Для каких чисел знак неравенства указан верно. Обобщенный способ сравнения чисел

С неравенствами мы познакомились в школе, где применяем числовые неравенства. В данной статье рассмотрим свойства числовых неравенств, не которых строятся принципы работы с ними.

Свойства неравенств аналогичны свойствам числовых неравенств. Будут рассмотрены свойства, его обоснования, приведем примеры.

Yandex.RTB R-A-339285-1

Числовые неравенства: определение, примеры

При введении понятия неравенства имеем, что их определение производится по виду записи. Имеются алгебраические выражения, которые имеют знаки ≠ , < , > , ≤ , ≥ . Дадим определение.

Определение 1

Числовым неравенством называют неравенство, в записи которого обе стороны имеют числа и числовые выражения.

Числовые неравенства рассматриваем еще в школе после изучения натуральных чисел. Такие операции сравнения изучаются поэтапно. Первоначальные имею вид 1 < 5 , 5 + 7 > 3 . После чего правила дополняются, а неравенства усложняются, тогда получаем неравенства вида 5 2 3 > 5 , 1 (2) , ln 0 . 73 - 17 2 < 0 .

Свойства числовых неравенств

Чтобы правильно работать с неравенствами, необходимо использовать свойства числовых неравенств. Они идут из понятия неравенства. Такое понятие задается при помощи утверждения, которое обозначается как «больше» или «меньше».

Определение 2

  • число a больше b , когда разность a - b – положительное число;
  • число a меньше b , когда разность a - b – отрицательное число;
  • число a равно b , когда разность a - b равняется нулю.

Определение используется при решении неравенств с отношениями «меньше или равно», «больше или равно». Получаем, что

Определение 3

  • a больше или равно b , когда a - b является неотрицательным числом;
  • a меньше или равно b , когда a - b является неположительным числом.

Определения будут использованы при доказательствах свойств числовых неравенств.

Основные свойства

Рассмотрим 3 основные неравенства. Использование знаков < и > характерно при свойствах:

Определение 4

  • антирефлексивности , которое говорит о том, что любое число a из неравенств a < a и a > a считается неверным. Известно, что для любого a имеет место быть равенство a − a = 0 , отсюда получаем, что а = а. Значит, a < a и a > a неверно. Например, 3 < 3 и - 4 14 15 > - 4 14 15 являются неверными.
  • ассиметричности . Когда числа a и b являются такими, что a < b , то b > a , и если a > b , то b < a . Используя определение отношений «больше», «меньше» обоснуем его. Так как в первой части имеем, что a < b , тогда a − b является отрицательным числом. А b − a = − (a − b) положительное число, потому как число противоположно отрицательному числу a − b . Отсюда следует, что b > a . Аналогичным образом доказывается и вторая его часть.

Пример 1

Например, при заданном неравенстве 5 < 11 имеем, что 11 > 5 , значит его числовое неравенство − 0 , 27 > − 1 , 3 перепишется в виде − 1 , 3 < − 0 , 27 .

Перед тем, как перейти к следующему свойству, заметим, что при помощи ассиметричности можно читать неравенство справа налево и наоборот. Таким образом, числовое неравенство можно изменять и менять местами.

Определение 5

  • транзитивности . Когда числа a , b , c соответствуют условию a < b и b < c , тогда a < c , и если a > b и b > c , тогда a > c .

Доказательство 1

Первое утверждение можно доказать. Условие a < b и b < c означает, что a − b и b − c являются отрицательными, а разность а - с представляется в виде (a − b) + (b − c) , что является отрицательным числом, потому как имеем сумму двух отрицательных a − b и b − c . Отсюда получаем, что а - с является отрицательным числом, а значит, что a < c . Что и требовалось доказать.

Аналогичным образом доказывается вторая часть со свойством транизитивности.

Пример 2

Разобранное свойство рассматриваем на примере неравенств − 1 < 5 и 5 < 8 . Отсюда имеем, что − 1 < 8 . Аналогичным образом из неравенств 1 2 > 1 8 и 1 8 > 1 32 следует, что 1 2 > 1 32 .

Числовые неравенства, которые записываются с помощью нестрогих знаков неравенства, обладают свойством рефлексивности, потому как a ≤ a и a ≥ a могут иметь случай равенства а = а. им присуща ассиметричность и транзитивность.

Определение 6

Неравенства, имеющие в записи знаки ≤ и ≥ , имеют свойства:

  • рефлексивности a ≥ a и a ≤ a считаются верными неравенствами;
  • антисимметричности, когда a ≤ b , тогда b ≥ a , и если a ≥ b , тогда b ≤ a .
  • транзитивности, когда a ≤ b и b ≤ c , тогда a ≤ c , а также, если a ≥ b и b ≥ c , то тогда a ≥ c .

Доказательство производится аналогичным образом.

Другие важные свойства числовых неравенств

Для дополнения основных свойств неравенств используются результаты, которые имеют практическое значение. Применяется принцип метода оценка значений выражений, на которых и базируются принципы решения неравенств.

Данный пункт раскрывает свойства неравенств для одного знака строгого неарвенства. Аналогично производится для нестрогих. Рассмотрим на примере, сформулировав неравенство если a < b и c являются любыми числами, то a + c < b + c . Справедливыми окажутся свойства:

  • если a > b , то a + c > b + c ;
  • если a ≤ b , то a + c ≤ b + c ;
  • если a ≥ b , то a + c ≥ b + c .

Для удобного представления дадим соответствующее утверждение, которое записывается и приводятся доказательства, показываются примеры использования.

Определение 7

Прибавление или вычисления числа к обеим сторонам. Иначе говоря, когда a и b соответствуют неравенству a < b , тогда для любого такого числа имеет смысл неравенство вида a + c < b + c .

Доказательство 2

Чтобы доказать это, необходимо, чтобы уравнение соответствовало условию a < b . Тогда (a + c) − (b + c) = a + c − b − c = a − b . Из условия a < b получим, что a − b < 0 . Значит, (a + c) − (b + c) < 0 , откуда a + c < b + c . Множество действительных числе могут быть изменены с помощью прибавления противоположного числа – с.

Пример 3

К примеру, если обе части неравенства 7 > 3 увеличиваем на 15 , тогда получаем, что 7 + 15 > 3 + 15 . Это равно 22 > 18 .

Определение 8

Когда обе части неравенства умножить или разделить на одно и то же число c , получим верное неравенство. Если взять число c отрицательным, то знак поменяется на противоположный. Иначе это выглядит так: для a и b неравенство выполняется, когда a < b и c являются положительными числами, то a· c < b · c , а если v является отрицательным числом, тогда a · c > b · c .

Доказательство 3

Когда имеется случай c > 0 , необходимо составить разность левой и правой частей неравенства. Тогда получаем, что a · c − b · c = (a − b) · c . Из условия a < b , то a − b < 0 , а c > 0 , тогда произведение (a − b) · c будет отрицательным. Отсюда следует, что a · c − b · c < 0 , где a · c < b · c . Другая часть доказывается аналогичным образом.

При доказательстве деление на целое число можно заменить умножением на обратное заданному, то есть 1 c . Рассмотрим пример свойства на определенных числах.

Пример 4

Разрешено обе части неравенства 4 < 6 умножаем на положительное 0 , 5 , тогда получим неравенство вида − 4 · 0 , 5 < 6 · 0 , 5 , где − 2 < 3 . Когда обе части делим на - 4 , то необходимо изменить знак неравенства на противоположный. отсюда имеем, что неравенство примет вид − 8: (− 4) ≥ 12: (− 4) , где 2 ≥ − 3 .

Теперь сформулируем вытекающие два результата, которые используются при решении неравенств:

  • Следствие 1. При смене знаков частей числового неравенства меняется сам знак неравенства на противоположный, как a < b , как − a > − b . Это соответствует правилу умножения обеих частей на - 1 . Оно применимо для перехода. Например, − 6 < − 2 , то 6 > 2 .
  • Следствие 2. При замене обратными числами частей числового неравенства на противоположный, меняется и его знак, причем неравенство останется верным. Отсюда имеем, что a и b являются положительными числами, a < b , 1 a > 1 b .

При делении обеих частей неравенства a < b разрешается на число a · b . Данное свойство используется при верном неравенстве 5 > 3 2 имеем, что 1 5 < 2 3 . При отрицательных a и b c условием, что a < b , неравенство 1 a > 1 b может получиться неверным.

Пример 5

Например, − 2 < 3 , однако, - 1 2 > 1 3 являются неверным равенством.

Все пункты объединяет то, что действия над частями неравенства дают верное неравенство на выходе. Рассмотрим свойства, где изначально имеется несколько числовых неравенств, а его результат получим при сложении или умножении его частей.

Определение 9

Когда числа a , b , c , d справедливы для неравенств a < b и c < d , тогда верным считается a + c < b + d . Свойство можно формировать таким образом: почленно складывать числа частей неравенства.

Доказательство 4

Докажем, что (a + c) − (b + d) является отрицательным числом, тогда получим, что a + c < b + d . Из условия имеем, что a < b и c < d . Выше доказанное свойство позволяет прибавлять к обеим частям одинаковое число. Тогда увеличим неравенство a < b на число b , при c < d , получим неравенства вида a + c < b + c и b + c < b + d . Полученное неравенство говорит о том, что ему присуще свойство транзитивности.

Свойство применяется для почленного сложения трех, четырех и более числовых неравенств. Числам a 1 , a 2 , … , a n и b 1 , b 2 , … , b n справедливы неравенства a 1 < b 1 , a 2 < b 2 , … , a n < b n , можно доказать метод математической индукции, получив a 1 + a 2 + … + a n < b 1 + b 2 + … + b n .

Пример 6

Например, при данных трех числовых неравенствах одного знака − 5 < − 2 , − 1 < 12 и 3 < 4 . Свойство позволяет определять то, что − 5 + (− 1) + 3 < − 2 + 12 + 4 является верным.

Определение 10

Почленное умножение обеих частей дает в результате положительное число. При a < b и c < d , где a , b , c и d являются положительными числами, тогда неравенство вида a · c < b · d считается справедливым.

Доказательство 5

Чтобы доказать это, необходимо обе части неравенства a < b умножить на число с, а обе части c < d на b . В итоге получим, что неравенства a · c < b · c и b · c < b · d верные, откуда получим свойство транизитивности a · c < b · d .

Это свойство считается справедливым для количества чисел, на которые необходимо умножить обе части неравенства. Тогда a 1 , a 2 , … , a n и b 1 , b 2 , … , b n являются положительные числами, где a 1 < b 1 , a 2 < b 2 , … , a n < b n , то a 1 · a 2 · … · a n < b 1 · b 2 · … · b n .

Заметим, что при записи неравенств имеются неположительные числа, тогда их почленное умножение приводит к неверным неравенствам.

Пример 7

К примеру, неравенство 1 < 3 и − 5 < − 4 являются верными, а почленное их умножение даст результат в виде 1 · (− 5) < 3 · (− 4) , считается, что − 5 < − 12 это является неверным неравенством.

Следствие: Почленное умножение неравенств a < b с положительными с a и b , причем получается a n < b n .

Свойства числовых неравенств

Рассмотрим ниже приведенную свойства числовых неравенств.

  1. a < a , a > a - неверные неравенства,
    a ≤ a , a ≥ a - верные неравенства.
  2. Если a < b , то b > a - антисимметричность.
  3. Если a < b и b < c то a < c - транзитивность.
  4. Если a < b и c - любоое число, то a + b < b + c .
  5. Если a < b и c - положительное число, то a · c < b · c ,
    Если a < b и c - отрицательное число, то a · c > b · c .

Следствие 1: если a < b , то - a > - b .

Следствие 2: если a и b - положительные числа и a < b , то 1 a > 1 b .

  1. Если a 1 < b 1 , a 2 < b 2 , . . . , a n < b n , то a 1 + a 2 + . . . + a n < b 1 + b 2 + . . . + b n .
  2. Если a 1 , a 2 , . . . , a n , b 1 , b 2 , . . . , b n - положительные числа и a 1 < b 1 , a 2 < b 2 , . . . , a n < b n , то a 1 · a 2 · . . . · a n < b 1 · b 2 · . . . b n .

Cледствие 1: если a < b , a и b - положительные числа, то a n < b n .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Числовые неравенства и их свойства

В презентации подробно изложены содержание тем ЧИСЛОВЫЕ НЕРАВЕНСТВА и СВОЙСТВА ЧИСЛОВЫХ НЕРАВЕНСТВ, приведены примеры на доказательство числовых неравенств. (Алгебра 8 класс, автор Макарычев Ю.Н.)

Просмотр содержимого документа
«Числовые неравенства и их свойства»

Числовые неравенства

и их свойства

учитель математики МОУ «Упшинская ООШ»

Оршанского района Республики Марий Эл

(К учебнику Ю.А.Макарычева Алгебра 8


Числовые неравенства

Результат сравнения двух и более чисел записывают в виде неравенств, используя знаки , , =

Сравнение чисел мы осуществляем, пользуясь различными правилами (способами). Удобно иметь обобщенный способ сравнения, который охватывает все случаи.


Определение:

Число а больше числа b, если разность ( a – b) – положительное число.

Число а меньше числа b, если разность ( a – b) – отрицательное число.

Число а равно числу b, если разность ( a – b) – равна нулю


Обобщенный способ сравнения чисел

Пример 1.


Применение обобщенного способа сравнения чисел для доказательства неравенств

Пример 2. Доказать, что среднее арифметическое двух положительных чисел не меньше среднего геометрического этих чисел.





Если обе части верного неравенства умножить или разделить на одно и то же положительное число, то получится верное неравенство.

Если обе части верного неравенства умножить или разделить на одно и то же отрицательное число и изменить знак неравенства на противоположный, то получится верное неравенство.





Р = 3а

Умножим на 3 обе части каждого из неравенств

54,2 ∙ 3 а ∙ 3

162,6

Применение свойств числовых неравенств

Представлены основные виды неравенств, включая неравенства Бернулли, Коши - Буняковского, Минковского, Чебышева. Рассмотрены свойства неравенств и действия над ними. Даны основные методы решения неравенств.

Формулы основных неравенств

Формулы универсальных неравенств

Универсальные неравенства выполняются при любых значениях входящих в них величин. Ниже перечислены основные виды универсальных неравенств.

1) | a ± b | ≤ |a| + |b| ; | a 1 ± a 2 ± ... ± a n | ≤ |a 1 | + |a 2 | + ... + |a n |

2) |a| + |b| ≥ | a - b | ≥ | |a| - |b| |

3)
Равенство имеет место только при a 1 = a 2 = ... = a n .

4) Неравенство Коши - Буняковского

Равенство имеет место тогда и только тогда, когда α a k = β b k для всех k = 1, 2, ..., n и некоторых α, β, |α| + |β| > 0 .

5) Неравенство Минковского , при p ≥ 1

Формулы выполнимых неравенств

Выполнимые неравенства выполняются при определенных значениях входящих в них величин.

1) Неравенство Бернулли:
.
В более общем виде:
,
где , числа одного знака и больше, чем -1 : .
Лемма Бернулли:
.
См. «Доказательства неравенств и леммы Бернулли ».

2)
при a i ≥ 0 (i = 1, 2, ..., n) .

3) Неравенство Чебышева
при 0 < a 1 ≤ a 2 ≤ ... ≤ a n и 0 < b 1 ≤ b 2 ≤ ... ≤ b n
.
При 0 < a 1 ≤ a 2 ≤ ... ≤ a n и b 1 ≥ b 2 ≥ ... ≥ b n > 0
.

4) Обобщенные неравенства Чебышева
при 0 < a 1 ≤ a 2 ≤ ... ≤ a n и 0 < b 1 ≤ b 2 ≤ ... ≤ b n и k натуральном
.
При 0 < a 1 ≤ a 2 ≤ ... ≤ a n и b 1 ≥ b 2 ≥ ... ≥ b n > 0
.

Свойства неравенств

Свойства неравенств - это набор тех правил, которые выполняются при их преобразовании. Ниже представлены свойства неравенств. Подразумевается, что исходные неравенства выполняются при значениях x i (i = 1, 2, 3, 4) , принадлежащих некоторому, заранее определенному, интервалу.

1) При изменении порядка следования сторон, знак неравенства меняется на противоположный.
Если x 1 < x 2 , то x 2 > x 1 .
Если x 1 ≤ x 2 , то x 2 ≥ x 1 .
Если x 1 ≥ x 2 , то x 2 ≤ x 1 .
Если x 1 > x 2 , то x 2 < x 1 .

2) Одно равенство эквивалентно двум нестрогим неравенствам разного знака.
Если x 1 = x 2 , то x 1 ≤ x 2 и x 1 ≥ x 2 .
Если x 1 ≤ x 2 и x 1 ≥ x 2 , то x 1 = x 2 .

3) Свойство транзитивности
Если x 1 < x 2 и x 2 < x 3 , то x 1 < x 3 .
Если x 1 < x 2 и x 2 ≤ x 3 , то x 1 < x 3 .
Если x 1 ≤ x 2 и x 2 < x 3 , то x 1 < x 3 .
Если x 1 ≤ x 2 и x 2 ≤ x 3 , то x 1 ≤ x 3 .

4) К обеим частям неравенства можно прибавить (вычесть) одно и то же число.
Если x 1 < x 2 , то x 1 + A < x 2 + A .
Если x 1 ≤ x 2 , то x 1 + A ≤ x 2 + A .
Если x 1 ≥ x 2 , то x 1 + A ≥ x 2 + A .
Если x 1 > x 2 , то x 1 + A > x 2 + A .

5) Если есть два или более неравенств со знаком одного направления, то их левые и правые части можно сложить.
Если x 1 < x 2 , x 3 < x 4 , то x 1 + x 3 < x 2 + x 4 .
Если x 1 < x 2 , x 3 ≤ x 4 , то x 1 + x 3 < x 2 + x 4 .
Если x 1 ≤ x 2 , x 3 < x 4 , то x 1 + x 3 < x 2 + x 4 .
Если x 1 ≤ x 2 , x 3 ≤ x 4 , то x 1 + x 3 ≤ x 2 + x 4 .
Аналогичные выражения имеют место для знаков ≥, >.
Если в исходных неравенствах имеются знаки не строгих неравенств и хотя бы одно строгое неравенство (но все знаки имеют одинаковое направление), то при сложении получается строгое неравенство.

6) Обе части неравенства можно умножить (разделить) на положительное число.
Если x 1 < x 2 и A > 0 , то A · x 1 < A · x 2 .
Если x 1 ≤ x 2 и A > 0 , то A · x 1 ≤ A · x 2 .
Если x 1 ≥ x 2 и A > 0 , то A · x 1 ≥ A · x 2 .
Если x 1 > x 2 и A > 0 , то A · x 1 > A · x 2 .

7) Обе части неравенства можно умножить (разделить) на отрицательное число. При этом знак неравенства изменится на противоположный.
Если x 1 < x 2 и A < 0 , то A · x 1 > A · x 2 .
Если x 1 ≤ x 2 и A < 0 , то A · x 1 ≥ A · x 2 .
Если x 1 ≥ x 2 и A < 0 , то A · x 1 ≤ A · x 2 .
Если x 1 > x 2 и A < 0 , то A · x 1 < A · x 2 .

8) Если есть два или более неравенств с положительными членами, со знаком одного направления, то их левые и правые части можно умножить друг на друга.
Если x 1 < x 2 , x 3 < x 4 , x 1 , x 2 , x 3 , x 4 > 0 то x 1 · x 3 < x 2 · x 4 .
Если x 1 < x 2 , x 3 ≤ x 4 , x 1 , x 2 , x 3 , x 4 > 0 то x 1 · x 3 < x 2 · x 4 .
Если x 1 ≤ x 2 , x 3 < x 4 , x 1 , x 2 , x 3 , x 4 > 0 то x 1 · x 3 < x 2 · x 4 .
Если x 1 ≤ x 2 , x 3 ≤ x 4 , x 1 , x 2 , x 3 , x 4 > 0 то x 1 · x 3 ≤ x 2 · x 4 .
Аналогичные выражения имеют место для знаков ≥, >.
Если в исходных неравенствах имеются знаки не строгих неравенств и хотя бы одно строгое неравенство (но все знаки имеют одинаковое направление), то при умножении получается строгое неравенство.

9) Пусть f(x) - монотонно возрастающая функция. То есть при любых x 1 > x 2 , f(x 1) > f(x 2) . Тогда к обеим частям неравенства можно применить эту функцию, от чего знак неравенства не изменится.
Если x 1 < x 2 , то f(x 1) < f(x 2) .
Если x 1 ≤ x 2 , то f(x 1) ≤ f(x 2) .
Если x 1 ≥ x 2 , то f(x 1) ≥ f(x 2) .
Если x 1 > x 2 , то f(x 1) > f(x 2) .

10) Пусть f(x) - монотонно убывающая функция, То есть при любых x 1 > x 2 , f(x 1) < f(x 2) . Тогда к обеим частям неравенства можно применить эту функцию, от чего знак неравенства изменится на противоположный.
Если x 1 < x 2 , то f(x 1) > f(x 2) .
Если x 1 ≤ x 2 , то f(x 1) ≥ f(x 2) .
Если x 1 ≥ x 2 , то f(x 1) ≤ f(x 2) .
Если x 1 > x 2 , то f(x 1) < f(x 2) .

Методы решения неравенств

Решение неравенств методом интервалов

Метод интервалов применим, если в неравенство входит одна переменная, которую обозначим как x , и оно имеет вид:
f(x) > 0
где f(x) - непрерывная функция, имеющая конечное число точек разрывов. Знак неравенства может быть любым: >, ≥, <, ≤ .

Метод интервалов заключается в следующем.

1) Находим область определения функции f(x) и отмечаем ее интервалами на числовой оси.

2) Находим точки разрыва функции f(x) . Например, если это дробь, то находим точки, в которых знаменатель обращается в нуль. Отмечаем эти точки на числовой оси.

3) Решаем уравнение
f(x) = 0 .
Корни этого уравнения отмечаем на числовой оси.

4) В результате числовая ось окажется разбитой точками на интервалы (отрезки). Внутри каждого интервала, входящего в область определения, выбираем любую точку и в этой точке вычисляем значение функции. Если это значение больше нуля, то над отрезком (интервалом) ставим знак „+“ . Если это значение меньше нуля, то над отрезком (интервалом) ставим знак „-“ .

5) Если неравенство имеет вид: f(x) > 0 , то выбираем интервалы с знаком „+“ . Решением неравенства будет объединение этих интервалов, в которые не входят их границы.
Если неравенство имеет вид: f(x) ≥ 0 , то к решению добавляем точки, в которых f(x) = 0 . То есть часть интервалов, возможно, будут иметь закрытые границы (граница принадлежит интервалу). другая часть может иметь открытые границы (граница не принадлежит интервалу).
Аналогично, если неравенство имеет вид: f(x) < 0 , то выбираем интервалы с знаком „-“ . Решением неравенства будет объединение этих интервалов, в которые не входят их границы.
Если неравенство имеет вид: f(x) ≤ 0 , то к решению добавляем точки, в которых f(x) = 0 .

Решение неравенств, применяя их свойства

Этот метод применим для неравенств любой сложности. Он состоит в том, чтобы, применяя свойства (представленные выше), привести неравенства к более простому виду и получить решение. Вполне возможно, что при этом получится не одно, а система неравенств. Это универсальный метод. Он применим для любых неравенств.

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

Урок и презентация на тему: "Основные свойства числовых неравенств и способы их решения."

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 8 класса
Комбинаторика и теория вероятностей Уравнения и неравенства

Введение в числовые неравенства

Ребята, с неравенствами мы уже сталкивались, например, когда начинали знакомиться с понятием корня квадратного . Интуитивно понятно, что с помощью неравенств можно оценить, какое из данных чисел больше или меньше. Для математического описания достаточно добавить специальный символ, который будет означать либо больше, либо меньше.

Запись выражения $a>b$ на математическом языка означает, что число $a$ больше числа $b$. В свою очередь, это значит, что $a-b$ - положительное число.
Запись выражения $a

Как и практически все математические объекты неравенства имеют некоторые свойства. Изучением этих свойств мы и займемся на этом уроке.

Свойство 1.
Если $a>b$ и $b>c$, то $a>c$.

Доказательство.
Очевидно, что $10>5$, и $5>2$, и конечно $10>2$. Но математика любит строгие доказательства для самого общего случая.
Если $a>b$, то $a-b$ - положительное число. Если $b>c$, то $b-c$ - положительное число. Давайте сложим два полученных положительных числа.
$a-b+b-c=a-c$.
Сумма двух положительных чисел есть положительное число, но тогда $a-c$ также положительное число. Из чего следует, что $a>c$. Свойство доказано.

Более наглядно данное свойство можно показать, используя числовую прямую. Если $a>b$, то число $a$ на числовой прямой будет лежать правее $b$. Соответственно, если $b>c$, то число $b$ будет лежать правее числа $с$.
Как видно из рисунка точка $a$ в нашем случае находится правее точки $c$, а это означает, что $a>c$.

Свойство 2.
Если $a>b$, то $a+c>b+c$.
Иначе говоря, если число $a$ больше числа $b$, то какое бы мы число не прибавили (положительное или отрицательное) к этим числам, знак неравенства будет также сохраняться. Доказывается данное свойство очень легко. Нужно выполнить вычитание. Та переменная, которую прибавляли, исчезнет и получится верное исходное неравенство.

Свойство 3.
а) Если обе части неравенства умножить на положительное число, то знак неравенства сохраняется.
Если $a>b$ и $c>0$, тогда $ac>bc$.
б) Если обе части неравенства умножить на отрицательное число, то знак неравенства следует поменять на противоположный.
Если $a>b$ и $c Если $abc$.

При делении следует действовать тем же образом (делим на положительное число - знак сохраняется, делим на отрицательно число - знак меняется).

Свойство 4.
Если $a>b$ и $c>d$, то $a+c>b+d$.

Доказательство.
Из условия: $a-b$ - положительное число и $c-d$ - положительное число.
Тогда сумма $(a-b)+(c-d)$ - тоже положительное число.
Поменяем местами некоторые слагаемые $(a+с)-(b+d)$.
От перемены мест слагаемых сумма не изменяется.
Значит $(a+с)-(b+d)$ - положительное число и $a+c>b+d$.
Свойство доказано.

Свойство 5.
Если $a, b ,c, d$ - положительные числа и $a>b$, $c>d$, то $ac>bd$.

Доказательство.
Так как $a>b$ и $c>0$, то, используя свойство 3, имеем $ac>bc$.
Так как $c>d$ и $b>0$, то, используя свойство 3, имеем $cb>bd$.
Итак, $ac>bc$ и $bc >bd$.
Тогда, используя свойство 1, получаем $ac>bd$. Что и требовалось доказать.

Определение.
Неравенства вида $a>b$ и $c>d$ ($a Неравенства вида $a>b$ и $cd$) называются неравенствами противоположного смысла.

Тогда свойство 5 можно перефразировать. При умножение неравенств одного смысла, у которых левые и правые части положительные, получается неравенство того же смысла.

Свойство 6.
Если $a>b$ ($a>0$, $b>0$), то $a^n>b^n$, где $n$ – любое натуральное число.
Если обе части неравенства положительные числа и их возвести в одну и ту же натуральную степень, то получится неравенство того же смысла.
Заметим: если $n$ – нечетное число, то для любых по знаку чисел $a$ и $b$ свойство 6 выполняется.

Свойство 7.
Если $a>b$ ($a>0$, $b>0$), то $\frac{1}{a}

Доказательство.
Чтобы доказать данное свойство, необходимо при вычитании $\frac{1}{a}-\frac{1}{b}$ получить отрицательное число.
$\frac{1}{a}-\frac{1}{b}=\frac{b-a}{ab}=\frac{-(a-b)}{ab}$.

Мы знаем, что $a-b$ - положительное число, и произведение двух положительных чисел - тоже положительное число, т.е. $ab>0$.
Тогда $\frac{-(a-b)}{ab}$ - отрицательное число. Свойство доказано.

Свойство 8.
Если $a>0$, то выполняется неравенство: $a+\frac{1}{a}≥2$.

Доказательство.
Рассмотрим разность.
$a+\frac{1}{a}-2=\frac{a^2-2a+1}{a}=\frac{(a-1)^2}{a}$ - неотрицательное число.
Свойство доказано.

Свойство 9. Неравенство Коши (среднее арифметическое больше либо равно среднего геометрического).
Если $a$ и $b$ - неотрицательные числа, то выполняется неравенство: $\frac{a+b}{2}≥\sqrt{ab}$.

Доказательство.
Рассмотрим разность:
$\frac{a+b}{2}-\sqrt{ab}=\frac{a-2\sqrt{ab}+b}{2}=\frac{(\sqrt{a}-\sqrt{b})^2}{2}$ - неотрицательное число.
Свойство доказано.

Примеры решения неравенств

Пример 1.
Известно, что $-1.5 а) $3a$.
б) $-2b$.
в) $a+b$.
г) $a-b$.
д) $b^2$.
е) $a^3$.
ж) $\frac{1}{b}$.

Решение.
а) Воспользуемся свойством 3. Умножим на положительное число, значит знак неравенства не меняется.
$-1.5*3 $-4.5<3a<6.3$.

Б) Воспользуемся свойством 3. Умножим на отрицательное число, значит знак неравенства меняется.
$-2*3.1>-2*b>-2*5.3$.
$-10.3
в) Сложив неравенства одинакового смысла, получим неравенство того же смысла.
$-1.5+3.1 $1.6

Г) Умножим все части неравенства $3.1 $-5.3<-b<-3.1$.
Теперь выполним операцию сложения.
$-1.5-5.3 $-6.8

Д) Все части неравенства положительны, возведя их в квадрат, получим неравенство того же смысла.
${3.1}^2 $9.61

Е) Степень неравенства нечетная, тогда можно смело возводить в степень и не менять знак.
${(-1.5)}^3 $-3.375

Ж) Воспользуемся свойством 7.
$\frac{1}{5.3}<\frac{1}{b}<\frac{1}{3.1}$.
$\frac{10}{53}<\frac{1}{b}<\frac{10}{31}$.

Пример 2.
Сравните числа:
а) $\sqrt{5}+\sqrt{7}$ и $2+\sqrt{8}$.
б) $π+\sqrt{8}$ и $4+\sqrt{10}$.

Решение.
а) Возведем каждое из чисел в квадрат.
$(\sqrt{5}+\sqrt{7})^2=5+2\sqrt{35}+7=12+\sqrt{140}$.
$(2+\sqrt{8})^2=4+4\sqrt{8}+8=12+\sqrt{128}$.
Вычислим разность квадратов этих квадратов.
$(\sqrt{5}+\sqrt{7})^2-(2+\sqrt{8})^2=12+\sqrt{140}-12-\sqrt{128}=\sqrt{140}-\sqrt{128}$.
Очевидно, получили положительное число, что означает:
$(\sqrt{5}+\sqrt{7})^2>(2+\sqrt{8})^2$.
Так как оба числа положительных, то:
$\sqrt{5}+\sqrt{7}>2+\sqrt{8}$.

Задачи для самостоятельного решения

1. Известно, что $-2.2Найти оценки чисел.
а) $4a$.
б) $-3b$.
в) $a+b$.
г) $a-b$.
д) $b^4$.
е) $a^3$.
ж) $\frac{1}{b}$.
2. Сравните числа:
а) $\sqrt{6}+\sqrt{10}$ и $3+\sqrt{7}$.
б) $π+\sqrt{5}$ и $2+\sqrt{3}$.

Множество всех действительных чисел можно представить, как объединение трех множеств: множество положительных чисел, множество отрицательных чисел и множество состоящее из одного числа - число нуль. Для того чтобы указать, что число а положительно, пользуются записью а > 0 , для указания отрицательного числа используют другую запиь a < 0 .

Сумма и произведение положительных чисел также являются положительными числами. Если число а отрицательно, то число положительно (и наоборот). Для любого положительного числа а найдется такое положительное рациональное число r , что r < а . Эти факты и лежат в основе теории неравенств.

По определению неравенство а > b (или, что то же самое, b < a) имеет место в том и только в том случае, если а - b > 0, т. е. если число а - b положительно.

Рассмотрим, в частности, неравенство а < 0 . Что означает это неравенство? Согласно приведенному выше определению оно означает, что 0 - а > 0 , т. е. -а > 0 или, иначе, что число положительно. Но это имеет место в том и только в том случае, если число а отрицательно. Итак, неравенство а < 0 означает, что число а отрицательно.

Часто используется также запись аb (или, что то же самое, ).
Запись аb , по определению, означает, что либо а > b , либо а = b . Если рассматривать запись аb как неопределенное высказывание, то в обозначениях математической логики можно записать

(a b) [(a > b) V (a = b)]

Пример 1. Верны ли неравенства 5 0, 0 0?

Неравенство 5 0 - это сложное высказывание состоящее из двух простых высказываний связанных логической связкой "или" (дизъюнкция). Либо 5 > 0 либо 5 = 0. Первое высказывание 5 > 0 - истинно, второе высказывание 5 = 0 - ложно. По определению дизъюнкции такое сложное высказывание истинно.

Аналогично обсуждается запись 00.

Неравенства вида а > b, а < b будем называть строгими, а неравенства вида ab, ab - нестрогими.

Неравенства а > b и с > d (или а < b и с < d ) будем называть неравенствами одинакового смысла, а неравенства а > b и c < d - неравенствами противоположного смысла. Отметим, что эти два термина (неравенства одинакового и противоположного смысла) относятся лишь к форме записи неравенств, а не к самим фактам, выражаемым этими неравенствами. Так, по отношению к неравенству а < b неравенство с < d является неравенством того же смысла, а в записи d > c (означающей то же самое) - неравенством противоположного смысла.

Наряду с неравенствами вида a > b , ab употребляются так называемые двойные неравенства, т. е. неравенства вида а < с < b , ас < b , a < cb ,
a
cb . По определению запись

а < с < b (1)
означает, что имеют место оба неравенства:

а < с и с < b.

Аналогичный смысл имеют неравенства асb, ас < b, а < сb.

Двойное неравенство (1) можно записать так:

(a < c < b) [(a < c) & (c < b)]

а двойное неравенство a ≤ c ≤ b можно записать в следующем виде:

(a c b) [(a < c)V(a = c) & (c < b)V(c = b)]

Перейдем теперь к изложению основных свойств и правил действий над неравенствами, договорившись, что в данной статье буквы a, b, с обозначают действительные числа, а n означает натуральное число.

1) Если а > b и b > с, то a > с (транзитивность).

Д о к а з а т е л ь с т в о.

Так как по условию а > b и b > c , то числа а - b и b - с положительны, и, следовательно, число а - с = (а - b) + (b - с) , как сумма положительных чисел, также является положительным. Это означает, по определению, что а > с .

2) Если а > b, то при любом с имеет место неравенство а + с > b + c.

Д о к а з а т е л ь с т в о.

Так как а > b , то число а - b положительно. Следовательно, число (а + с) - (b + с) = a + c - b - c = а - b также является положительным, т. е.
a + с > b + с.

3) Если a + b > c, то a > b - c , т. е. любое слагаемое можно перенести из одной части неравенства в другую, изменив знак этого слагаемого на противоположный.

Доказательство вытекает из свойства 2) достаточно к обеим частям неравенства а + b > с прибавить число - b.

4) Если а > b и с > d, то а + с > b + d, т. е. при сложении двух неравенств одного и того же смысла получается неравенство того же смысла.

Д о к а з а т е л ь с т в о.

В силу определения неравенства достаточно показать, что разность
(а + с} - (b + c) положительна. Эту разность можно записать следующим образом:
(a + c) - (b + d) = {а - b) + (с - d) .
Так как по условию числа а - b и с - d положительны, то (a + с) - (b + d) также есть число положительное.

Следствие. Из правил 2) и 4) вытекает следующее Правило вычитания неравенств: если а > b, с > d , то a - d > b - с (для доказательства достаточно к обеим частям неравенства а + с > b + d прибавить число - c - d ).

5) Если а > b, то при с > 0 имеем ас > bc, а при с < 0 имеем ас < bc.

Иначе говоря, при умножении обеих частей неравенства ни положительное число знак неравенства сохраняется (т. е. получается неравенство, того же смысла), а при умножении на отрицательное число знак неравенства меняется на противоположный (т. е. получается неравенство противоположного смысла.

Д о к а з а т е л ь с т в о.

Если а > b , то а - b есть число положительное. Следовательно, знак разности ас-bс = с(а - b) совпадает со знаком числа с : если с - положительное число, то и разность ас - bc положительна и потому ас > bс , а если с < 0 , то эта разность отрицательна и потому bc - ас положительно, т. е. bc > ас .

6) Если а > b > 0 и с > d > 0, то ас > bd, т. е. если все члены двух неравенств одинакового смысла положительны, то при почленном умножении этих неравенств получается неравенство того же смысла.

Д о к а з а т е л ь с т в о.

Имеем ас - bd = ac - bc + bc - bd = c(a - b) + b{c - d) . Так как с > 0, b > 0, a - b > 0, с - d > 0, то ас - bd > 0, т. е. ас > bd.

Замечание. Из доказательства видно, что условие d > 0 в формулировке свойства 6) несущественно: для справедливости этого свойства достаточно, чтобы были выполнены условия a > b > 0, с > d, с > 0 . Если же (при выполнении неравенств a > b, с > d ) числа а, b, с не будут все положительными, то неравенство ас > bd может не выполняться. Например, при а = 2, b =1, c = -2, d = -3 имеем a > b, с > d , но неравенство ас > bd (т. е. -4 > -3) не выполнено. Таким образом, требование положительности чисел а, b, с в формулировке свойства 6) существенно.

7) Если a ≥ b > 0 и c > d > 0, то(деление неравенств).

Д о к а з а т е л ь с т в о.

ИмеемЧислитель дроби, стоящей в правой части, положителен (см. свойства 5), 6)), знаменатель также положителен. Следовательно,. Этим свойство 7) доказано.

Замечание. Отметим важный частный случай правила 7), получающийся при а = b = 1: если с > d > 0, то. Таким образом, если члены неравенства положительны, то при переходе к обратным величинам получаем неравенство противоположного смысла. Предлагаем читателям проверить, что это правило сохраняется и в7) Если ab > 0 и c > d > 0, то(деление неравенств).

Д о к а з а т е л ь с т в о. то.

Мы доказали выше несколько свойств неравенств, записанных с помощью знака > (больше). Однако все эти свойства можно было бы формулировать с помощью знака < (меньше), так как неравенство b < а означает, по определению, то же самое, что и неравенство а > b . Кроме того, как это нетрудно проверить, доказанные выше свойства сохраняются и для нестрогих неравенств. Например, свойство 1) для нестрогих неравенств будет иметь следующий вид: если аb и bс , то ас .

Разумеется, сказанным выше не ограничиваются общие свойства неравенств. Существует еще целый ряд неравенств общего вида, связанных с рассмотрением степенной, показательной, логарифмической и тригонометрических функций. Общий подход для написания такого рода неравенств заключается в следующем. Если некоторая функция у = f(х) монотонно возрастает на отрезке [а, b] , то при x 1 > x 2 (где x 1 и x 2 принадлежат этому отрезку) мы имеем f(x 1) > f(x 2). Аналогично, если функция y = f{x) монотонно убывает на отрезке [а, b] , то при х 1 > х 2 (где х 1 и х 2 принадлежат этому отрезку) мы имеем f(x 1) < f(x 2 ). Разумеется, сказанное не отличается от определения монотонности, но для запоминания и написания неравенств этот прием очень удобен.

Так, например, для любого натурального n функция у = х n является монотонно возрастающей на луче }