начинается подготовка к разработке дипломных проектов. Если студент научиться правильно излагать содержание темы в курсовом проекте и грамотно его оформлять, то в последующем у него не возникнет проблем ни с написанием отчетов, ни с составлением дипломных работ, ни с выполнением других практических заданий. Чтобы оказать помощь студентам в написании этого типа студенческой работы и разъяснить возникающие по ходу ее составления вопросы, собственно говоря, и был создан данный информационный раздел.
Стоимость работы от 2 500 тенге

МАГИСТЕРСКИЕ ДИССЕРТАЦИИ

В настоящее время в высших учебных заведениях Казахстана и стран СНГ очень распространена ступень высшего профессионального образования, которая следует после бакалавриата - магистратура. В магистратуре обучаются с целью получения диплома магистра, признаваемого в большинстве стран мира больше, чем диплом бакалавра, а также признаётся зарубежными работодателями. Итогом обучения в магистратуре является защита магистерской диссертации.
Мы предоставим Вам актуальный аналитический и текстовый материал, в стоимость включены 2 научные статьи и автореферат.
Стоимость работы от 35 000 тенге

ОТЧЕТЫ ПО ПРАКТИКЕ

После прохождения любого типа студенческой практики (учебной, производственной, преддипломной) требуется составить отчёт. Этот документ будет подтверждением практической работы студента и основой формирования оценки за практику. Обычно, чтобы составить отчёт по практике, требуется собрать и проанализировать информацию о предприятии, рассмотреть структуру и распорядок работы организации, в которой проходится практика, составить календарный план и описать свою практическую деятельность.
Мы поможет написать отчёт о прохождении практики с учетом специфики деятельности конкретного предприятия.

Решение тригонометрических уравнений и систем тригонометрических уравнений основывается на решении простейших тригонометрических уравнений.

Напомним основные формулы для решения простейших тригонометрических уравнений.

Решение уравнений вида sin(x) = a.

При |a|< = 1 x = (-1)^k *arcsin(a) +π*k, где k принадлежит Z.

При |a|>1 решений не существует.

Решение уравнений вида cos(x) = a.

При |a|< = 1 x = ±arccos(a) +2*π*k, где k принадлежит Z.

При |a|>1 решений не существует.

Решение уравнений вида tg(x) = a.

x = arctg(a) + π*k, где k принадлежит Z.

Решение уравнений вида ctg(x) = a.

x = arcctg(a)+ π*k, где k принадлежит Z.

Некоторые частые случаи:

sin(x) =1; x = π/2 +2* π*k, где k принадлежит Z.

sin(x) = 0; x = π*k, где k принадлежит Z.

sin(x) = -1; x = - π/2 +2* π*k, где k принадлежит Z.

cos(x) = 1; x = 2* π*k, где k принадлежит Z.

cos(x) = 0; x= π/2 + π*k, где k принадлежит Z.

cos(x) = -1; x = π+2* π*k, где k принадлежит Z.

Рассмотрим несколько примеров:

Пример 1. Решить тригонометрическое уравнение 2*(sin(x))^2 + sin(x) -1 = 0.

Уравнения такого вида решаются сведение к квадратному уравнению заменой переменной.

Пусть у = sin(x). Тогда получаем,

2*y^2 + y - 1 = 0.

Решаем полученное увадратное уравнение одним из известных способов.

y1 = 1/2, y2 = -1.

Следовательно, получаем два простейших тригонометрических уравнения которые решаются по формулам, указанным выше.

sin(x) = 1/2, x = ((-1)^k)*arcsin(1/2) + pi*k = ((-1)^k)*pi/6 + pi*k, длю любого целого k.

sin(x) = -1, x = - pi/2 +2* pi*n, где n принадлежит Z.

Пример 2. Решить уравнение 6*(sin(x))^2 + 5*cos(x) – 2 = 0.

По основному тригонометрическому тождеству заменяем (sin(x))^2 на 1 - (cos(x))^2

Получаем квадратное уравнение относительно cos(x):

6*(cos(x))^2 – 5*cos(x) - 4 = 0.

Вводим замену y=cos(x).

6*y^2 - 5*y - 4 = 0.

Решаем полученное квадратное уравнение y1 = -1/2, y2 = 1(1/3).

Так как y = cos(x), а косинус не может быть больше единицы, получаем одно простейшее тригонометрическое уравнение.

x = ±2*pi/3+2*pi*k, при любом целом k.

Пример 3. tg(x) + 2*ctg(x) = 3.

Введем переменную y = tg(x). Тогда 1/y = ctg(x). Получаем

Умножаем на y не равное нулю, получаем квадратное уравнение.

y^2 – 3*y + 2 = 0.

Решаем его:

tg(x) = 2, x = arctg(2)+pi*k, для любого целого k.

tg(x) = 1, x = arctg(1) + pi*k, pi/4 +pi*k, для любого целого k.

Пример 4. 3*(sin(x))^2 – 4*sin(x)*cos(x) + (cos(x))^2 = 0.

Это уравнение сводится к квадратному делением либо на (cos(x))^2, либо на (sin(x))^2. При делении на (cos(x)^2 получим

3*(tg(x))^2 – 4*tg(x) +1 = 0.

tg(x) = 1, x = pi/4+pi*n, для любого целого n

tg(x) = 1/3, x = arctg(1/3) + pi*k, для любого целого k.

Пример 4. Решить систему уравнений

{ sin(x) = 2*sin(y)

Из пергового уравнения выразим y,

Тогда получим, 2*sin(y) = 2*sin(x-5*pi/3) = 2*(sin(x)*cos(5*pi/3) - cos(x)*sin(5*pi/3)) = 2*(sin(x)*(1/2) –((√3)/2)*cos(x)) = sinx + √3*cos(x).

Здравствуйте, Дорогие друзья! Сегодня мы рассмотрим задание из части С. Это система из двух уравнений. Уравнения довольно своеобразны. Здесь и синус, и косинус, да ещё и корни имеются. Необходимо умение решать квадратные и , простейшие . В представленном задании их подробные решения не представлены, это вы уже должны уметь делать. По указанным ссылкам можете посмотреть соответствующую теорию и практические задания.

Основная трудность в подобных примерах заключается в том, что необходимо полученные решения сопоставлять с найденной областью определения, здесь легко можно допустить ошибку из-за невнимательности.

Решением системы всегда является пара(ры) чисел х и у, записывается как (х;у). Обязательно после того как получили ответ делайте проверку. Для вас представлено три способа, нет, не способа, а три пути рассуждения, которыми можно пойти. Лично мне наиболее близок третий. Приступим:

Решите систему уравнений:

ПЕРВЫЙ ПУТЬ!

Найдём область определения уравнения. Известно, что подкоренное выражение имеет неотрицательное значение:

Рассмотрим первое уравнение:

1. Оно равно нулю при х = 2 или при х = 4, но 4 радиана не принадлежит определения выражения (3).

*Угол в 4 радиана (229,188 0) лежит в третьей четверти, в ней значение синуса отрицательно. Поэтому

остаётся только корень х = 2.

Рассмотрим второе уравнении при х = 2.

При этом значении х выражение 2 – y – у 2 должно быть равно нулю, так как

Решим 2 – y – у 2 = 0, получим y = – 2 или y = 1.

Отметим, что при y = – 2 корень из cos y не имеет решения.

*Угол в –2 радиана (– 114,549 0) лежит в третьей четверти, а в ней значение косинуса отрицательно.

Поэтому остаётся только y = 1.

Таким образом, решением системы будет пара (2;1).

2. Первое уравнение так же равно нулю при cos y = 0, то есть при

Но учитывая найденную область определения (2), получим:

Рассмотрим второе уравнение при этом у.

Выражение 2 – y – у 2 при у = – Пи/2 не равно нулю, значит для того, чтобы оно имело решение должно выполнятся условие:

Решаем:

Учитывая найденную область определения (1) получаем, что

Таким образом, решением системы является ещё одна пара:

ВТОРОЙ ПУТЬ!

Найдём область определения для выражения:

Известно, что выражение под корнем имеет неотрицательное значение.
Решая неравенство 6х – х 2 + 8 ≥ 0, получим 2 ≤ х ≤ 4 (2 и 4 это радианы).

Рассмотрим Случай 1:

Пусть х = 2 или х = 4.

Если х = 4, то sin x < 0. Если х = 2, то sin x > 0.

Учитывая то, что sin x ≠ 0, получается, что в этом случае во втором уравнении системы 2 – y – у 2 = 0.

Решая уравнение получим, что y = – 2 или y = 1.

Анализируя полученные значения можем сказать, что х = 4 и y = – 2 не является корнями, так как получим sin x < 0 и cos y < 0 соответственно, а выражение стоящее под корнем должно быть ≥ 0 (то есть числом неотрицательным).

Видно, что х = 2 и y = 1 входят область определения.

Таким образом, решением является пара (2;1).

Рассмотрим Случай 2:

Пусть теперь 2 < х < 4, тогда 6х – х 2 + 8 > 0. Исходя из этого можем сделать вывод, что в первом уравнении cos y должен быть равен нулю.

Решаем уравнение, получим:

Во втором уравнении при нахождении области определения выражения:

Получим:

2 – y – у 2 ≥ 0

– 2 ≤ у ≤ 1

Из всех решений уравнения cos y = 0 этому условию удовлетворяет только:

При данном значении у, выражение 2 – y – у 2 ≠ 0. Следовательно, во втором уравнении sin x будет равен нулю, получим:

Из всех решений этого уравнения интервалу 2 < х < 4 принадлежит только

Значит решением системы будет ущё пара:

*Область определения сразу для всех выражений в системе находить не стали, рассмотрели выражение из первого уравнения (2 случая) и далее уже по ходу определяли соответствие найденных решений с установленной областью определения. На мой взгляд не очень удобно, как-то путано получается.

ТРЕТИЙ ПУТЬ!

Он схож с первым, но есть отличия. Также сначала находится область определения для выражений. Затем отдельно решается первое и второе уравнение, далее находится решение системы.

Найдём область определения. Известно, что подкоренное выражение имеет неотрицательное значение:

Решая неравенство 6х – х 2 + 8 ≥ 0 получим 2 ≤ х ≤ 4 (1).

Величины 2 и 4 это радианы, 1 радиан как мы знаем ≈ 57,297 0

В градусах приближённо можем записать 114,549 0 ≤ х ≤ 229,188 0 .

Решая неравенство 2 – y – у 2 ≥ 0 получим – 2 ≤ у ≤ 1 (2).

В градусах можем записать – 114,549 0 ≤ у ≤ 57,297 0 .

Решая неравенство sin x ≥ 0 получим, что

Решая неравенство cos y ≥ 0 получим, что

Известно, что произведение равно нулю тогда, когда один из множителей равен нулю (и другие при этом не теряют смысла).

Рассмотрим первое уравнение:

Значит

Решением cos y = 0 является:

Решением 6х – х 2 + 8 = 0 являются х = 2 и х = 4.

Рассмотрим второе уравнение:

Значит

Решением sin x = 0 является:

Решением уравнения 2 – y – у 2 = 0 будут y = – 2 или y = 1.

Теперь учитывая область определения проанализируем

полученные значения:

Так как 114,549 0 ≤ х ≤ 229,188 0 , то данному отрезку принадлежит только одно решение уравнения sin x = 0, это x = Пи.

Так как – 114,549 0 ≤ у ≤ 57,297 0 , то данному отрезку принадлежит только одно решение уравнения cos y = 0, это

Рассмотрим корни х = 2 и х = 4.

Верно!

Таким образом, решением системы будут две пары чисел:

*Здесь учитывая найденную область определения мы исключили все полученные значения, не принадлежащие ей и далее перебрали все варианты возможных пар. Далее проверили, какие из них являются решением системы.

Рекомендую сразу в самом начале решения уравнений, неравенств, их систем, если имеются корни, логарифмы, тригонометрические функции, обязательно находить область определения. Есть, конечно, такие примеры, где проще бывает сразу решить, а потом просто проверить решение, но таких относительное меньшинство.

Вот и всё. Успеха Вам!