Простейшие тригонометрические неравенства sin примеры. Решение простейших тригонометрических неравенств

Неравенства, содержащие тригонометрические функции, при решении сводятся к простейшим неравенствам вида cos(t)>a, sint(t)=a и подобным. И уже простейшие неравенства решаются. Рассмотрим на различных примерах способы решения простейших тригонометрических неравенств.

Пример 1 . Решить неравенство sin(t) > = -1/2.

Рисуем единичную окружность. Так как sin(t) по определению - это координата y, отмечаем на оси Оу точку у =-1/2. Проводим через неё прямую, параллельную оси Ох. В местах пересечения прямой с графиком единичной окружности отмечаем точки Pt1 и Pt2. Соединяем двум отрезками начало координат с точками Pt1 и Pt2.

Решением данного неравенства будут все точки единичной окружности расположенные выше данных точек. Другими словами решением будет являться дуга l.. Теперь необходимо указать условия, при которых произвольная точка будет принадлежать дуге l.

Pt1 лежит в правой полуокружности, её ордината равна -1/2, тогда t1=arcsin(-1/2) = - pi/6. Для описания точки Pt1 можно записать следующую формулу:
t2 = pi - arcsin(-1/2) = 7*pi/6. В итоге получаем для t следующее неравенство:

Мы сохраняем знаки неравенств. А так как функция синус функция периодичная, значит решения будут повторяться через каждые 2*pi. Это условие добавляем к полученному неравенству для t и записываем ответ.

Ответ: -pi/6+2*pi*n < = t < = 7*pi/6 + 2*pi*n, при любом целом n.

Пример 2. Решить неравенство cos(t) <1/2.

Нарисуем единичную окружность. Так как согласно определению cos(t) это координата х, отмечаем на грфике на оси Ох точку x = 1/2.
Проводим через эту точку прямую, параллельную оси Оу. В местах пересечения прямой с графиком единичной окружности отмечаем точки Pt1 и Pt2. Соединяем двум отрезками начало координат с точками Pt1 и Pt2.

Решениями будут все точки единичной окружности, которые принадлежать дуге l.. Найдем точки t1 и t2.

t1 = arccos(1/2) = pi/3.

t2 = 2*pi - arccos(1/2) = 2*pi-pi/3 = 5*pi/6.

Получили неравенство для t: pi/3

Так как косинус - это функция периодичная, то решения будут повторяться через каждые 2*pi. Это условие добавляем к полученному неравенству для t и записываем ответ.

Ответ: pi/3+2*pi*n

Пример 3. Решить неравенство tg(t) < = 1.

Период тангенса равняется pi. Найдем решения, которые принадлежат промежутку (-pi/2;pi/2) правая полуокружность. Далее воспользовавшись периодичностью тангенса, запишем все решения данного неравенства. Нарисуем единичную окружность и отметим на ней линию тангенсов.

Если t будет являться решение неравенства, то ордината точки Т = tg(t) должна быть меньше или равна 1. Множество таких точек будет составлять луч АТ. Множество точек Pt, которые будут соответствовать точкам этого луча - дуга l. Причем, точка P(-pi/2) не принадлежит этой дуге.

Большинство студентов тригонометрические неравенства недолюбливают. А зря. Как говаривал один персонаж,

“Вы просто не умеете их готовить”

Так как же “готовить” и с чем подавать неравенство с синусом мы разберёмся в этой статье. Решать мы будем самым простым способом – с помощью единичной окружности.

Итак, перво-наперво нам потребуется следующий алгоритм.

Алгоритм решения неравенств с синусом:

  1. на оси синуса откладываем число $a$ и проводим прямую параллельно оси косинусов до пересечения с окружностью;
  2. точки пересечения этой прямой с окружностью будут закрашенными, если неравенство нестрогое, и не закрашенными, если неравенство строгое;
  3. область решения неравенства будет находится выше прямой и до окружности, если неравенство содержит знак “$>$”, и ниже прямой и до окружности, если неравенство содержит знак “$<$”;
  4. для нахождения точек пересечения, решаем тригонометрическое уравнение $\sin{x}=a$, получаем $x=(-1)^{n}\arcsin{a} + \pi n$;
  5. полагая $n=0$, мы находим первую точку пересечения (она находится или в первой, или в четвёртой четверти);
  6. для нахождения второй точки, смотрим, в каком направлении мы идём по области ко второй точке пересечения: если в положительном направлении, то следует брать $n=1$, а, если в отрицательном, то $n=-1$;
  7. в ответ выписывается промежуток от меньшей точки пересечения $+ 2\pi n$ до большей $+ 2\pi n$.

Ограничение алгоритма

Важно: д анный алгоритм не работает для неравенств вида $\sin{x} > 1; \ \sin{x} \geq 1, \ \sin{x} < -1, \ \sin{x} \leq -1$. В строгом случае эти неравенства не имеют решений, а в нестрогом – решение сводится к решению уравнения $\sin{x} = 1$ или $\sin{x} = -1$.

Частные случаи при решении неравенства с синусом

Важно отметить также следующие случаи, которые гораздо удобнее решить логически, не используя вышеуказанный алгоритм.

Частный случай 1. Решить неравенство:

$\sin{x} \leq 1.$

В силу того, что область значения тригонометрической функции $y=\sin{x}$ не больше по модулю $1$, то левая часть неравенства при любом $x$ из области определения (а область определения синуса – все действительные числа) не больше $1$. А, значит, в ответ мы записываем: $x \in R$.

Следствие:

$\sin{x} \geq -1.$

Частный случай 2. Решить неравенство:

$\sin{x} < 1.$

Применяя аналогичные частному случаю 1 рассуждения, получим, что левая часть неравенства меньше $1$ для всех $x \in R$, кроме точек, являющихся решением уравнения $\sin{x} = 1$. Решая это уравнение, будем иметь:

$x = (-1)^{n}\arcsin{1}+ \pi n = (-1)^{n}\frac{\pi}{2} + \pi n.$

А, значит, в ответ мы записываем: $x \in R \backslash \left\{(-1)^{n}\frac{\pi}{2} + \pi n\right\}$.

Следствие: аналогично решается и неравенство

$\sin{x} > -1.$

Примеры решения неравенств с помощью алгоритма.

Пример 1: Решить неравенство:

$\sin{x} \geq \frac{1}{2}.$

  1. Отметим на оси синусов координату $\frac{1}{2}$.
  2. Проведём прямую параллельно оси косинусов и проходящую через эту точку.
  3. Отметим точки пересечения. Они будут закрашенными, так как неравенство нестрогое.
  4. Знак неравенства $\geq$, а значит закрашиваем область выше прямой, т.е. меньший полукруг.
  5. Находим первую точку пересечения. Для этого неравенство превращаем в равенство и решаем его: $\sin{x}=\frac{1}{2} \ \Rightarrow \ x=(-1)^{n}\arcsin{\frac{1}{2}}+\pi n =(-1)^{n}\frac{\pi}{6} + \pi n$. Полагаем далее $n=0$ и находим первую точку пересечения: $x_{1}=\frac{\pi}{6}$.
  6. Находим вторую точку. Наша область идёт в положительном направлении от первой точки, значит $n$ полагаем равным $1$: $x_{2}=(-1)^{1}\frac{\pi}{6} + \pi \cdot 1 = \pi – \frac{\pi}{6} = \frac{5\pi}{6}$.

Таким образом, решение примет вид:

$x \in \left[\frac{\pi}{6} + 2\pi n; \frac{5\pi}{6} + 2 \pi n\right], \ n \in Z.$

Пример 2: Решить неравенство:

$\sin{x} < -\frac{1}{2}$

Отметим на оси синусов координату $- \frac{1}{2}$ и проведём прямую параллельно оси косинусов и проходящую через эту точку. Отметим точки пересечения. Они будут не закрашенными, так как неравенство строгое. Знак неравенства $<$, а, значит, закрашиваем область ниже прямой, т.е. меньший полукруг. Неравенство превращаем в равенство и решаем его:

$\sin{x}=-\frac{1}{2}$

$x=(-1)^{n}\arcsin{\left(-\frac{1}{2}\right)}+ \pi n =(-1)^{n+1}\frac{\pi}{6} + \pi n$.

Полагая далее $n=0$, находим первую точку пересечения: $x_{1}=-\frac{\pi}{6}$. Наша область идёт в отрицательном направлении от первой точки, значит $n$ полагаем равным $-1$: $x_{2}=(-1)^{-1+1}\frac{\pi}{6} + \pi \cdot (-1) = -\pi + \frac{\pi}{6} = -\frac{5\pi}{6}$.

Итак, решением этого неравенства будет промежуток:

$x \in \left(-\frac{5\pi}{6} + 2\pi n; -\frac{\pi}{6} + 2 \pi n\right), \ n \in Z.$

Пример 3: Решить неравенство:

$1 – 2\sin{\left(\frac{x}{4}+\frac{\pi}{6}\right)} \leq 0.$

Этот пример решать сразу с помощью алгоритма нельзя. Для начала его надо преобразовать. Делаем в точности так, как делали бы с уравнением, но не забываем про знак. Деление или умножение на отрицательное число меняет его на противоположный!

Итак, перенесём всё, что не содержит тригонометрическую функцию в правую часть. Получим:

$- 2\sin{\left(\frac{x}{4}+\frac{\pi}{6}\right)} \leq -1.$

Разделим левую и правую часть на $-2$ (не забываем про знак!). Будем иметь:

$\sin{\left(\frac{x}{4}+\frac{\pi}{6}\right)} \geq \frac{1}{2}.$

Опять получилось неравенство, которое мы не можем решить с помощью алгоритма. Но здесь уже достаточно сделать замену переменной:

$t=\frac{x}{4}+\frac{\pi}{6}.$

Получаем тригонометрическое неравенство, которое можно решить с помощью алгоритма:

$\sin{t} \geq \frac{1}{2}.$

Это неравенство было решено в примере 1, поэтому позаимствуем оттуда ответ:

$t \in \left[\frac{\pi}{6} + 2\pi n; \frac{5\pi}{6} + 2 \pi n\right].$

Однако, решение ещё не закончилось. Нам нужно вернуться к исходной переменной.

$(\frac{x}{4}+\frac{\pi}{6}) \in \left[\frac{\pi}{6} + 2\pi n; \frac{5\pi}{6} + 2 \pi n\right].$

Представим промежуток в виде системы:

$\left\{\begin{array}{c} \frac{x}{4}+\frac{\pi}{6} \geq \frac{\pi}{6} + 2\pi n, \\ \frac{x}{4}+\frac{\pi}{6} \leq \frac{5\pi}{6} + 2 \pi n. \end{array} \right.$

В левых частях системы стоит выражение ($\frac{x}{4}+\frac{\pi}{6}$), которое принадлежит промежутку. За первое неравенство отвечает левая граница промежутка, а за второе – правая. Причём скобки играют немаловажную роль: если скобка квадратная, то неравенство будет нестрогим, а если круглая, то строгим. наша задача получить слева $x$ в обоих неравенствах .

Перенесём $\frac{\pi}{6}$ из левой части в правые, получим:

$\left\{\begin{array}{c} \frac{x}{4} \geq \frac{\pi}{6} + 2\pi n -\frac{\pi}{6}, \\ \frac{x}{4} \leq \frac{5\pi}{6} + 2 \pi n – \frac{\pi}{6}. \end{array} \right.$

Упрощая, будем иметь:

$\left\{\begin{array}{c} \frac{x}{4} \geq 2\pi n, \\ \frac{x}{4} \leq \frac{2\pi}{3} + 2 \pi n. \end{array} \right.$

Умножая левые и правые части на $4$, получим:

$\left\{\begin{array}{c} x \geq 8\pi n, \\ x \leq \frac{8\pi}{3} + 8 \pi n. \end{array} \right.$

Собирая систему в промежуток, получим ответ:

$x \in \left[ 8\pi n; \frac{8\pi}{3} + 8 \pi n\right], \ n \in Z.$

Рассмотрим решение тригонометрических неравенств вида tgx>a и tgx

Для решения нам потребуется чертеж единичной окружности и . Радиус единичной окружности равен 1, поэтому, откладывая на линии тангенсов отрезки, длина которых равна радиусу, получаем соответственно точки, в которых тангенс равен 1, 2, 3 и т.д., а вниз — -1,-2,-3 и т.д.

На линии тангенсов значениям тангенсов, большим a, соответствует часть, расположенная выше точки а. Заштриховываем соответствующий луч. Теперь проводим прямую через точку О — начало отсчета- и точку а на линии тангенсов. Она пересекает окружность в точке arctg a. Соответственно, на окружности решению неравенства tgx>a соответствует дуга от точки arctg a до п/2. Чтобы учесть все решения (а их с учетом периодичности тангенса — бесконечное множество), к каждому концу интервала прибавляем пn, где n — целое число (n принадлежит Z).

Для решения неравенства tgx>a вполне достаточно полуокружности от -п/2 до п/2. Но если требуется найти, к примеру, решение системы неравенств с тангенсом и синусом, то нужна вся окружность.

Если неравенство нестрогое, точку с arctg a включаем в ответ (на рисунке ее заштриховываем, в ответ записываем с квадратной скобкой). Точка п/2 в ответ никогда не включается, поскольку не входит в область определения тангенса (точка выколотая, скобка круглая).

Чтобы решить неравенство tgx>-a, рассуждаем так же как и для неравенства tgx>a. Поскольку arctg (-a)=-arctg a, только этим и отличается ответ.

В этом случае решению неравенства tgx

Решение неравенства tgx<-a аналогично решению неравенства tgx

Рассмотрим конкретный пример решения неравенства с тангенсом.

Решить неравенство tgx<-1

Таким образом, решение неравенства tgx<-1 есть открытый промежуток (-п/2+пn; -п/4+пn).

Неравенства – это соотношения вида a › b, где a и b – есть выражения, содержащие как минимум одну переменную. Неравенства могут быть строгими — ‹, › и нестрогими — ≥, ≤.

Тригонометрические неравенства представляют собой выражения вида: F(x) › a, F(x) ‹ a, F(x) ≤ a, F(x) ≥ a, в которых F(x) представлено одной или несколькими тригонометрическими функциями.

Примером простейшего тригонометрического неравенства является: sin x ‹ 1/2. Решать подобные задачи принято графически, для этого разработаны два способа.

Способ 1 — Решение неравенств с помощью построения графика функции

Чтобы найти промежуток, удовлетворяющий условиям неравенство sin x ‹ 1/2, необходимо выполнить следующие действия:

  1. На координатной оси построить синусоиду y = sin x.
  2. На той же оси начертить график числового аргумента неравенства, т. е. прямую, проходящую через точку ½ ординаты ОY.
  3. Отметить точки пересечения двух графиков.
  4. Заштриховать отрезок являющийся, решением примера.

Когда в выражении присутствуют строгие знаки, точки пересечения не являются решениями. Так как наименьший положительный период синусоиды равен 2π, то запишем ответ следующим образом:

Если знаки выражения нестрогие, то интервал решений необходимо заключить в квадратные скобки — . Ответ задачи можно также записать в виде очередного неравенства:

Способ 2 — Решение тригонометрических неравенств с помощью единичной окружности

Подобные задачи легко решаются и с помощью тригонометрического круга. Алгоритм поиска ответов очень прост:

  1. Сначала стоит начертить единичную окружность.
  2. Затем нужно отметить значение аркфункции аргумента правой части неравенства на дуге круга.
  3. Нужно провести прямую проходящую через значение аркфункции параллельно оси абсциссы (ОХ).
  4. После останется только выделить дугу окружности, являющуюся множеством решений тригонометрического неравенства.
  5. Записать ответ в требуемой форме.

Разберем этапы решения на примере неравенства sin x › 1/2. На круге отмечены точки α и β – значения

Точки дуги, расположенные выше α и β, являются интервалом решения заданного неравенства.

Если нужно решить пример для cos, то дуга ответов будет располагаться симметрично оси OX, а не OY. Рассмотреть разницу между интервалами решений для sin и cos можно на схемах приведенных ниже по тексту.

Графические решения для неравенств тангенса и котангенса будут отличаться и от синуса, и от косинуса. Это обусловлено свойствами функций.

Арктангенс и арккотангенс представляют собой касательные к тригонометрической окружности, а минимальный положительный период для обеих функций равняется π. Чтобы быстро и правильно пользоваться вторым способом, нужно запомнить на какой из оси откладываются значения sin, cos, tg и ctg.

Касательная тангенс проходит параллельно оси OY. Если отложить значение arctg a на единичном круге, то вторая требуемая точка будет расположено в диагональной четверти. Углы

Являются точками разрыва для функции, так как график стремится к ним, но никогда не достигает.

В случае с котангенсом касательная проходит параллельно оси OX, а функция прерывается в точках π и 2π.

Сложные тригонометрические неравенства

Если аргумент функции неравенства представлен не просто переменной, а целым выражением содержащим неизвестную, то речь уже идет о сложном неравенстве. Ход и порядок его решения несколько отличаются от способов описанных выше. Допустим необходимо найти решение следующего неравенства:

Графическое решение предусматривает построение обычной синусоиды y = sin x по произвольно выбранным значениям x. Рассчитаем таблицу с координатами для опорных точек графика:

В результате должна получиться красивая кривая.

Для простоты поиска решения заменим сложный аргумент функции