Однородное уравнение 2 степени. Решение однородных тригонометрических уравнений

Приводятся примеры вычисления производных с применением формулы производной сложной функции.

Здесь мы приводим примеры вычисления производных от следующих функций:
; ; ; ; .

Если функцию можно представить как сложную функцию в следующем виде:
,
то ее производная определяется по формуле:
.
В приводимых ниже примерах, мы будем записывать эту формулу в следующем виде:
.
где .
Здесь нижние индексы или , расположенные под знаком производной, обозначают переменные, по которой выполняется дифференцирование.

Обычно, в таблицах производных , приводятся производные функций от переменной x . Однако x - это формальный параметр. Переменную x можно заменить любой другой переменной. Поэтому, при дифференцировании функции от переменной , мы просто меняем, в таблице производных, переменную x на переменную u .

Простые примеры

Пример 1

Найти производную сложной функции
.

Решение

Запишем заданную функцию в эквивалентном виде:
.
В таблице производных находим:
;
.

По формуле производной сложной функции имеем:
.
Здесь .

Ответ

Пример 2

Найти производную
.

Решение

Выносим постоянную 5 за знак производной и из таблицы производных находим:
.


.
Здесь .

Ответ

Пример 3

Найдите производную
.

Решение

Выносим постоянную -1 за знак производной и из таблицы производных находим:
;
Из таблицы производных находим:
.

Применяем формулу производной сложной функции:
.
Здесь .

Ответ

Более сложные примеры

В более сложных примерах мы применяем правило дифференцирования сложной функции несколько раз. При этом мы вычисляем производную с конца. То есть разбиваем функцию на составные части и находим производные самых простых частей, используя таблицу производных . Также мы применяем правила дифференцирования суммы , произведения и дроби . Затем делаем подстановки и применяем формулу производной сложной функции.

Пример 4

Найдите производную
.

Решение

Выделим самую простую часть формулы и найдем ее производную. .



.
Здесь мы использовали обозначение
.

Находим производную следующей части исходной функции, применяя полученные результаты. Применяем правило дифференцирования суммы:
.

Еще раз применяем правило дифференцирования сложной функции.

.
Здесь .

Ответ

Пример 5

Найдите производную функции
.

Решение

Выделим самую простую часть формулы и из таблицы производных найдем ее производную. .

Применяем правило дифференцирования сложной функции.
.
Здесь
.

И теорему о производной сложной функции, формулировка которой такова:

Пусть 1) функция $u=\varphi (x)$ имеет в некоторой точке $x_0$ производную $u_{x}"=\varphi"(x_0)$, 2) функция $y=f(u)$ имеет в соответствующей точке $u_0=\varphi (x_0)$ производную $y_{u}"=f"(u)$. Тогда сложная функция $y=f\left(\varphi (x) \right)$ в упомянутой точке также будет иметь производную, равную произведению производных функций $f(u)$ и $\varphi (x)$:

$$ \left(f(\varphi (x))\right)"=f_{u}"\left(\varphi (x_0) \right)\cdot \varphi"(x_0) $$

или, в более короткой записи: $y_{x}"=y_{u}"\cdot u_{x}"$.

В примерах этого раздела все функции имеют вид $y=f(x)$ (т.е. рассматриваем лишь функции одной переменной $x$). Соответственно, во всех примерах производная $y"$ берётся по переменной $x$. Чтобы подчеркнуть то, что производная берётся по переменной $x$, часто вместо $y"$ пишут $y"_x$.

В примерах №1, №2 и №3 изложен подробный процесс нахождения производной сложных функций. Пример №4 предназначен для более полного понимания таблицы производных и с ним имеет смысл ознакомиться.

Желательно после изучения материала в примерах №1-3 перейти к самостоятельному решению примеров №5, №6 и №7. Примеры №5, №6 и №7 содержат краткое решение, чтобы читатель мог проверить правильность своего результата.

Пример №1

Найти производную функции $y=e^{\cos x}$.

Нам нужно найти производную сложной функции $y"$. Так как $y=e^{\cos x}$, то $y"=\left(e^{\cos x}\right)"$. Чтобы найти производную $\left(e^{\cos x}\right)"$ используем формулу №6 из таблицы производных . Дабы использовать формулу №6 нужно учесть, что в нашем случае $u=\cos x$. Дальнейшее решение состоит в банальной подстановке в формулу №6 выражения $\cos x$ вместо $u$:

$$ y"=\left(e^{\cos x} \right)"=e^{\cos x}\cdot (\cos x)" \tag {1.1}$$

Теперь нужно найти значение выражения $(\cos x)"$. Вновь обращаемся к таблице производных, выбирая из неё формулу №10. Подставляя $u=x$ в формулу №10, имеем: $(\cos x)"=-\sin x\cdot x"$. Теперь продолжим равенство (1.1), дополнив его найденным результатом:

$$ y"=\left(e^{\cos x} \right)"=e^{\cos x}\cdot (\cos x)"= e^{\cos x}\cdot (-\sin x\cdot x") \tag {1.2} $$

Так как $x"=1$, то продолжим равенство (1.2):

$$ y"=\left(e^{\cos x} \right)"=e^{\cos x}\cdot (\cos x)"= e^{\cos x}\cdot (-\sin x\cdot x")=e^{\cos x}\cdot (-\sin x\cdot 1)=-\sin x\cdot e^{\cos x} \tag {1.3} $$

Итак, из равенства (1.3) имеем: $y"=-\sin x\cdot e^{\cos x}$. Естественно, что пояснения и промежуточные равенства обычно пропускают, записывая нахождение производной в одну строку, - как в равенстве (1.3). Итак, производная сложной функции найдена, осталось лишь записать ответ.

Ответ : $y"=-\sin x\cdot e^{\cos x}$.

Пример №2

Найти производную функции $y=9\cdot \arctg^{12}(4\cdot \ln x)$.

Нам необходимо вычислить производную $y"=\left(9\cdot \arctg^{12}(4\cdot \ln x) \right)"$. Для начала отметим, что константу (т.е. число 9) можно вынести за знак производной:

$$ y"=\left(9\cdot \arctg^{12}(4\cdot \ln x) \right)"=9\cdot\left(\arctg^{12}(4\cdot \ln x) \right)" \tag {2.1} $$

Теперь обратимся к выражению $\left(\arctg^{12}(4\cdot \ln x) \right)"$. Чтобы выбрать нужную формулу из таблицы производных было легче, я представлю рассматриваемое выражение в таком виде: $\left(\left(\arctg(4\cdot \ln x) \right)^{12}\right)"$. Теперь видно, что необходимо использовать формулу №2, т.е. $\left(u^\alpha \right)"=\alpha\cdot u^{\alpha-1}\cdot u"$. В эту формулу подставим $u=\arctg(4\cdot \ln x)$ и $\alpha=12$:

Дополняя равенство (2.1) полученным результатом, имеем:

$$ y"=\left(9\cdot \arctg^{12}(4\cdot \ln x) \right)"=9\cdot\left(\arctg^{12}(4\cdot \ln x) \right)"= 108\cdot\left(\arctg(4\cdot \ln x) \right)^{11}\cdot (\arctg(4\cdot \ln x))" \tag {2.2} $$

В этой ситуации часто допускается ошибка, когда решатель на первом шаге выбирает формулу $(\arctg \; u)"=\frac{1}{1+u^2}\cdot u"$ вместо формулы $\left(u^\alpha \right)"=\alpha\cdot u^{\alpha-1}\cdot u"$. Дело в том, что первой должна находиться производная внешней функции. Чтобы понять, какая именно функция будет внешней для выражения $\arctg^{12}(4\cdot 5^x)$, представьте, что вы считаете значение выражения $\arctg^{12}(4\cdot 5^x)$ при каком-то значении $x$. Сначала вы посчитаете значение $5^x$, потом умножите результат на 4, получив $4\cdot 5^x$. Теперь от этого результата берём арктангенс, получив $\arctg(4\cdot 5^x)$. Затем возводим полученное число в двенадцатую степень, получая $\arctg^{12}(4\cdot 5^x)$. Последнее действие, - т.е. возведение в степень 12, - и будет внешней функцией. И именно с неё надлежит начинать нахождение производной, что и было сделано в равенстве (2.2).

Теперь нужно найти $(\arctg(4\cdot \ln x))"$. Используем формулу №19 таблицы производных, подставив в неё $u=4\cdot \ln x$:

$$ (\arctg(4\cdot \ln x))"=\frac{1}{1+(4\cdot \ln x)^2}\cdot (4\cdot \ln x)" $$

Немного упростим полученное выражение, учитывая $(4\cdot \ln x)^2=4^2\cdot (\ln x)^2=16\cdot \ln^2 x$.

$$ (\arctg(4\cdot \ln x))"=\frac{1}{1+(4\cdot \ln x)^2}\cdot (4\cdot \ln x)"=\frac{1}{1+16\cdot \ln^2 x}\cdot (4\cdot \ln x)" $$

Равенство (2.2) теперь станет таким:

$$ y"=\left(9\cdot \arctg^{12}(4\cdot \ln x) \right)"=9\cdot\left(\arctg^{12}(4\cdot \ln x) \right)"=\\ =108\cdot\left(\arctg(4\cdot \ln x) \right)^{11}\cdot (\arctg(4\cdot \ln x))"=108\cdot \left(\arctg(4\cdot \ln x) \right)^{11}\cdot \frac{1}{1+16\cdot \ln^2 x}\cdot (4\cdot \ln x)" \tag {2.3} $$

Осталось найти $(4\cdot \ln x)"$. Вынесем константу (т.е. 4) за знак производной: $(4\cdot \ln x)"=4\cdot (\ln x)"$. Для того, чтобы найти $(\ln x)"$ используем формулу №8, подставив в нее $u=x$: $(\ln x)"=\frac{1}{x}\cdot x"$. Так как $x"=1$, то $(\ln x)"=\frac{1}{x}\cdot x"=\frac{1}{x}\cdot 1=\frac{1}{x}$. Подставив полученный результат в формулу (2.3), получим:

$$ y"=\left(9\cdot \arctg^{12}(4\cdot \ln x) \right)"=9\cdot\left(\arctg^{12}(4\cdot \ln x) \right)"=\\ =108\cdot\left(\arctg(4\cdot \ln x) \right)^{11}\cdot (\arctg(4\cdot \ln x))"=108\cdot \left(\arctg(4\cdot \ln x) \right)^{11}\cdot \frac{1}{1+16\cdot \ln^2 x}\cdot (4\cdot \ln x)"=\\ =108\cdot \left(\arctg(4\cdot \ln x) \right)^{11}\cdot \frac{1}{1+16\cdot \ln^2 x}\cdot 4\cdot \frac{1}{x}=432\cdot \frac{\arctg^{11}(4\cdot \ln x)}{x\cdot (1+16\cdot \ln^2 x)}. $$

Напомню, что производная сложной функции чаще всего находится в одну строку, - как записано в последнем равенстве. Поэтому при оформлении типовых расчетов или контрольных работ вовсе не обязательно расписывать решение столь же подробно.

Ответ : $y"=432\cdot \frac{\arctg^{11}(4\cdot \ln x)}{x\cdot (1+16\cdot \ln^2 x)}$.

Пример №3

Найти $y"$ функции $y=\sqrt{\sin^3(5\cdot9^x)}$.

Для начала немного преобразим функцию $y$, выразив радикал (корень) в виде степени: $y=\sqrt{\sin^3(5\cdot9^x)}=\left(\sin(5\cdot 9^x)\right)^{\frac{3}{7}}$. Теперь приступим к нахождению производной. Так как $y=\left(\sin(5\cdot 9^x)\right)^{\frac{3}{7}}$, то:

$$ y"=\left(\left(\sin(5\cdot 9^x)\right)^{\frac{3}{7}}\right)" \tag {3.1} $$

Используем формулу №2 из таблицы производных , подставив в неё $u=\sin(5\cdot 9^x)$ и $\alpha=\frac{3}{7}$:

$$ \left(\left(\sin(5\cdot 9^x)\right)^{\frac{3}{7}}\right)"= \frac{3}{7}\cdot \left(\sin(5\cdot 9^x)\right)^{\frac{3}{7}-1} (\sin(5\cdot 9^x))"=\frac{3}{7}\cdot \left(\sin(5\cdot 9^x)\right)^{-\frac{4}{7}} (\sin(5\cdot 9^x))" $$

Продолжим равенство (3.1), используя полученный результат:

$$ y"=\left(\left(\sin(5\cdot 9^x)\right)^{\frac{3}{7}}\right)"=\frac{3}{7}\cdot \left(\sin(5\cdot 9^x)\right)^{-\frac{4}{7}} (\sin(5\cdot 9^x))" \tag {3.2} $$

Теперь нужно найти $(\sin(5\cdot 9^x))"$. Используем для этого формулу №9 из таблицы производных, подставив в неё $u=5\cdot 9^x$:

$$ (\sin(5\cdot 9^x))"=\cos(5\cdot 9^x)\cdot(5\cdot 9^x)" $$

Дополнив равенство (3.2) полученным результатом, имеем:

$$ y"=\left(\left(\sin(5\cdot 9^x)\right)^{\frac{3}{7}}\right)"=\frac{3}{7}\cdot \left(\sin(5\cdot 9^x)\right)^{-\frac{4}{7}} (\sin(5\cdot 9^x))"=\\ =\frac{3}{7}\cdot \left(\sin(5\cdot 9^x)\right)^{-\frac{4}{7}} \cos(5\cdot 9^x)\cdot(5\cdot 9^x)" \tag {3.3} $$

Осталось найти $(5\cdot 9^x)"$. Для начала вынесем константу (число $5$) за знак производной, т.е. $(5\cdot 9^x)"=5\cdot (9^x)"$. Для нахождения производной $(9^x)"$ применим формулу №5 таблицы производных, подставив в неё $a=9$ и $u=x$: $(9^x)"=9^x\cdot \ln9\cdot x"$. Так как $x"=1$, то $(9^x)"=9^x\cdot \ln9\cdot x"=9^x\cdot \ln9$. Теперь можно продолжить равенство (3.3):

$$ y"=\left(\left(\sin(5\cdot 9^x)\right)^{\frac{3}{7}}\right)"=\frac{3}{7}\cdot \left(\sin(5\cdot 9^x)\right)^{-\frac{4}{7}} (\sin(5\cdot 9^x))"=\\ =\frac{3}{7}\cdot \left(\sin(5\cdot 9^x)\right)^{-\frac{4}{7}} \cos(5\cdot 9^x)\cdot(5\cdot 9^x)"= \frac{3}{7}\cdot \left(\sin(5\cdot 9^x)\right)^{-\frac{4}{7}} \cos(5\cdot 9^x)\cdot 5\cdot 9^x\cdot \ln9=\\ =\frac{15\cdot \ln 9}{7}\cdot \left(\sin(5\cdot 9^x)\right)^{-\frac{4}{7}}\cdot \cos(5\cdot 9^x)\cdot 9^x. $$

Можно вновь от степеней вернуться к радикалам (т.е. корням), записав $\left(\sin(5\cdot 9^x)\right)^{-\frac{4}{7}}$ в виде $\frac{1}{\left(\sin(5\cdot 9^x)\right)^{\frac{4}{7}}}=\frac{1}{\sqrt{\sin^4(5\cdot 9^x)}}$. Тогда производная будет записана в такой форме:

$$ y"=\frac{15\cdot \ln 9}{7}\cdot \left(\sin(5\cdot 9^x)\right)^{-\frac{4}{7}}\cdot \cos(5\cdot 9^x)\cdot 9^x= \frac{15\cdot \ln 9}{7}\cdot \frac{\cos (5\cdot 9^x)\cdot 9^x}{\sqrt{\sin^4(5\cdot 9^x)}}. $$

Ответ : $y"=\frac{15\cdot \ln 9}{7}\cdot \frac{\cos (5\cdot 9^x)\cdot 9^x}{\sqrt{\sin^4(5\cdot 9^x)}}$.

Пример №4

Показать, что формулы №3 и №4 таблицы производных есть частный случай формулы №2 этой таблицы.

В формуле №2 таблицы производных записана производная функции $u^\alpha$. Подставляя $\alpha=-1$ в формулу №2, получим:

$$(u^{-1})"=-1\cdot u^{-1-1}\cdot u"=-u^{-2}\cdot u"\tag {4.1}$$

Так как $u^{-1}=\frac{1}{u}$ и $u^{-2}=\frac{1}{u^2}$, то равенство (4.1) можно переписать так: $\left(\frac{1}{u} \right)"=-\frac{1}{u^2}\cdot u"$. Это и есть формула №3 таблицы производных.

Вновь обратимся к формуле №2 таблицы производных. Подставим в неё $\alpha=\frac{1}{2}$:

$$\left(u^{\frac{1}{2}}\right)"=\frac{1}{2}\cdot u^{\frac{1}{2}-1}\cdot u"=\frac{1}{2}u^{-\frac{1}{2}}\cdot u"\tag {4.2} $$

Так как $u^{\frac{1}{2}}=\sqrt{u}$ и $u^{-\frac{1}{2}}=\frac{1}{u^{\frac{1}{2}}}=\frac{1}{\sqrt{u}}$, то равенство (4.2) можно переписать в таком виде:

$$ (\sqrt{u})"=\frac{1}{2}\cdot \frac{1}{\sqrt{u}}\cdot u"=\frac{1}{2\sqrt{u}}\cdot u" $$

Полученное равенство $(\sqrt{u})"=\frac{1}{2\sqrt{u}}\cdot u"$ и есть формула №4 таблицы производных. Как видите, формулы №3 и №4 таблицы производных получаются из формулы №2 подстановкой соответствующего значения $\alpha$.