Ламинированный поток воды. Конкретные значения чисел Рейнольдса и их использование

Ламинарное движение

РЕЖИМЫ ТЕЧЕНИЯ ВЯЗКОЙ ЖИДКОСТИ

Основные понятия

Еще в середине девятнадцатого века, изучая движение воды в цилиндрических трубах, исследователи заметили, что если скорость течения превышает некоторое предельное значение, характер течения внезапно изменяется. С достаточной ясностью и полнотой этот процесс был изучен экспериментально в опытах О. Рейнольдса в 1883 году. Он наблюдал движение подкрашиваемых струек жидкости в стеклянных трубках (рис. 4.1).

В зависимости от скорости течения, которая регулировалась краном на выходе из трубки, от температуры жидкости и диаметра трубки наблюдалось два режима течения жидкости:

· при небольших скоростях течение слоистое, упорядоченное, когда отдельные слои жидкости, не перемешиваясь, как бы скользят друг по другу;

· при увеличении скорости характер течения почти внезапно изменяется, слои перемешиваются, частицы жидкости, сохраняя общее направление течения, движутся по весьма сложным зигзагообразным траекториям.

При малых скоростях струйка краски протягивается вдоль всей трубочки, не перемешиваясь с окружающей жидкостью, – это ламинарный режим.

При увеличении скорости течения жидкости струйка краски начинает искривляться, а при дальнейшем увеличении скорости – теряет четкие очертания и размывается по всей трубе, равномерно окрашивая всю жидкость, – это турбулентный режим.

О. Рейнольдс пришел к заключению, что момент перехода одного режима в другой, или критерий, разграничивающий эти два режима, зависит от скорости движения жидкости, характерного размера потока (например, диаметра трубки) и физических свойств жидкости. Взяв в качестве характеристики физических свойств жидкости кинематический коэффициент вязкости ν и учитывая то обстоятельство, что критерий не должен зависеть от размерности входящих в него величин (то есть быть универсальным), О. Рейнольдс получил для этого критерия выражение

(4.1)

Здесь – средняя (характерная) скорость течения;

d – диаметр (характерный размер) трубы.

Критерий (4.1) играет очень большую роль при анализе течения реальных (вязких) жидкостей и называется числом Рейнольдса .

В своих опытах по исследованию режимов равномерного течения жидкости О. Рейнольдс пришел к заключению, что существует некоторое критическое значение числа (4.1), при котором происходит переход от ламинарного к турбулентному режиму течения. При значении числа Рейнольдса близком к 2000 ламинарность течения начинает нарушаться. При дальнейшем изучении вопроса оказалось, что существуют два критических значения числа Рейнольдса – нижнее () и верхнее ().

Если для потока число Re меньше нижнего критического, то есть Re < , то течение всегда будет безусловно ламинарным.

Если для потока число Re больше верхнего критического, то есть Re > , то течение всегда турбулентное.

А если значение числа Re находится между этими значениями, то есть < Re < , то возможен тот или другой режим в зависимости от местных условий движения – условий входа потока в трубу, состояния стенок, наличия внешних возмущений и т. п.

В технических расчетах для трубопроводов в качестве критерия перехода от ламинарного режима течения к турбулентному принимают некоторое среднее значение критического числа Рейнольдса. Для круглых труб принимают , то есть при Re < 2300 режим считается ламинарным, а при Re > 2300 – турбулентным.

Заметим, что значение критического числа Рейнольдса не зависит от рода жидкости, что делает его универсальным критерием.

Как видно из выражения для числа Рейнольдса ламинарное течение осуществляется:

· при малых скоростях течения;

· в тонких трубках;

· при больших вязкостях жидкости (масла, мазуты).

Турбулентные течения широко распространены в природе и технике (пожалуй, больше, чем ламинарные). Турбулентным является движение воздуха в атмосфере, течение воды в реках, каналах и водопроводных трубах, движение воды в гидравлических машинах.

Ламинарное движение

Определим распределение скорости и расход жидкости при ламинарном движении ее в круглой цилиндрической трубе.

При течении жидкости в трубе различают начальный, или входной, участок и участок установившегося течения. Если вход в трубу из резервуара выполнен достаточно плавным, то в начальном сечении распределение скоростей практически равномерное, эпюра скорости представляет собой прямоугольник (рис. 4.2). По мере продвижения жидкости по начальному участку на стенках за счет сил трения возникает торможение. При дальнейшем движении жидкости по трубе тормозящее действие стенок распространяется на все большую толщу потока.

На начальном участке поток имеет все уменьшающееся ядро, в котором сохраняется равномерное распределение скоростей, и пристеночный пограничный слой, где скорости распределены неравномерно. Вниз по течению размеры ядра убывают, толщина пограничного слоя растет до почти полного смыкания на оси трубы. Дальше начинается участок установившегося движения, который мы, собственно, и рассмотрим.

В соответствии с формулой Ньютона, сила гидравлического трения в жидкости равна

.

Для круглой цилиндрической трубы запишем ее в цилиндрической системе координат в виде

,

где r – текущий радиус цилиндрического слоя.

Отнеся силу к единице площади, получим напряжение

С другой стороны, в соответствии с основным уравнением равномерного движения жидкости (формула (3.12)), имеем для напряжения трения

Вспоминая, что гидравлический радиус для круглой трубы , и разделяя переменные, получим

Интегрируем:

Постоянную интегрирования определяем из граничных условий: при r = r 0 (то есть на стенке трубы) должны выполняться условия прилипания и скорость жидкости должна быть равна нулю, = 0. Тогда

Подставляя значение постоянной интегрирования в формулу для определения скорости, получаем

При ламинарном движении скорости малы, скоростные напоры (слагаемые в уравнении Бернулли, характеризующие кинетическую энергию жидкости) тоже малы, поэтому можно считать, что полная удельная энергия жидкости определится только двумя членами уравнения Бернулли: .

Тогда вместо полного гидравлического уклона можно ввести величину , понимая под h запас энергии в первом сечении относительно второго, равный . Этот запас часто называют действующим напором.

Тогда формула для скорости запишется в виде

Среднюю скорость вычислим по формуле :

(4.6)

Сравнивая с max из (4.3), видим, что ср = 0,5 max .

При переходе ламинарного течения в турбулентное характер распределения скоростей по сечению трубы изменяется. Если при ламинарном течении распределение скорости по сечению имеет параболический характер, то при турбулентном течении эпюра скоростей из-за перемешивания потока выравнивается, приближаясь к прямоугольной. Так как при турбулентных течениях скорость в каждой точке потока непрерывно пульсирует по величине и направлению (в определенных пределах), то для построения эпюр скоростей и при технических расчетах используются осредненные по времени значения скоростей.

Заметим еще, что при переходе от ламинарного к турбулентному течению не весь поток полностью турбулизируется: около стенок остается тонкий – так называемый пограничный – слой, в котором течение остается ламинарным.

Таким образом, получается, что при турбулентном движении ср = (0,8 ÷ 0,9) max .

Определим связь средней скорости движения жидкости при ламинарном и турбулентном режимах течения в трубопроводе с потерей напора.

Учитывая, что , для ламинарного режима из формулы (4.6) получим

Из этой формулы видно, что потери напора при ламинарном течении пропорциональны первой степени скорости.

При турбулентном же течении, как показывают исследования, потери напора пропорциональны скорости в степени m , меняющейся от 1,75 до 2,00. Таким образом, общий характер зависимости потерь напора от скорости можно выразить так:

· при ламинарном режиме

· при турбулентном режиме

где k 1 и k 2 – соответствующие коэффициенты пропорциональности.

Отметим, что общий случай движения вязкой жидкости описывается дифференциальными уравнениями Навье–Стокса

Оператор Лапласа предполагает следующую операцию над своим переменным аргументом

.

Уравнения Навье–Стокса отличаются от уравнений Эйлера для идеальной жидкости наличием членов с вязкостью . В уравнениях Навье–Стокса четыре неизвестных – три проекции скорости и давление. Привлекая уравнение неразрывности в дифференциальной форме, получаем замкнутую систему для нахождения неизвестных. Но общего решения эти уравнения не имеют, их можно решить лишь для некоторых частных случаев. Например, формула (4.2) и есть частное решение для установившегося ламинарного течения вязкой жидкости в круглой цилиндрической трубе.

Существуют две различные формы, два режима течения жидкостей: ламинарное и турбулентное течения. Течение называется ламинарным (слоистым), если вдоль потока каждый выделенный тонкий слой скользит относительно соседних, не перемешиваясь с ними, и турбулентным (вихревым), если вдоль потока происходит интенсивное вихреобразование и перемешивание жидкости (газа).

Ламинарное течение жидкости наблюдается при небольших скоростях ее движения. При ламинарном течении траектории всех частиц параллельны и формой своей повторяют границы потока. В круглой трубе, например, жидкость движется цилиндрическими слоями, образующие которых параллельны стенкам и оси трубы. В прямоугольном, бесконечной ширины канале жидкость движется как бы слоями, параллельными его дну. В каждой точке потока скорость остается по направлению постоянной. Если скорость при этом не меняется со временем и по величине, движение называется установившимся. Для ламинарного движения в трубе эпюра распределения скорости в поперечном сечении имеет вид параболы с максимальной скоростью на оси трубы и с нулевым значением у стенок, где образуется прилипший слой жидкости. Внешний слой жидкости, примыкающий к поверхности трубы, в которой она течет, из-за сил молекулярного сцепления прилипает к ней и остается неподвижным. Скорости последующих слоев тем больше, чем больше их расстояние до поверхности трубы, и наибольшей скоростью обладает слой, движущийся вдоль оси трубы. Профиль усредненной скорости турбулентного течения в трубах (рис. 53) отличается от параболического профиля соответствующего ламинарного течения более быстрым возрастанием скорости υ.

Рисунок 9 Профили (эпюры) ламинарного и турбулентного течений жидкости в трубах

Среднее значение скорости в поперечном сечении круглой трубы при установившемся ламинарном течении определяется законом Гагена - Пуазейля:

(8)

где р 1 и р 2 - давление в двух поперечных сечениях трубы, отстоящих друг от друга на расстоянии Δх; r - радиус трубы; η - коэффициент вязкости.

Закон Гагена - Пуазейля легко может быть проверен. При этом оказывается, что для обычных жидкостей он справедлив лишь при малых скоростях течения или малых размерах труб. Точнее сказать, закон Гагена-Пуазейля выполняется лишь при малых значениях числа Рейнольдса:

(9)

где υ - средняя скорость в поперечном сечении трубы; l - характерный размер, в данном случае - диаметр трубы; ν - коэффициент кинематической вязкости.

Английский ученый Осборн Рейнольдс (1842 - 1912) в 1883 г. произвел опыт по следующей схеме: у входа в трубу, по которой течет установившийся поток жидкости, помещалась тонкая трубка так, чтобы ее отверстие находилось на оси трубки. Через трубочку в поток жидкости подавалась краска. Пока существовало ламинарное течение, краска двигалась примерно вдоль оси трубы в виде тонкой, резко ограниченной полоски. Затем, начиная с некоторого значения скорости, которое Рейнольдс назвал критическим, на полоске возникли волнообразные возмущения и отдельные быстро затухающие вихри. По мере роста скорости число их становилось больше, и они начинали развиваться. При некотором значении скорости полоска распадалась на отдельные вихри, которые распространялись на всю толщину потока жидкости, вызывая интенсивное перемешивание и окрашивание всей жидкости. Такое течение было названо турбулентным .

Начиная с критического значения скорости, нарушался и закон Гагена - Пуазейля. Повторяя опыты с трубами разного диаметра, с разными жидкостями, Рейнольдс обнаружил, что критическая скорость, при которой нарушается параллельность векторов скоростей течения, менялась в зависимости от размеров потока и вязкости жидкости, но всегда таким образом, что безразмерное число
принимало в области перехода от ламинарного течения к турбулентному определенное постоянное значение.

Английский ученый О. Рейнольдс (1842 - 1912) доказал, что характер течения зависит от безразмерной величины, называемой числом Рейнольдса:

(10)

где ν = η/ρ - кинематическая вязкость, ρ - плотность жидкости, υ ср - средняя по сечению трубы скорость жидкости, l - характерный линейный размер, например диаметр трубы.

Таким образом, до некоторого значения числа Re существует устойчивое ламинарное течение, а затем в некоторой области значений этого числа ламинарное течение перестает быть устойчивым и в потоке возникают отдельные, более или менее быстро затухающие возмущения. Эти значения числа Рейнольдс назвал критическими Re кр. При дальнейшем увеличении значения числа Рейнольдса движение становится турбулентным. Область критических значений Re лежит обычно между 1500-2500. Надо отметить, что на значение Re кр оказывает влияние характер входа в трубу и степень шероховатости ее стенок. При очень гладких стенках и особо плавном входе в трубу критическое значение числа Рейнольдса удавалось поднять до 20 000, а если вход в трубу имеет острые края, заусеницы и т. д. .или стенки трубы шероховатые, значение Re кр может упасть до 800-1000.

При турбулентном течении частицы жидкости приобретают составляющие скоростей, перпендикулярные течению, поэтому они могут переходить из одного слоя в другой. Скорость частиц жидкости быстро возрастает по мере удаления от поверхности трубы, затем изменяется довольно незначительно. Так как частицы жидкости переходят из одного слоя в другой, то их скорости в различных слоях мало отличаются. Из-за большого градиента скоростей у поверхности трубы обычно происходит образование вихрей.

Турбулентное течение жидкостей наиболее распространено в природе и технике. Течение воздуха в. атмосфере, воды в морях и реках, в каналах, в трубах всегда турбулентно. В природе ламинарное движение встречается при фильтрации воды в тонких порах мелкозернистых грунтов.

Изучение турбулентного течения и построение его теории чрезвычайно осложнено. Экспериментальные и математические трудности этих исследований до сих пор преодолены лишь частично. Поэтому ряд практически важных задач (течение воды в каналах и реках, движение самолета заданного профиля в воздухе и др.) приходится либо решать приблизительно, либо испытанием соответствующих моделей в специальных гидродинамических трубах. Для перехода от результатов, полученных на модели, к явлению в натуре служит так называемая теория подобия. Число Рейнольдса является одним из основных критериев подобия течения вязкой жидкости. Поэтому определение его практически весьма важно. В данной работе наблюдается переход от ламинарного течения к турбулентному и определяется несколько значений числа Рейнольдса: в области ламинарного течения, в переходной области (критическое течение) и при турбулентном течении.

Как показывают опыты, возможны два режима течения жидкостей и газов: ламинарный и турбулентный.

Ламинарным называется сложное течение без перемешивания частиц жидкости и без пульсаций скоростей и давлений. При ламинарном движении жидкости в прямой трубе постоянного поперечного сечения все линии тока направлены параллельно оси труб, отсутствуют поперечные перемещения жидкости. Однако, ламинарное движение нельзя считать безвихревым, так как в нем хотя и нет видимых вихрей, но одновременно с поступательным движением имеет место упорядоченное вращательное движение отдельных частиц жидкости вокруг своих мгновенных центров с некоторыми угловыми скоростями.

Турбулентным называется течение, cопровождающееся интенсивным перемешиванием жидкости и пульсациями скоростей и давлений. При турбулентном течении наряду с основным продольным перемещением жидкости происходят поперечные перемещения и вращательное движение отдельных объемов жидкости.

Изменение режима течения происходит при определенном соотношении между скоростью V, диаметром d, и вязкостью υ. Эти три фактора входят в формулу безразмерного критерия Рейнольдса R e = V d /υ, поэтому вполне закономерно, что именно число R e , является критерием, определяющим режим течения в трубах.

Число R e , при котором ламинарное движение приходит в турбулентное, называется критическим Reкр.

Как показывают опыты, для труб круглого сечения Rекр = 2300, то есть при Re < Reкр течение является ламинарным, а при Rе > Reкр - турбулентным. Точнее говоря, вполне развитое турбулентное течение в трубах устанавливается лишь при Re = 4000, а при Re = 2300 - 4000 имеет место переходная критическая область.

Смена режима течения при достижении Re кр обусловлена тем, что одно течение теряет устойчивость, а другое - приобретает.

Рассмотрим более подробно ламинарное течение.

Одним из наиболее простых видов движения вязкой жидкости является ламинарное движение в цилиндрической трубе, а в особенности его частный случай - установившееся равномерное движение. Теория ламинарного движения жидкости основывается на законе трения Ньютона . Это трение между слоями движущейся жидкости является единственным источником потерь энергии.

Рассмотрим установленное ламинарное течение жидкости в прямой трубе с d = 2 r 0

Чтобы исключить влияние силы тяжести и этим упростить вывод допустим, что труба расположена горизонтально.

Пусть в сечении 1-1 давление равно P 1 а в сечении 2-2 - P 2.

Ввиду постоянства диаметра трубы V = const, £ = const, тогда уравнение Бернулли для выбранных сечений примет вид:

Отсюда , что и будут показывать пьезометры, установленные в сечениях.


В потоке жидкости выделим цилиндрический объем.

Запишем уравнение равномерного движения выделенного объема жидкости, то есть равенство 0 суммы сил, действующих на объем.

Отсюда следует, что касательные напряжения в поперечном сечении трубы изменяются по линейному закону в зависимости от радиуса.

Если выразить касательное напряжение t по закону Ньютона, то будем иметь

Знак минус обусловлен тем, что направление отсчета r (от оси к стенке противоположного направления отсчета y (от стенки)

И подставить значение t в предыдущее уравнение, то получим

Отсюда найдем приращение скорости.

Выполнив интегрирование получим.

Постоянную интегрирования найдем из условия при r = r 0; V = 0

Скорость по окружности радиусом r равна

Это выражение является законом распределения скорости по сечению круглой трубы при ламинарном течении. Кривая, изображающая эпюру скоростей, является параболой второй степени. Максимальная скорость, имеющая место в центре сечения при r = 0 равна

Применим полученный закон распределения скоростей для расчета расхода.

Площадку dS целесообразно взять в виде кольца радиусом r и шириной dr

Тогда

После интегрирования по всей площади поперечного сечения, то есть от r = 0, до r = r 0

Для получения закона сопротивления выразим; (через предыдущую формулу расхода)

(

µ=υρ r 0 = d/2 γ = ρg. Тогда получим закон Пуарейля;

) перемещается как бы слоями, параллельными направлению течения. Л. т. наблюдается или у очень вязких жидкостей, или при течениях, происходящих с достаточно малыми скоростями, а также при медленном обтекании жидкостью тел малых размеров. В частности, Л. т. имеют место в узких (капиллярных) трубках, в слое смазки в подшипниках, в тонком пограничном слое, образующемся вблизи поверхности тел при обтекании их жидкостью или газом, и др. С увеличением скорости движения данной жидкости Л. т. в нек-рый момент переходит в . При этом существенно изменяются все его св-ва, в частности структура потока, профиль скоростей, закон сопротивления. Режим течения жидкости характеризуется Рейнольдса числом Re. Когда значение Re меньше критич. числа Reкр, имеет место Л. т. жидкости; если Re > Reкр, течение становится турбулентным. Значение Reкр зависит от вида рассматриваемого течения. Так, для течения в круглых трубах ReKp »2300 (если характерной скоростью считать среднюю по сечению , а характерным размером - диаметр трубы). При Reкр

Физический энциклопедический словарь. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1983 .

ЛАМИНАРНОЕ ТЕЧЕНИЕ

(от лат. lamina - пластинка) - упорядоченный режим течения вязкой жидкости (или газа), характеризующийся отсутствием перемешивания между соседними слоями жидкости. Условия, при к-рых может происходить устойчивое, т. е. не нарушающееся от случайных возмущений, Л. т., зависят от значения безразмерного Рейнольдса числа Re. Для каждого вида течения существует такое число R е Кр, наз. нижним критич. числом Рейнольдса, что при любом Re Л. т. является устойчивым и практически осуществляется; значение R е кр обычно определяется экспериментально. При R е>R е кр, принимая особые для предотвращения случайных возмущений, можно тоже получить Л. т., но оно не будет устойчивым и, когда возникнут возмущения, перейдёт в неупорядоченное турбулентное течение. Теоретически Л. т. изучаются с помощью Навье - Стокса уравнений движения вязкой жидкости. Точные решения этих ур-ний удаётся получить лишь в немногих частных случаях, и обычно при решении конкретных задач используют те или иные приближённые методы.

Представление об особенностях Л. т. даёт хорошо изученный случай движения в круглой цилиндрич. трубе. Для этого течения R е Кр 2200, где Re= ( - средняя по расходу скорость жидкости, d - диаметр трубы, - кинематич. коэф. вязкости, - динамич. коэф. вязкости, - плотность жидкости). Т. о., практически устойчивое Л. т. может иметь место или при сравнительно медленном течении достаточно вязкой жидкости или в очень тонких (капиллярных) трубках. Напр., для воды (=10 -6 м 2 /с при 20° С) устойчивое Л. т. с =1 м/с возможно лишь в трубках диаметром не более 2,2 мм.

При Л. т. в неограниченно длинной трубе скорость в любом сечении трубы изменяется по закону -(1 - -r 2 / а 2), где а - радиус трубы, r - расстояние от оси, - осевая (численно максимальная) скорость течения; соответствующий параболич. профиль скоростей показан на рис. а. Напряжение трения изменяется вдоль радиуса по линейному закону где = - напряжение трения на стенке трубы. Для преодоления сил вязкого трения в трубе при равномерном движении должен иметь место продольный перепад давления, выражаемый обычно равенством P 1 -P 2 где p 1 и р 2 - давления в к.-н. двух поперечных сечениях, находящихся на расстоянии l друг от друга, - коэф. сопротивления, зависящий от для Л. т. . Секундный жидкости в трубе при Л. т. определяет Пуазейля закон. В трубах конечной длины описанное Л. т. устанавливается не сразу и в начале трубы имеется т. н. входной участок, на к-ром профиль скоростей постепенно преобразуется в параболический. Приближённо длина входного участка

Распределение скоростей по сечению трубы: а - при ламинарном течении; б - при турбулентном течении.

Когда при течение становится турбулентным, существенно изменяются структура потока, профиль скоростей (рис., 6 )и закон сопротивления, т. е. зависимость от Re (см. Гидродинамическое сопротивление).

Кроме труб Л. т. имеет место в слое смазки в подшипниках, вблизи поверхности тел, обтекаемых маловязкой жидкостью (см. Пограничный слой), при медленном обтекании тел малых размеров очень вязкой жидкостью (см., в частности, Стокса формула). Теория Л. т. применяется также в вискозиметрии, при изучении теплообмена в движущейся вязкой жидкости, при изучении движения капель и пузырьков в жидкой среде, при рассмотрении течений в тонких плёнках жидкости и при решении ряда др. задач физики и физ. химии.

Лит.: Ландау Л. Д., Лифшиц Е. М., Механика сплошных сред, 2 изд., М., 1954; Лойцянский Л. Г., Механика жидкости и газа, 6 изд., М., 1987; Тар г С. М., Основные задачи теории ламинарных течений, М.- Л., 1951; Слезкин Н. А., Динамика вязкой несжимаемой жидкости, М., 1955, гл. 4 - 11. С. М. Тарг.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


Смотреть что такое "ЛАМИНАРНОЕ ТЕЧЕНИЕ" в других словарях:

    Современная энциклопедия

    Ламинарное течение - (от латинского lamina пластинка, полоска), упорядоченное течение жидкости или газа, при котором жидкость (газ) перемещается как бы слоями, параллельными направлению течения. Ламинарное течение наблюдается или при течениях, происходящих с… … Иллюстрированный энциклопедический словарь

    - (от лат. lamina пластинка полоска), течение, при котором жидкость (или газ) перемещается слоями без перемешивания. Существование ламинарного течения возможно только до определенного, т. н. критического, значения Рейнольдса числа Reкр. При Re,… … Большой Энциклопедический словарь

    - (от лат. lamina пластинка, полоска * a. laminar flow; н. Laminarstromung, laminare Stromung; ф. ecoulement laminaire, courant laminaire; и. corriente laminar, torrente laminar) упорядоченное течение жидкости или газа, при к ром жидкость… … Геологическая энциклопедия

    - (от латинского lamina пластинка, полоска) вязкой жидкости течение, в котором частицы среды движутся упорядоченно по слоям и процессы переноса массы, импульса и энергии между слоями происходят на молекулярном уровне. Типичным примером Л. т.… … Энциклопедия техники

    ЛАМИНАРНОЕ ТЕЧЕНИЕ, спокойное течение жидкости или газа без перемешивания. Жидкость или газ перемещаются слоями, которые скользят друг относительно друга. По мере того, как увеличивается скорость движения слоев, или по мере уменьшения вязкости… … Научно-технический энциклопедический словарь - движение вязкой жидкости (или газа), при котором жидкость (или газ) перемещается отдельными параллельными слоями без завихрений и перемешивания друг с другом (в отличие от турбулентного (см.)). Вследствие этого (напр. в трубе) эти слои имеют… … Большая политехническая энциклопедия

    ламинарное течение - Спокойное, упорядоченное движение воды или воздуха, перемещающихся параллельно направлению течения, в отличие от турбулентного течения … Словарь по географии

Под режимом течения жидкости понимают кинематику и динамику жидких макрочастиц, определяющую в совокупности структуру и свойства потока вцелом.

Режим движения определяется соотношением сил инерции и трения в потоке. Причем эти силы всегда действуют на жидкие макрочастицы при их движении в составе потока. Хотя это движение может быть вызвано различными внешними силами например силами гравитации и давления. Соотношение этих сил отражает , которое является критерием режима течения жидкости.

При низких скоростях движения частиц жидкости в потоке преобладают силы трения, числа Рейнольдса малы. Такое движение называется ламинарным .

При высоких скоростях движения частиц жидкости в потоке числа Рейнольдса велики, тогда в потоке преобладают силы инерции и эти силы определяют кинематику и динамику частиц, такой режим называется турбулентным

А если эти силы одного порядка (соизмеримы), то такую область называют - область перемежания .

Вид режима, в значительной мере, влияет на процессы происходящие в потоке, а значит и расчетные зависимости.

Схема установки для иллюстрации режимов течения жидкости показана на рисунке.

Жидкость из бака по прозрачному трубопроводу через кран поступает на слив. На входе в трубу установлена тонкая трубка по которой в центральную часть потока поступает красящее вещество.

Если немного приоткрыть кран, жидкость начнет протекать по трубопроводу с небольшой скоростью. При введении красящего вещество в поток можно будет увидеть как токая струйка красящего вещества в виде линии протекает от начала трубы до ее конца. Это свидетельствует о слоистом течении жидкости, без перемешивания и вихреообразования, и преобладании в потоке сил инерции.

Такой режим течения называется ламинарным .

Ламинарный режим - слоистое течение жидкости без перемешивания частиц,без пульсации скоростей и давлений, без перемешивания слоев и вихрей.

При ламинарном течении линии тока параллельны оси трубы, т.е. отсутствует поперечные потоку жидкости перемещения.

Турбулентый режим течения

При увеличении расхода через трубу в рассматриваемой установке скорость движения частиц жидкости будет увеличиваться. Струя красящей жидкости начнет колебаться.


Если открыть кран сильнее, расход через трубу увеличится.


Поток красящей жидкости начнет смешиваться с основным потоком, будут заметны многочисленные зоны вихреообразования, перемешивания, в потоке будут преобладать силы инерции. Такой режим течения называется турбулентным .

Турбулентый режим - течение, сопровождающееся интенсивным перемешиванием, смещением слоев друг относительно друга и пульсациями скоростей и давлений.

При турбулентном течении векторы скоростей имеют не только осевые, но и нормальные к оси русла составляющие.

От чего зависит режим течения жидкости

Режим течения зависит от скорости движения частиц жидкости в трубопроводах, геометрии трубопровода.

Как было отмечено ранее, О режиме течения жидкости в трубопроводе позволяет судить критерий Рейнольдса, отражающий отношение сил инерции к силам вязкого трения .

  • При числах Рейдольдса ниже 2300 можно говорить о ламинарном движении частиц (в некоторых источниках указывается цифра 2000)
  • Если критерий Рейнольдса больше 4000, то режим течения - турбулентный
  • Числа Рейднольдса от 2300 до 4000 свидетельствуют о переходном режиме течения жидкости