Предложения состоящие только из грамматической основы. Что такое грамматическая основа? Определяем, сколько основ в предложении

§ 1 Особенности корневого строения

Одной из главных функций корня растения является всасывание из почвы воды и растворенных в ней минеральных веществ. В связи с этой функций корень имеет особенности как внешнего, так и внутреннего строения. Рассмотрим подробнее. Все типы корней в корневой системе: главные, боковые, придаточные имеют сходство в строении.

Все корни ветвятся, нарастают верхушкой и на них никогда не встречаются листья. Верхушка корня защищена колпачком из нескольких слоев мертвых клеток - корневым чехликом. Его функция состоит в защите зоны деления корня от механических повреждений. Клетки чехлика постоянно обновляются за счёт деления, это клетки образовательной ткани - меристемы. Некоторые клетки меристемы добавляют новые слои как к корню, так и к корневому чехлику.

За зоной деления расположена зона растяжения, где клетки уже не нарастают, а только вытягиваются. В этой зоне корень удлиняется и проталкивает зону деления вперед. Далее от зоны растяжения находится зона всасывания. Она представляет собой участок корня, густо покрытый корневыми волосками. Корневой волосок - это вырост клетки эпидермы корня, то есть покровного слоя. Данные клетки увеличивают поверхность всасывания почвенных растворов. Зона всасывания может постепенно перемещаться по корню: на переднем крае этой зоны появляются новые корневые волоски, а на заднем - постепенно отмирают старые. В результате этого процесса зона всасывания медленно продвигается вглубь почвы. На корне также выделяют еще две зоны: ветвления, где образуются боковые корни, и зону проведения - расположенную выше. Зона проведения отвечает за транспорт воды и минеральных веществ в надземные органы растения и транспорт органических веществ из стебля в корень, а также выполняет функцию опоры.

§ 2 Движение воды по растению

Как каждая клетка растения получает воду из почвы? Вода впитывается из почвы корневыми волосками, благодаря нагнетанию давления внутри этих клеток. Данное явление называют корневым давлением. Далее из клеток с корневыми волосками водный раствор просачивается в клетки корня и, перемещаясь из клетки в клетку попадает в сосуды. По сосудам корня вода поднимается сначала в стебель, а по сосудам стебля — к листьям растения.

Вода движется вверх по сосудам проводящей ткани (ксилеме), благодаря не только корневому давлению, но и за счет испарения воды в листьях. Недостаток воды в листьях, вызывает поверхностное натяжение в сосудах ксилемы, которое способно тянуть вверх весь столб воды, создавая массовый поток. Далее по ксилеме вода расходится по всему растению и расходуется для процессов обмена, веществ, фотосинтеза и испарения.

§ 3 Корни влаголюбивых и засухоустойчивых растений

Корни влаголюбивых и засухоустойчивых растений различаются по длине, толщине и расположению в почве. Корни некоторых растений могут достигать глубины до 15 метров, тем самым достигая выхода грунтовых вод в засушливых районах. Например, у подсолнечника, корни достигают 3 метров. Благодаря быстро внедряющемуся вглубь главному корню и сильной ветвистой системе боковых корней и корешков, подсолнечник может выдерживать засуху и хорошо усваивать питательные вещества и почвенную влагу. А вот у огурца глубина корня нередко остается на глубине не более полуметра и корень располагается «вширь», занимая определенную площадь.

Как все клетки, клетки корня нуждаются в дыхании. Они поглощают кислород из почвы и выделяют в нее углекислый газ. Поэтому для многих культурных растений применяют приемы обогащения почвы кислородом - рыхление, вспашка, боронование.

В теплой почве корни лучше усваивают влагу, чем в холодной. Поэтому для теплолюбивых растений нашего огорода мы используем укрытия для грядок - торф или пленку.

А замечали ли вы, что многие садоводы, выращивающие томаты, весной пересаживают саженцы, отщипывая верхушку корня. Зачем они так делают? Чтобы растение быстрее развивалось, необходимо много воды и питания.

Эти процессы обеспечит мощная корневая система. А возникает развитие ветвления корня тогда, когда главный корень не нарастает в длину, поэтому его и прищипывают.

§ 4 Краткие итоги по теме урока

1. Строение корня взаимосвязано с его основной функцией - всасыванием воды и проведением ее к побегу растения.

2. Во внешнем строении корня можно выделить следующие зоны: зона деления (с корневым чехликом), зона растяжения, зона всасывания, зона ветвления и зона проведения.

3. Корень всасывает воду за счет корневого давления и силы испарения с поверхности листьев.

4. Для развития корня необходимы: почвенная влага, кислород и тепло.

Использованные изображения:

Поданная корнем вода быстро перемеща-ется по растению к листьям. Возникает вопрос, как передвигается вода по растению ? Поглощенная корневыми волосками вода проходит рас-стояние в несколько миллиметров по живым клеткам, а затем уже поступает в мертвые сосуды ксилемы.

Передвижение воды по живым клеткам возмож-но благодаря наличию сосущей силы , возрастающей от корневого волоска к живым клеткам, прилегающим к сосудам ксилемы. Такое же распределение сосущей силы имеется и в живых клетках листа (рис. 124).

При передвижении воды по живым клеткам лис-та сосущая сила каждой последующей клетки должна отличаться на 0,1 атм. В одном из опы-тов удалось установить, что в листе плюща в третьей клетке от жилки имелась сосущая сила, равная 12,1 атм, а в 210-й клетке — 32,6 атм. Та-ким образом, на преодоление сопротивления 207 клеток разница в сосущей силе составила 20,5 атм, т. е. как раз около 0,1 атм на каж-дую клетку. Из этих данных следует, что сопро-тивление осмотическому передвижению воды по живым клеткам равняется около 1 атм на 1 мм проходимого водой пути. Отсюда становится понят-ным, почему растения, не имеющие сосудов (мхи, лишайники), не достигают больших размеров. Только в связи с появлением трахеид (папоротникообразные и голосеменные) и сосудов (по-крытосеменные) в процессе эволюции создалась возможность для растения достигать высоты в несколько десятков и даже свыше сотни метров (эвкалип-ты , секвойи).

Только небольшую часть своего пути в растении вода проходит по живым клеткам — в корнях, а затем в листьях. Большую часть пути вода проходит по сосудам корня, стебля и листа. Испарение воды с поверх-ности листьев создает наличие сосущей силы в клетках листа и корня и поддерживает постоянное передвижение воды по растению. Поэтому листья растений и получили название верхнего концевого двигате-ля , в отличие от корневой системы растения, — нижнего конце-вого двигателя , который нагнетает воду в растение.

О значении передвижения воды по мертвым клеткам древесины — сосу-дам и трахеидам — можно судить по такому опыту.

Если мы срежем ветку какого-либо травянистого растения и поставим ее в воду, то вода будет поступать к листьям, передвигаясь по сосудам бла-годаря испарению с их поверхности. Если закупорить полости сосудов погружением ветви в расплавленную желатину, а затем, когда желатина втянется в сосуды и застынет, соскоблить ее с поверхности среза и опустить ветку в воду, то листья быстро завянут. Этот опыт показывает, что по жи-вым клеткам паренхимы вода не может быстро перемещаться к листьям.

Испаряя воду с поверхности своих листьев, растения автоматически тянут воду по сосудам. Чем интенсивнее транспирация, тем сильнее сосет воду растение. Присасывающее действие транспирации легко обнаружить, если срезанную ветку герметически укрепить в верхнем конце стеклянной трубки, наполненной водой, нижний конец которой погружен в чашку со ртутью. По мере испарения воды на ее место в трубку будет втягиваться ртуть (рис. 125). Конец поднятию ртути кладет воздух, выделяющийся из межклетников, который прерывает сообщение сосудов с водой. Обычно, однако, в подобном опыте удается поднять ртуть на значительную высоту. Работа верхнего концевого двигателя играет значительно большую роль для растения по сравнению с нижним, так как она идет автоматически, за счет энергии солнечных лучей, нагре-вающих лист и повышающих испарение. Работа нижнего концевого двигателя связана с затратой энергии за счет расходования накопленных в процессе фотосинтеза ассимилятов. Однако вес-ной, когда еще не распустилась листва, или во влажных тенистых местообитани-ях, где транспирация очень невелика, основную роль в передвижении воды играет корневая система, нагнетающая воду в растение. Материал с сайта

Присасывающая сила листьев настолько велика, что если перерезать облиственную ветку, то наблюдается не вытекание, а заса-сывание воды. В высоких деревьях это сосание воды листьями передается вниз на десятки метров. В то же вре-мя известно, что любой всасывающий насос не может поднять воду на вы-соту, превышающую 10 м, так как вес этого водяного столба будет соответ-ствовать атмосферному давлению и им уравновешиваться. Наблюдаемое раз-личие между всасывающим насосом и стеблем растения зависит от сцепле-ния воды со стенками сосудов. Опыты с кольцом спорангия папоротника показали, что сила сцепления воды здесь составляет 300—350 атм. Как известно, кольцо на спорангии папоротника состоит из мертвых клеток, у которых внутренние и боковые стенки утолще-ны, а наружные тонки. При созревании спорангиев клетки эти, наполнен-ные водой, теряют ее и уменьшаются в размерах. При этом происходит втягивание внутрь тонкой стенки и сближение концов толстых стенок меж-ду собой. Получается как бы натянутая пружина, стремящаяся оторвать от стенок воду. Когда происходит отрыв воды, то пружина распрямляется и споры с силой разбрасываются из спорангия, как из метательной машины. Вызвать этот отрыв воды можно погружением спорангиев в концентрирован-ные растворы некоторых солей. Измерения показали, что сила, производя-щая отрыв воды, оказалась равной примерно 350 атм. Из изложенного понятно, что сплошные водяные столбы, заполняющие сосуды, крепко спа-яны благодаря силе сцепления. Вес столба воды в 100 м высоты соответству-ет всего лишь 10 атм. Таким образом, огромная сила сцепления позволяет воде в стеблях растений подниматься на высоту, значительно превышающую барометрическую. Корневое давление и присасывающее действие листьев двигают водяной ток на значительную высоту. Большое значение при этом имеют также поперечные перегородки в сосудах, так как воздух, попадая в сосуды, изолируется и из общей системы водоснабжения исключаются лишь небольшие участки.

Скорость движения воды по сосудам сравнительно невелика. Для лиственных древес-ных пород она составляет в среднем 20 см 3 в час на 1 см 2 поперечного се-чения древесины, а для хвойных всего 5 см 3 в час. В то же время кровь по артериям движется со скоростью 40—50 см 3 в секунду, а вода по водопровод-ным магистралям 100 см 3 на 1 см 2 сечения в секунду.

Поглощение воды корнем и ее транспорт у цветковых растений

Спецкурс «Физиология растений» предназначен для учащихся, изучающих биологию углубленно (11-й класс, 34 ч). Программа спецкурса предусматривает изучение раздела «Передвижение веществ по растению» на четырех уроках по темам «Поглощение воды корнем и ее транспорт у цветкового растения», «Транспирация и ее физиологическая роль», «Поглощение минеральных веществ корнем и транспорт ионов у цветковых растений», «Транспорт органических веществ у цветковых растений».

Урок «Поглощение воды корнем и ее транспорт у цветковых растений» рассчитан на 40–45 мин. В 10-м классе учащиеся изучают спецкурс «Анатомия и морфология растений» (34 ч), поэтому в 11-м классе вопросы анатомии и морфологии растений только повторяются по ходу урока. На уроках общей биологии и химии школьники уже изучили понятия осмос , осмотическое давление , поэтому и эти вопросы в ходе данного урока лишь повторяются.

Цели урока. Актуализировать знания о строении корневых волосков, ксилемы, молекулы воды, о понятиях осмоса, осмотического давления, кагезии, адгезии и др. Рассмотреть физиологические механизмы всасывания воды корнем. Изучить механизм передвижения воды у цветковых растений. Совершенствовать навыки учащихся в работе с лабораторным оборудованием, постановке опытов. Развивать интеллектуальные способности, логическое мышление, навыки познавательной самостоятельности у учащихся.

Оборудование: живые растения, побеги растений, пробирки, лупы, растительное масло, чернила, вазелин, стеклянная и резиновая трубки, скальпель и таблицы «Строение корня», «Клеточное строение листа», «Строение стебля».

Опыты, закладываемые учащимися накануне урока

Предлагаемые нами опыты широко известны, т.к. входят в программу основной школы, но объяснение школьниками полученных результатов должно быть более научным и глубоким, соответствующим уровню учащихся 11-го класса, изучающих биологию углубленно. Учитель назначает несколько учащихся, и каждый из них закладывает свой опыт (на этом уроке демонстрируются три опыта, значит, в их постановке будут задействованы три школьника).

Опыт № 1

Взять растение, выращенное во влажных опилках, отряхнуть его корневую систему и опустить его корни в пробирку с водой. Поверх воды для защиты от испарения налить масло. Отметить уровень воды на стенке пробирки. Через день вновь отметить уровень воды и сравнить его с первоначальным. Из полученных результатов сделать вывод.

Опыт № 2

У молодого растения бальзамина срезать стебель на 3–5 см выше корневой шейки. Пенек вокруг смазать вазелином и надеть на него резиновую трубку. Свободный конец ее соединить со стеклянной трубкой (рис. 1). Почву в горшке перед демонстрацией опыта полить теплой водой. Что вы наблюдаете? О чем свидетельствуют результаты опыта?

Рис. 1. Опыт, демонстрирующий корневое давление

Опыт № 3

Побег какого-либо дерева или кустарника поместите в сосуд с водой, подкрашенной чернилами. Через день препаровальным ножом (скальпелем) срежьте нижнюю часть (примерно 1–2 см) побега. Рассмотрите с помощью лупы поперечный разрез. Какой слой стебля окрасился? Объясните результаты опыта.

ХОД УРОКА

I. Изучение нового материала

1. Передвижение веществ у растений

Любой организм, а тем более сложно устроенный, нуждается в обмене веществ с окружающей средой, обмене веществ между клетками организма и обмене веществ внутри клеток. Это оказывается возможным лишь при наличии транспорта веществ внутри организма.
Какие процессы в живом организме обеспечивают транспорт веществ на небольшие расстояния?

Предполагаемые ответы. На небольшие расстояния транспорт веществ обеспечивают физические процессы диффузии (в том числе осмос), активный транспорт и токи цитоплазмы. (Эти процессы учащиеся изучали в 10-м классе на уроках общей биологии.)

Учитель. Действительно, у одноклеточных организмов и у тех многоклеточных, у которых достаточно велико отношение поверхности тела к его объему, эти способы транспорта работают хорошо.
Как переносятся вещества у крупных и, по сравнению с одноклеточными, более сложно устроенных организмов, ведь одной диффузии у них для этих целей явно недостаточно?

Предполагаемые ответы. У организмов, клетки которых сильно удалены друг от друга и от окружающей среды, возникают специальные системы транспорта на большие расстояния, гарантирующие быстрое перемещение нужных веществ.

Учитель. Какие транспортные системы у животных и растений вам известны?

Предполагаемые ответы. У животных – кровеносная система, а у растений – проводящая система, образованная ксилемой и флоэмой.

Учитель. Вы верно назвали так называемые циркуляционные системы животных и растений. Именно они обеспечивают надежный транспорт веществ этим организмам.
Таким образом, транспорт веществ – это доставка необходимых соединений к определенным органам и тканям с помощью специальных систем. Мы будем изучать способность растения транспортировать органические и неорганические вещества, ведь без их транспортировки было бы невозможно его нормальное функционирование. Процесс передвижения веществ по проводящим тканям растения называют транслокацией.

2. Вещества, транспортируемые растениями

Учитель. Перечислите важнейшие группы веществ, которые должны транспортироваться растением.

Предполагаемые ответы. Вода, газы, минеральные соли, органические вещества.

Учитель. Вы верно назвали основные группы веществ, транспортируемых растением. Теперь попробуем проследить путь этих веществ в растительном организме.

Предлагаю вам на основе знаний о строении растительных тканей и органов заполнить таблицу «Передвижение веществ у растений». Поможет вам в заполнении таблицы схема, находящаяся на ваших столах (рис. 3).

Рис. 3. Схема циркуляции воды, неорганических ионов и ассимилятов в растении. Вода и неорганические ионы, поглощенные корнем, передвигаются по ксилеме вверх с транспирационным током. Большая их часть транспортируется к листьям. В листьях значительное количество воды и неорганических ионов перемещается во флоэму и выносится из них вместе с сахарозой в токе ассимилятов. Буквой А обозначены места, специализированные на поглощении и ассимиляции исходных материалов из внешней среды. Буквы З и Р указывают соответственно места загрузки и разгрузки, О – точки, в которых происходит обмен между ксилемой и флоэмой

Учитель (проверка заполнения таблицы ). Вы верно заполнили таблицу, назвав вещества, транспортируемые растением, и указав путь этих веществ. Теперь вам предстоит более подробно ознакомиться с механизмом транспорта воды у растений. Начинается путь воды в растении с корня.

3. Поглощение воды корнем растения

Демонстрация опыта № 1. Об опыте и его результатах рассказывает ученик, заложивший его накануне урока. Из результатов опыта вытекает вывод о всасывании воды корнем растения.

Учитель. Вспомните, какие структуры корня всасывают воду и что они представляют собой по строению (демонстрация таблицы «Строение корня» ).

Предполагаемые ответы. Структурами корня, всасывающими воду, являются корневые волоски, расположенные в зоне всасывания. Они представляют собой цитоплазматические выросты клеток корневого эпидермиса.

Учитель. Цитоплазма корневого волоска и почвенный раствор отделены друг от друга мембраной. Что заставляет воду проникать в корневые волоски через мембрану?

Предполагаемые ответы. На основе знаний об осмосе можно предположить, что молекулы воды передвигаются из той области, где их концентрация высока (из раствора с низким осмотическим давлением), туда, где их концентрация низка (в раствор с более высоким осмотическим давлением). Значит цитоплазма клеток, образующих корневые волоски, более концентрированна, чем почвенный раствор. Именно это и обеспечивает своеобразную диффузию молекул воды из почвы в клетки корня.

Учитель. Вы верно определили причину всасывания воды корнем. В наши дни физиологи, когда хотят описать тенденцию молекул воды к перемещению из одного места в другое, пользуются термином «водный потенциал». Вода перемещается из области с более высоким водным потенциалом в область с более низким водным потенциалом, т.е. из почвы в корень. Процесс поглощения воды корнем отражает рис. 2., он также находится на ваших столах. Градиент водного потенциала поддерживается также и за счет передвижения воды по ксилеме, но об этом мы будем говорить чуть позже.
Таким образом, вода поглощается корневыми волосками за счет разницы водного потенциала почвенного раствора и цитоплазмы клеток, образующих корневые волоски. Затем вода проходит через кору корня в ксилему и поднимается по ней к листьям.

Рис. 2. Схема основных путей перемещения воды и неорганических ионов из почвы через эпидерму и кору в ксилему. Вода движется в основном по апопласту, пока не достигнет эндодермы, где апопластное движение перекрывается поясками Каспари. Пояски Каспари заставляют воду на пути к ксилеме пересечь плазматические мембраны и протопласты эндодермальных клеток. Пройдя сквозь плазматическую мембрану на внутренней поверхности эндодермы, вода может снова пойти по апопластному пути до полостей элементов ксилемы. Неорганические ионы активно поглощаются эпидермальными клетками и затем перемещаются по симпласту через кору в паренхимные клетки, из которых они перекачиваются в элементы ксилемы

Демонстрация опыта № 2. Об опыте и его результатах рассказывает ученик, заложивший его накануне урока. Жидкость, собравшаяся в стеклянной трубке, свидетельствует о способности корня создавать давление. Наверное, именно благодаря этому давлению и происходит снабжение водой надземных органов растения.

Учитель. Было высказано верное предположение о способности корня создавать давление, которое так и называется – корневое давление. Оно составляет 100–200 кПа. У некоторых растений корневое давление вызывает выделение капелек жидкости через гидатоды.
Что такое гидатоды и как называется процесс выделения капельно-жидкой влаги?

Предполагаемые ответы. Гидатоды – водяные устьица растений, а процесс выделения через них капелек жидкости называется гуттацией. (С этим понятием учащиеся знакомились при изучении выделительных тканей растений в 10-м классе.)

Учитель. Вы верно вспомнили название процесса выделения капелек воды через гидатоды. Верно было сказано и то, что благодаря корневому давлению вода поднимается вверх по стеблю. Но возникает проблема: ток жидкости, поднимаясь вверх, должен преодолевать большее давление, нежели способен развивать корень, то есть одного корневого давления обычно недостаточно, чтобы обеспечить передвижение воды вверх по ксилеме. Какая еще сила обеспечивает подъем воды? Сейчас нам предстоит решить эту проблему, познакомившись с механизмом подъема воды по ксилеме.

4. Подъем воды по ксилеме

Демонстрация опыта № 3. Об опыте и его результатах рассказывает третий ученик, также заложивший опыт накануне урока. На поперечном срезе стебля, рассмотренного с помощью лупы, четко видно, что окрасился слой древесины (вторичная древесина называется ксилемой). Из результатов опыта следует, что ксилема является водопроводной тканью растения, и что именно по ней вода поднимается от корня к листьям растения.

Учитель. Опыт наглядно подтверждает мысль о том, что ксилема в теле растения проводит воду. (Демонстрация таблицы «Строение стебля» .)
Вспомните, каково строение ксилемы.

Предполагаемые ответы. Ксилема цветковых растений состоит из двух типов структур, транспортирующих воду, – трахеид и трахей (сосудов). Сосуды ксилемы – мертвые трубки с узким просветом.

Учитель. Верно было сказано, что сосуды ксилемы являются мертвыми трубками с узким просветом. Диаметр их варьирует от 0,01 до 0,2 мм. Большие количества воды переносятся по ксилеме относительно быстро. Например, у высоких деревьев была зафиксирована скорость подъема воды до 8 м/ч. Но все же вернемся к ранее обозначенной проблеме. Как вы думаете, какие силы обеспечивают движение тока воды вверх по стеблю?

Предполагаемые ответы. Логика подсказывает две возможности: вода выталкивается снизу (но о корневом давлении мы уже говорили и сделали вывод о том, что его одного недостаточно для обеспечения восходящего ксилемного тока) или ее тянут сверху.

Учитель. Поскольку корневое давление одно не способно поднять воду к вершине большого дерева, давайте остановимся на гипотезе, предполагающей, что вода «протягивается» через все растение, тем более что эту гипотезу подтверждают имеющиеся данные.
Для изучения механизма движения воды по ксилеме предлагаю вам прочитать текст, который находится у каждого из вас на столе. После чтения обязательно ответьте на вопросы к тексту.

Текст для чтения

Теория передвижения воды известна как теория когезии (с этим понятием вы знакомились, изучая строение и свойства воды в 10-м классе на уроках общей биологии) – натяжения. Согласно этой теории, подъем воды от корней обусловлен испарением воды из клеток листа (вспомните строение листа). Испарение приводит к снижению водного потенциала клеток, примыкающих к ксилеме. Поэтому вода входит в эти клетки из ксилемного сока, у которого более высокий водный потенциал, и достигает концов жилок листа, откуда она испаряется (механизм испарения будет изучен на следующем уроке).
Сосуды ксилемы заполнены водой, и по мере того как вода выходит из сосудов, в столбе воды создается натяжение. Оно передается вниз по стеблю на всем пути от листа к корню благодаря сцеплению (когезии) молекул воды. (Подумайте, почему молекулы воды стремятся «прилипнуть» друг к другу.)
Благодаря когезии прочность на разрыв у воды достаточно высока и способна предотвратить разделение ее молекул под действием натяжения, необходимого для подъема воды по ксилеме высокого дерева, и создать массовый ток. При этом вода поступает в основание такого столба в корнях из соседних клеток корня.
Кроме того, молекулы воды стремятся прилипнуть к стенкам сосудов под действием сил адгезии (прилипания), имеющих электрическую природу.
Клеточные оболочки, вдоль которых движется вода, очень эффективно притягивают воду, что дает максимальные преимущества для адгезии воды и создает условия для проявления когезивности.

Вопросы к тексту

1. Как называется теория передвижения воды по ксилеме?
2. Почему молекулы воды стремятся «прилипнуть» друг к другу?
3. Почему утверждают, что энергию для движения воды и минеральных солей по растению поставляет не растение, а непосредственно Солнце?

Предполагаемые ответы. Теорию передвижения воды по ксилеме называют теорией «адгезии-когезии».
Молекулы воды полярны и притягиваются друг к другу электрическими силами, а затем удерживаются за счет водородных связей.
Энергию для движения воды поставляет Солнце, т.к. нагревание листьев способствует отрыву молекул воды от водного потока ксилемы, а это создает натяжение в столбе воды, которое передается вниз по стеблю благодаря когезии.

Учитель. Итак, движение воды в теле растения возможно благодаря исключительной способности ее молекул к когезии и адгезии, которую растения так умело используют. Таким образом, мы ответили на вопрос о причинах движения воды вверх по стеблю.

Материал сегодняшнего урока на этом исчерпан.

II. Закрепление знаний

Дать определение следующим понятиям: транспорт веществ, ксилема, флоэма, транслокация, осмос, осмотическое давление, водный потенциал, корневое давление, гидатоды, гуттация, когезия, адгезия.

III. Домашнее задание

Выучить теоретический материал. Устно ответить на следующие вопросы.

    Объясните, почему вода поднимается к вершинам высоких деревьев, тогда как механическим насосом ее можно поднять на высоту не более 10 м.

    Растение теряет воду вследствие отрицательного водного потенциала атмосферы. Как бы вы объяснили это утверждение?

    Фермеры редко удобряют посевы во время засухи, поскольку они на опыте убедились в том, что это может принести вред. Объясните, почему это так.

    Спонсор публикации статьи: старейшее риэлтерское агентство Москвы ООО «Агентство Ризолит» - Агентство недвижимости, мы на рынке с 1994 года! Воспользовавшись предложением агентства, Вы получите услуги высококвалифицированных специалистов с большим опытом успешной работы, которые помогут выгодно продать или купить квартиру в Москве. Подробнее ознакомиться с предложением и получить консультацию специалиста можно на сайте компании www.rizolit.ru

Филогенетически корень возник позже стебля и листа - в связи с переходом растений к жизни на суше и вероятно, произошёл от корнеподобных подземных веточек. У корня нет ни листьев, ни в определённом порядке расположенных почек. Для него характерен верхушечный рост в длину, боковые разветвления его возникают из внутренних тканей, точка роста покрыта корневым чехликом. Корневая система формируется на протяжении всей жизни растительного организма. Иногда корень может служить местом отложения в запас питательных веществ. В таком случае он видоизменяется.

Виды корней

Главный корень образуется из зародышевого корешка при прорастании семени. От него отходят боковые корни.

Придаточные корни развиваются на стеблях и листьях.

Боковые корни представляют собой ответвления любых корней.

Каждый корень (главный, боковые, придаточные) обладает способностью к ветвлению, что значительно увеличивает поверхность корневой системы, а это способствует лучшему укреплению растения в почве и улучшению его питания.

Типы корневых систем

Различают два основных типа корневых систем: стержневая, имеющая хорошо развитый главный корень, и мочковатая. Мочковатая корневая система состоит из большого числа придаточных корней, одинаковых по величине. Вся масса корней состоит из боковых или придаточных корешков и имеет вид мочки.

Сильно разветвлённая корневая система образует огромную поглощающую поверхность. Например,

  • общая длина корней озимой ржи достигает 600 км;
  • длина корневых волосков — 10 000 км;
  • общая поверхность корней — 200 м 2 .

Это во много раз превышает площадь надземной массы.

Если у растения хорошо выражен главный корень и развиваются придаточные корни, то формируется корневая система смешанного типа (капуста, помидор).

Внешнее строение корня. Внутреннее строение корня

Зоны корня

Корневой чехлик

Корень растёт в длину своей верхушкой, где находятся молодые клетки образовательной ткани. Растущая часть покрыта корневым чехликом, защищающим кончик корня от повреждений, и облегчает продвижение корня в почве во время роста. Последняя функция осуществляется благодаря свойству внешних стенок корневого чехлика покрываться слизью, что уменьшает трение между корнем и частичками почвы. Могут даже раздвигать частички почвы. Клетки корневого чехлика живые, часто содержат зёрна крахмала. Клетки чехлика постоянно обновляются за счёт деления. Участвует в положительных геотропических реакциях (направление роста корня к центру Земли).

Клетки зоны деления активно делятся, протяженность этой зоны у разных видов и у разных корней одного и того же растения неодинакова.

За зоной деления расположена зона растяжения (зона роста). Протяжённость этой зоны не превышает нескольких миллиметров.

По мере завершения линейного роста наступает третий этап формирования корня — его дифференциация, образуется зона дифференциации и специализации клеток (или зона корневых волосков и всасывания). В этой зоне уже различают наружный слой эпиблемы (ризодермы) с корневыми волосками, слой первичной коры и центральный цилиндр.

Строение корневого волоска

Корневые волоски — это сильно удлинённые выросты наружных клеток, покрывающих корень. Количество корневых волосков очень велико (на 1 мм 2 от 200 до 300 волосков). Их длина достигает 10 мм. Формируются волоски очень быстро (у молодых сеянцев яблони за 30-40 часов). Корневые волоски недолговечны. Они отмирают через 10-20 дней, а на молодой части корня отрастают новые. Это обеспечивает освоение корнем новых почвенных горизонтов. Корень непрерывно растёт, образуя всё новые и новые участки корневых волосков. Волоски могут не только поглощать готовые растворы веществ, но и способствовать растворению некоторых веществ почвы, а затем всасывать их. Участок корня, где корневые волоски отмерли, некоторое время способен всасывать воду, но затем покрывается пробкой и теряет эту способность.

Оболочка волоска очень тонкая, что облегчает поглощение питательных веществ. Почти всю клетку волоска занимает вакуоль, окружённая тонким слоем цитоплазмы. Ядро находится в верхней части клетки. Вокруг клетки образуется слизистый чехол, который содействует склеиванию корневых волосков с частицами почвы, что улучшает их контакт и повышает гидрофильность системы. Поглощению способствует выделение корневыми волосками кислот (угольной, яблочной, лимонной), которые растворяют минеральные соли.

Корневые волоски играют и механическую роль — они служат опорой верхушке корня, которая проходит между частичками почвы.

Под микроскопом на поперечном срезе корня в зоне всасывания видно его строение на клеточном и тканевом уровнях. На поверхности корня — ризодерма, под ней — кора. Наружный слой коры — экзодерма, вовнутрь от неё — основная паренхима. Её тонкостенные живые клетки выполняют запасающую функцию, проводят растворы питательных веществ в радиальном направлении — от всасывающей ткани к сосудам древесины. В них же происходит синтез ряда жизненно важных для растения органических веществ. Внутренний слой коры — эндодерма. Растворы питательных веществ, поступающие из коры в центральный цилиндр через клетки эндодермы, проходят только через протопласт клеток.

Кора окружает центральный цилиндр корня. Она граничит со слоем клеток, долго сохраняющих способность к делению. Это перицикл. Клетки перицикла дают начало боковым корням, придаточным почкам и вторичным образовательным тканям. Вовнутрь от перицикла, в центре корня, находятся проводящие ткани: луб и древесина. Вместе они образуют радиальный проводящий пучок.

Проводящая система корня проводит воду и минеральные вещества из корня в стебель (восходящий ток) и органические вещества из стебля в корень (нисходящий ток). Состоит она из сосудисто-волокнистых пучков. Основными слагаемыми частями пучка являются участки флоэмы (по ним вещества передвигаются к корню) и ксилемы (по которым вещества передвигаются от корня). Основные проводящие элементы флоэмы — ситовидные трубки, ксилемы — трахеи (сосуды) и трахеиды.

Процессы жизнедеятельности корня

Транспорт воды в корне

Всасывание воды корневыми волосками из почвенного питательного раствора и проведение её в радиальном направлении по клеткам первичной коры через пропускные клетки в эндодерме к ксилеме радиального проводящего пучка. Интенсивность поглощения воды корневыми волосками называется сосущей силой (S), она равна разнице между осмотическим (P) и тургорным (T) давлением: S=P-T.

Когда осмотическое давление равно тургорному (P=T), то S=0, вода перестаёт поступать в клетку корневого волоска. Если концентрация веществ почвенного питательного раствора будет выше, чем внутри клетки, то вода будет выходить из клеток и наступит плазмолиз — растения завянут. Такое явление наблюдается в условиях сухости почвы, а также при неумеренном внесении минеральных удобрений. Внутри клеток корня сосущая сила корня возрастает от ризодермы по направлению к центральному цилиндру, поэтому вода движется по градиенту концентрации (т. е. из места с большей её концентрацией в место с меньшей концентрацией) и создаёт корневое давление, которое поднимает столбик воды по сосудам ксилемы, образуя восходящий ток. Это можно обнаружить на весенних безлистных стволах, когда собирают «сок», или на срезанных пнях. Истекание воды из древесины, свежих пней, листьев, называется «плачем» растений. Когда распускаются листья, то они тоже создают сосущую силу и притягивают воду к себе — образуется непрерывный столбик воды в каждом сосуде — капиллярное натяжение. Корневое давление является нижним двигателем водного тока, а сосущая сила листьев — верхним. Подтвердить это можно с помощью несложных опытов.

Всасывание воды корнями

Цель: выяснить основную функцию корня.

Что делаем: растение, выращенное на влажных опилках, отряхнём его корневую систему и опустим в стакан с водой его корни. Поверх воды для защиты её от испарения нальём тонкий слой растительного масла и отметим уровень.

Что наблюдаем: через день-два вода в ёмкости опустилась ниже отметки.

Результат: следовательно, корни всосали воду и подали её наверх к листьям.

Можно ещё проделать один опыт, доказывающий всасывание питательных веществ корнем.

Что делаем: срежем у растения стебель оставив пенёк высотой 2-3 см. На пенёк наденем резиновую трубку длиной 3 см, а на верхний конец наденем изогнутую стеклянную трубку высотой 20-25 см.

Что наблюдаем: вода в стеклянной трубке поднимается, и вытекает наружу.

Результат: это доказывает, что воду из почвы корень всасывает в стебель.

А влияет ли температура воды на интенсивность всасывания корнем воды?

Цель: выяснить, как температура влияет на работу корня.

Что делаем: один стакан должен быть с тёплой водой (+17-18ºС), а другой с холодной (+1-2ºС).

Что наблюдаем: в первом случае вода выделяется обильно, во втором — мало, или совсем приостанавливается.

Результат: это является доказательством того, что температура сильно влияет на работу корня.

Тёплая вода активно поглощается корнями. Корневое давление повышается.

Холодная вода плохо поглощается корнями. В этом случае корневое давление падает.

Минеральное питание

Физиологическая роль минеральных веществ очень велика. Они являются основой для синтеза органических соединений, а также факторами, которые изменяют физическое состояние коллоидов, т.е. непосредственно влияют на обмен веществ и строение протопласта; выполняют функцию катализаторов биохимических реакций; воздействуют на тургор клетки и проницаемость протоплазмы; являются центрами электрических и радиоактивных явлений в растительных организмах.

Установлено, что нормальное развитие растений возможно только при наличии в питательном растворе трёх неметаллов — азота, фосфора и серы и — и четырёх металлов — калия, магния, кальция и железа. Каждый из этих элементов имеет индивидуальное значение и не может быть заменён другим. Это макроэлементы, их концентрация в растении составляет 10 -2 –10%. Для нормального развития растений нужны микроэлементы, концентрация которых в клетке составляет 10 -5 –10 -3 %. Это бор, кобальт, медь, цинк, марганец, молибден др. Все эти элементы есть в почве, но иногда в недостаточном количестве. Поэтому в почву вносят минеральные и органические удобрения.

Растение нормально растёт и развивается в том случае, если в окружающей корни среде будут содержаться все необходимые питательные вещества. Такой средой для большинства растений является почва.

Дыхание корней

Для нормального роста и развития растения необходимо чтобы к корню поступал свежий воздух. Проверим, так ли это?

Цель: нужен ли воздух корню?

Что делаем: возьмём два одинаковых сосуда с водой. В каждый сосуд поместим развивающие проростки. Воду в одном из сосудов каждый день насыщаем воздухом с помощью пульверизатора. На поверхность воды во втором сосуде нальём тонкий слой растительного масла, так как оно задерживает поступление воздуха в воду.

Что наблюдаем: через некоторое время растение во втором сосуде перестанет расти, зачахнет, и в конце концов погибнет.

Результат: гибель растения наступает из-за недостатка воздуха, необходимого для дыхания корня.

Видоизменения корней

У некоторых растений в корнях откладываются запасные питательные вещества. В них накапливаются углеводы, минеральные соли, витамины и другие вещества. Такие корни сильно разрастаются в толщину и приобретают необычный внешний вид. В формировании корнеплодов участвуют и корень, и стебель.

Корнеплоды

Если запасные вещества накапливаются в главном корне и в основании стебля главного побега, образуются корнеплоды (морковь). Растения, образующие корнеплоды, в основном двулетники. В первый год жизни они не цветут и накапливают в корнеплодах много питательных веществ. На второй — они быстро зацветают, используя накопленные питательные вещества и образуют плоды и семена.

Корневые клубни

У георгина запасные вещества накапливаются в придаточных корнях, образуя корневые клубни.

Бактериальные клубеньки

Своеобразно изменены боковые корни у клевера, люпина, люцерны. В молодых боковых корешках поселяются бактерии, что способствует усвоению газообразного азота почвенного воздуха. Такие корни приобретают вид клубеньков. Благодаря этим бактериям эти растения способны жить на бедных азотом почвах и делать их более плодородными.

Ходульные

У пандуса, произрастающего в приливно-отливной зоне, развиваются ходульные корни. Они высоко над водой удерживают на зыбком илистом грунте крупные облиственные побеги.

Воздушные

У тропических растений, живущих на ветвях деревьев, развиваются воздушные корни. Они часто встречаются у орхидей, бромелиевых, у некоторых папоротников. Воздушные корни свободно висят в воздухе, не достигая земли и поглощая попадающую на них влагу от дождя или росы.

Втягивающие

У луковичных и клубнелуковичных растений, например у крокусов, среди многочисленных нитевидных корней имеется несколько более толстых, так называемых втягивающих, корней. Сокращаясь, такие корни втягивают клубнелуковицу глубже в почву.

Столбовидные

У фикуса развиваются столбовидные надземные корни, или корни-подпорки.

Почва как среда обитания корней

Почва для растений является средой, из которой оно получает воду и элементы питания. Количество минеральных веществ в почве зависит от специфических особенностей материнской горной породы, деятельности организмов, от жизнедеятельности самих растений, от типа почвы.

Почвенные частицы конкурируют с корнями за влагу, удерживая её своей поверхностью. Это так называемая связанная вода, которая подразделяется на гигроскопическую и плёночную. Удерживается она силами молекулярного притяжения. Доступная растению влага представлена капиллярной водой, которая сосредоточена в мелких порах почвы.

Между влагой и воздушной фазой почвы складываются антагонистические отношения. Чем больше в почве крупных пор, тем лучше газовый режим этих почв, тем меньше влаги удерживает почва. Наиболее благоприятный водно-воздушный режим поддерживается в структурных почвах, где вода и воздух находятся одновременно и не мешают друг другу — вода заполняет капилляры внутри структурных агрегатов, а воздух — крупные поры между ними.

Характер взаимодействия растения и почвы в значительной степени связан с поглотительной способностью почвы — способностью удерживать или связывать химические соединения.

Микрофлора почвы разлагает органические вещества до более простых соединений, участвует в формировании структуры почвы. Характер этих процессов зависит от типа почвы, химического состава растительных остатков, физиологических свойств микроорганизмов и других факторов. В формировании структуры почвы принимают участие почвенные животные: кольчатые черви, личинки насекомых и др.

В результате совокупности биологических и химических процессов в почве образуется сложный комплекс органических веществ, который объединяют термином «гумус».

Метод водных культур

В каких солях нуждается растение, и какое влияние оказывают они на рост и развитие его, было установлено на опыте с водными культурами. Метод водных культур — это выращивание растений не в почве, а в водном растворе минеральных солей. В зависимости от поставленной цели в опыте можно исключить отдельную соль из раствора, уменьшить или увеличить ее содержание. Было выяснено, что удобрения, содержащие азот, способствуют росту растений, содержащие фосфор — скорейшему созреванию плодов, а содержащие калий — быстрейшему оттоку органических веществ от листьев к корням. В связи с этим содержащие азот удобрения рекомендуется вносить перед посевом или в первой половине лета, содержащие фосфор и калий — во второй половине лета.

С помощью метода водных культур удалось установить не только потребность растения в макроэлементах, но и выяснить роль различных микроэлементов.

В настоящее время известны случаи, когда выращивают растения методами гидропоники и аэропоники.

Гидропоника — выращивание растений в сосудах, заполненных гравием. Питательный раствор, содержащий необходимые элементы, подаётся в сосуды снизу.

Аэропоника — это воздушная культура растений. При этом способе корневая система находится в воздухе и автоматически (несколько раз в течение часа) опрыскивается слабым раствором питательных солей.

Сначала, прочитав учебник, энциклопедии и статьи в Интернете, я узнала, как выглядит строение цветочных растений

Органы цветочного растения - побег, корень, цветки, плоды с семенами. И все они состоят из различных видов ткани: образовательной, покровной, механической, проводящей, основной. Все эти ткани выполняют различные функции в жизни растений.

Транспорт воды в цветочных растениях

Чтобы растение могло расти, должны выполняться определенные условия: свет, тепло, вода, питание. Активное перемещение веществ у растений происходит по проводящим тканям. Вода и растворенные в ней минеральные вещества передвигаются в растении от корней к цветку по сосудам. Вода поступает в растение через корневые волоски, затем вода по сосудам корня под давлением поднимается. Попав в листья, вода испаряется с поверхности клеток и в виде пара выходит в атмосферу. Этот процесс обеспечивает непрерывный восходящий ток воды по растению.

Но какие силы обеспечивают движение тока воды вверх по стеблю в стакане с водой? Можно предположить, что вода выталкивается снизу или ее тянут сверху. На небольшие расстояния транспорт веществ обеспечивают физические процессы диффузии. Молекулы воды передвигаются из той области, где их концентрация высока, туда, где их концентрация низка.