Образовательная ткань присутствует в. Меристемы (образовательная ткань)

Из первоначальных однородных меристемных клеток возникают различные по строению и функциям клетки остальных тканей. К делению они, как правило, не способны. Меристемы могут сохраняться очень долго в течение всей жизни растений. В зависимости от происхождения различают первичную и вторичную меристему.

Первичные меристемы (промеристемы) происходят непосредственно из меристемы зародыша, развивающегося из зиготы, обладающие способностью к делению изначально.

Вторичные меристемы приобрели способность к активному делению заново. Они образуются из первичных меристем или постоянных тканей.

По положению в растениях выделяются верхние (апикальные), боковые (латеральные) и вставочные (интеркалярные) меристемы.

Апикальные меристемы находятся на полюсах зародыша – кончиках корешка и почки, обеспечивая рост корня и побега в длину. Апикальные меристемы – первичны, они образуют конусы нарастания корня и побега. При ветвлении – боковые побеги и корни имеют свои верхушечные меристемы.

Латеральные меристемы находятся по окружности осевых органов, образуя цилиндры, которые на поперечных срезах имеют вид колец. Первичная боковая меристема – прокамбий, перицикл – возникает под апексом и непосредственно связан с ним.

Вторичная меристема – камбий и феллоген – формируется позднее из промеристемных клеток или постоянных тканей. Латеральная вторичная меристема обеспечивает утолщение корня и стебля. Из прокамбия и камбия образуются проводящие ткани, из феллогена – пробка.

Интеркаллярные (вставочные) меристемы – располагаются в основаниях междоузлий, черешков листьев. Это остаточные первичные меристемы, они происходят от верхушечных меристем, но их превращение в постоянные ткани задерживается. Это нежные меристемы особенно хорошо заметны у растений злаковых.

Раневые меристемы образуются при повреждении тканей и органов. Живые клетки, окружающие поражённые участки, дедифференцируются и начинают делиться, т.е. превращаются во вторичную меристему. Раневые мерисемы образуют каллус – плотную ткань беловатого и желтоватого цветов, состоящую из паренхимных клеток разнообразных размеров, расположенных беспорядочно. Клетки каллуса имеют крупные ядра и относительно толстые клеточные стенки. Из каллуса могут возникнуть любые ткани или органы растения. На периферии формируется пробка. Каллус используется для получения культуры изолированных тканей .

Цитологические особенности меристемных клеток – изодиаметрические многогранники, не разделённые межклетниками. Клеточные стенки тонкие, с малым содержанием целлюлозы. Цитоплазма густая, ядро крупное, расположено в центре. В цитоплазме большое количество рибосом и митохондрий. Вакуоли многочисленные и очень мелкие. Процесс роста и дифференцировки мерстемных клеток сопровождается увеличением объёма и изменением формы клеток. Рост соседних клеток происходит обычно согласованно, что обеспечивает сохранность плазмодесм между клетками.


Покровные ткани. Расположены снаружи всех органов растений на границе с внешней средой. Они состоят из плотно сомкнутых клеток и выполняют роль барьера, предохраняя органы растений от неблагоприятных воздействий.

Эпиблема (ризодерма) – первичная однослойная поверхностая ткань корня. Основная функция эпиблемы – всасывание, избирательное поглощение из почвы воды с растворёнными в ней элементами минерального питания. Через эпиблему выделяются некоторые вещества, например кислоты, действующие на субстрат и преобразующие его. Цитологические особенности эпиблемы связаны с её функциями. Это тонкостенные клетки, лишённые кутикулы, с вязкой цитоплазмой, с больши количеством митохондрий.

Эпидерма (кожица) – первичная покровная ткань, образующаяся из наружного слоя клеток конуса нарастания побега на всех листьях, стеблях, а также на цветках, плодах и семенах. Эпидерма защищает внутренние ткани от высыхания и повреждений, препятствует проникновению микроорганизмов. Одновременно эпидерма обеспечивает связь со средой – через неё происходят транспирация (регулируемое испарение) и газообмен. Эпидерма – сложная ткань, в её состав входят морфологически различные клетки: основные клетки эпидермы, замыкающие и побочные клетки устьиц, трихомы. Основные клетки эпидермы плотно сомкнуты, межклетники отсутствуют. Боковые стенки часто извилистые. Наружные стенки обычно толще остальных. Клеточные стенки могут пропитываться кремнеземом или содержать слизи. С наружной стороны вся эпидерма покрыта сплошным слоем кутикулы. Помимо кутина в её состав входят вкрапления воска. У растений погружённых в воду, кутикулы нет. Клетки эпидермы имеют живой протопласт, обычно с хорошо развитой эндоплазматической сетью и аппаратом Гольджи.

Устьица – специализированные структуры эпидермы, осуществляющие газообмен и транспирацию. Устьице состоит из двух замыкающих клеток, между которыми нахоится межустьичная щель, под ней расположена дыхательная подустьичная полость. Часто к замыкающим клеткам примыкают две (или более) побочные клетки. Стенки замыкающих клеток утолщены неравномерно – брюшные (обращённые к устьичной щели) толще спинных (примыкающих к эпидерме). При повышении тургора тонкие стенки растягиваются, увлекая за собой толстые, и устьичная щель увеличивается. При падении тургора она закрывается, так как замыкающие клетки принимают первоначальное положение. Замыкающие клетки окружены околоустьичными клетками, всё это вместе называется устьичным комплексом. Различают следующие основные устьичные комплексы: а) аномоцитный (беспорядочный) – замыкающие клетки не имеют ярко выраженных околоустьичных клеток (характерен для всех высщих растений, за исключением хвощей); б) анизоцитный (неравноклетный) – замыкающие клетки устьица окружены тремя околоустьичными клетками, одна из которых намного крупнее (или меньше) остальных (только у цветковых); в) парацитный (параллельноклетный) – каждая из замыкающих клеток сопрождается одной или более побочными клетками, расположенными параллельно замыкающим клеткам; г) диацитный (перекрёстноклетный) – две околоустьичных клетки расположены перпендикулярно замыкающим; д) тетрацитный – замыкающие клетки окружены четырьмя побочными клетками, из которых две латеральные и две полярные (главным образом у однодольных); е) энциклоцитный (от греч. kyklos – колесо, круг) – четыре (иногда три) или более побочных клеток образуют узкое кольцо вокруг замыкающих клеток (у папоротников, голосеменных и цветковых).

Трихомы – различные по форме, строению и функции выросты клеток эпидермы. Они имеют форму волосков, чешуек и др. Эпидерма функционирует, как правило один год, обычно к осени её заменяет пробка.

Пробка (феллема) – вторичная покровная ткань, развивается из клеток пробкового камбия (феллогена). Феллоген – один слой клеток вторичной боковой меристемы, он возникает из основной паренхимы, лежащей под эпидермой или более глубоко. Клетки феллогена делятся параллельно поверхности органа (тангентально), откладывая наружу клетки феллемы, внутрь – феллодермы. Клеток феллемы образуется всегда больше, чем феллодермы. Феллема (покровная ткань, проьбка), феллоген (образовательная ткань) и феллодерма (основная ткань, хлорофиллоносная паренхима) – это единый покровный комплекс – перидерма . Клетки пробки соединены очень плотно, без межклетников, их клеточные стенки вначале очень тонкие, затем утолщаются, за счёт отложения суберина и воска, не пропускающих воздух и воду, что ведёт к отмиранию протопласта. Газообмен и транспирацию в органах покрытых перидермой происходит через чечевички (участок перидермы с рыхло расположенными клетками пробки). У большинства древесных растений перидерма через 10 – 30 лет сменятся коркой (ритидом). Корка состоит из нескольких слоёв пробки и заключённых между ними отмерших тканей.

Основные ткани. По происхождению почти всегда первичные, образуются из апикальных меристем. Они состоят из живых паренхимных клеток, чаще изодиаметрических, тонкостенных, с простыми порами. В зависимости от выполняемых функций различают ассимиляционную, запасающую и воздухоносную паренхиму. Ассимиляционная паренхима – хлоренхима. Главная функция – фотосинтез. Расположена в надземных органах, обычно под эпидермой, особенно хорошо развита в листьях, характерно наличие межклетников, клетки тонкостенные, много хлоропластов. Запасающая паренхима – состоит из тонкостенных клеток с лейкопластами, может находиться в различных органах. Воздухоносная паренхима – аэренхима. Выполняет вентиляционную и частично дыхательную функции. Состоит из клеток различной формы (преимущественно звёздчатой) и крупными межклетниками. Хорошо развита в органах растения погружённых в воду.

Механические ткани. Обеспечивают прочность растений, способность противостоять действию тяжести собственных органов, порывам ветра, дождю, снегу, вытаптыванию животными. Механические ткани играют в растении роль скелета. Клетки механических тканей имеют сильно утолщённые клеточные стенки, которые даже после отмирания протопласта продолжают выполнять опорную функцию. Различают следующие механические ткани: колленхиму, склеренхиму и склереиды. Колленхима – развивается в стеблях и черешках листьев двудольных растений под эпидермой, в корнях обычно нет. Клетки колленхимы живые, вытянутые в длину, часто содержат хлоропласты. Клеточные стенки неравномерно утолщённые. Клетки колленхимы способны долго расти и не задерживают роста растения. В зависимости от характера утолщения стенок и их соединения различают уголковую, пластинчатую и рыхлую колленхиму.

Склеренхима – первичная развивается во всех вегетативных органах однодольных, вторичная – у подавляющего большинства двудольных. Клетки склеренхимы имеют равномерно утолщённые, как правило одревесневшие стенки. Полость клетки мала, поры простые, щелевидные. Протопласт отмирает рано. Различают два основных типа клеток склеренхимы – волокна и склереиды. Волокна – сильно вытянутые прозенхимные клетки длиной до 1 см (крапива) и даже до 4 см (рами). Склереиды – паренхимной формы, могут располагаться группами и одиночно (брахисклереиды – каменистые, астеросклереиды – ветвистые).

Проводящие ткани и комплексы. Образуют в теле растений непрерывно разветвляющуюся сеть, соединяющую все его органы. От корней к листьям поднимается ток водных растворов минеральных солей, от листьев к корням нисходящий ток органических соединений. Каждый ток обеспечивает свой вид проводящей ткани: восходящий – трахеальный, нисходящий – ситовидный.

Трахеальные элементы – трахеиды (удлинённые клетки с одревесневшими стенками, поры – окаймлённые, у хвойных – с торусом), большая часть окаймлённых пор находится у окончания клеток. Растворы передвигаются за счёт фильтрации. Трахеиды встречаются у всех высших растений, у большинства хвойных, папоротников, плаунов и голосеменных являются единственной проводящей тканью. Сосуд состоит из множества клеток – члеников сосуда. В местах соприкосновения клеточные стенки частично растворяются, образуя перфорацию. Сосуды функционируют ограниченное время. В обеспечении восходящего тока участвуют не только трахеиды и сосуды, но и комплекс разных тканей, называемый ксилемой . В ксилеме находятся живые клетки древесной паренхимы и древесные волокна (либриформ ). В обеспечении нисходящего тока участвуют ситовидные элементы - основной компонент проводящего комплекса – состоящие из ситовидных клеток и ситовидных трубок, клеток-спутниц и лубяных волокон. Этот комплекс называется флоэма (луб). Ксилема и флоэма в большинстве случаев расположены рядом, образуя проводящие пучки. Различают закрытые пучки – меристемы нет, рост отсутствует (однодольные и папоротники) и открытые – меристема (камбий) есть, деление тангентальное, к периферии продолжают нарастать элементы флоэмы, к центру элементы ксилемы. По расположению флоэмы и ксилемы различают следующие типы пучков: коллатеральные – флоэма расположена к периферии, ксилема к центру, могут быть открытыми и закрытыми; биколлатеральные – флоэма расположена с внешней и внутренней стороны ксилемы, только открытые, наружная флоэма первичная и вторичная по происхождению, отделена от ксилемы камбием, внутренняя флоэма первичная; концентрические – ксилема окружает флоэму (амфивазальные), или флоэма окружает ксилему (амфикрибральный), только закрытые; радиальные – флоэма и ксилема расположены по радиусам, по числу лучей различают диархные, триархные, тетрархные и полиархные.

Выделительные ткани. Различные образования (чаще многоклеточные, реже одноклеточные), выделяющие из растения или изолирующие в его тканях продукты обмена веществ или воду. Различают выделительные ткани внешней и внутренней секреции.

Наружные выделительные структуры – железистые волоски, желёзки (трихомы эпидермиса), гидатоды, нектарники (обычно в цветках), отдельные железистые клетки расположенные поверхностно, в ямках, желобках, возвышенностях в виде бугорков. подушечек. Нектар представляет собой раствор сахаров с примесью белков, спиртов и ароматических веществ. Железистые волоски представляют собой трихомы, т.е. производные эпидермы. Железистые волоски могут быть сидячими и на ножке, имет одно- или многоклеточную головку. Железистые волоски с многоклеточной головкой называют желёзками. Гидатоды – устьица, выделяющие наружу капельно-жидкую воду и растворённые в ней соли.

Выделительные ткани внуренней секреции – вместилища выделений и млечники. Вместилища выделениц образуются из межклетников и бывают: 1) лизигенные – образуются за счёт растворения клеточных стенок (цитрусовые); 2) схизогенные – образуются за счёт расхождения клеток (например, хвойные). Млечники представляют собой систему полостей, выполняющих различные функции – проведение, выделение и накопление различных веществ. Млечники содержат клеточный сок особого состава, называемый млечным соком. Выделяют два типа млечников: членистые и нечленистые. Членистые млечники состоят из продольного ряда вытянутых клеток. Часто поперечные перегородки между ними растворяются и образуются сплошные тонкие трубки с многочисленными боковыми выростами. Членистые млечники встречаются у представителей семейств астровых, маковых, колокольчиковых и др. Нечленистые млечники состоят из одной клетки, которая разрастается по мере роста растения. Разветвляясь, они пронизывают всё тело растения и могут достигать в длину нескольких метров. Встречаются у представителей семейств крапивные, молочайные, кутровые и др.


Особенности растительных тканей

При выделении, изучении и систематизации тканей у растений необходимо учитывать их специфические особенности.

1. Образование, строение, топография и функции тканей контролируются генетически. Это объясняет сходство и различие тканей у разных генотипов растений.

2. Ткани не возникают в дифинитивном, т.е. в окончательно завершенном виде. Они развиваются в ходе онтогенеза растений. В процессе онтогенеза химический состав, клеточное строение и функции тканей могут изменяться. Например, у мятликовых оболочки клеток мелкоклеточной паренхимы стебля, примыкающей к склеренхиме, могут пропитываться лигнином, повышая жесткость соломины. У древесных пород по мере старения стебля происходит необратимое разрушение сосудов и преобразование проводящей древесины в ядровую, т.е. непроводящую. Показателен пример изменения структуры проводящих пучков у травянистых двудольных. Исходно они развиваются из прокамбия и состоят из протоксилемы и протофлоэмы, позднее в пучках появляются проводящие элементы первичной метаксилемы и первичной метафлоэмы. С появлением камбия в таких пучках образуются элементы вторичной ксилемы и вторичной флоэмы.

3. Ткани могут быть образованы пространственно разобщенными клетками. Так, в частности, располагаются опорные клетки в листьях чая китайского.

4. Разные ткани могут выполнять одинаковые функции. Например, упругость стебля обеспечивается в первую очередь механическими тканями и существенно дополняется проводящими.

5. У растений можно наблюдать постепенный переход одних тканей в другие. В зонах роста корней, стеблей и других органов отсутствуют четкие границы между образовательными и постоянными тканями.

6. Функционально и структурно сходные ткани могут иметь разное происхождение. Например, механическая ткань склеренхима может образоваться из клеток перицикла и клеток камбия; проводящие ткани у двудольных могут возникнуть из прокамбия и камбия.

7. Различия в клеточном строении одной и той же ткани могут возникнуть в результате гетерохронного, т.е. разновременного, их заложения. Поэтому различаются между собой клетки весенней, летней и осенней древесины одного и того же годичного кольца у деревьев, равно как и ткани разных междоузлий у мятликовых.

8. Количественные показатели тканей могут существенно изменяться под влиянием средовых факторов. Например, в зависимости от режима освещения изменяется плотность расположения устьиц на поверхности листа; субклеточный состав ассимиляционной паренхимы зависит от обеспеченности растений азотом и водой.

При изучении растительных тканей широко используются методы ботаники и других наук. Среди них наиболее результативными считаются методы оптической и электронной микроскопии; гистохимический метод, основанный на специфическом окрашивании разных тканей цитологическими красителями; методы физики – деформационный, поляризационный и интерференционный; биохимические и физиологические методы. Математические методы широко используются для анализа первичной информации о клетках и тканях. Большую перспективу имеют методы экологической анатомии.

Образовательные ткани

Значение и разнообразие образовательных тканей

Отличительной особенностью растений является их способность к неограниченному росту. Рост растений служит основой развития как отдельных органов, так и всего организма, он генетически детерминирован и обеспечивается двумя процессами – делением клеток и их растяжением. Растяжение клеток указывает на начало их дифференциации и формирование постоянных тканей. В этом процессе важная роль принадлежит фитогормонам.

Деление клеток не создает новых структур, но поставляет исходный материал для построения тканей и органов растений, а следовательно, служит исходным процессом для последующего роста и развития. Деление клеток в типичных условиях вегетации является отличительным признаком образовательных тканей растений, или меристем. Выделяют два типа клеток меристем. Одни из них, именуемые инициалями, способны делиться неограниченно многократно, самовоспроизводиться при этом и давать начало клеткам второго типа – производным от инициалей. Производные инициалей делятся ограниченное число раз и преобразуются в постоянные ткани.

По происхождению образовательные ткани бывают первичными и вторичными. Первичные возникают при развитии зародыша семени или в результате морфогенетической деятельности конуса нарастания почки. К первичным меристемам относятся апикальные и интеркалярные меристемы побега, прокамбий и перицикл, спорогенная меристема. Из первичных меристем образуются первичные постоянные ткани, но могут возникнуть и вторичные меристемы. Например, из клеток перицикла в корне двудольных могут образоваться камбий и феллоген (пробковый камбий).

Вторичные меристемы могут возникнуть либо из первичных меристем, либо в результате деления дифференцированных клеток основной паренхимы, как это бывает при образовании камбия.

Однако надо иметь в виду, что при использовании современных методов биотехнологии, меристематическая ткань может быть генерирована из любой живой растительной клетки. Особенности клеточного строения меристем связаны с их функцией. Клетки меристем всегда молодые, их развитие задерживается на эмбриональной фазе. Поэтому размеры клеток невелики, форма паренхимная – кубическая, многогранная до почти округлой. Клеточные стенки тонкие, без вторичных целлюлозных утолщений. Цитоплазма густая, вязкая, оптически более плотная, чем у других тканей. Ядро крупное, в период роста растений интерфаза – автосинтетическая, т.е. связана с подготовкой клетки к очередному делению. Хорошо развиты органоиды, которые обеспечивают синтез белка. Комплекс Гольджи и вакуоли выражены слабо. Между массой ядра и цитоплазмы поддерживается постоянное соотношение. Увеличение массы ядра является условием начала клеточного деления. Меристемы, связанные с образованием вегетативных частей растения, делятся путем митоза. Поэтому в их клетках набор хромосом и генов поддерживается постоянным. В спорогенных меристемах проходит мейоз, что объясняет возникновение генетически разнокачественных гаплоидных спор.

По месту расположения в растительном организме меристемы бывают апикальными, интеркалярными, латеральными, раневыми и спорогенными.

Апикальные меристемы

Апикальные меристемы находятся на верхушке побега в составе тканей конуса нарастания, а также в кончике корня. Поэтому их называют также верхушечными меристемами. В конусе нарастания выделяют: клетки туники, из которых развивается эпидермис; центральную меристематическую зону, которая является резервом образовательных клеток для других зон; серединную меристему, порождающую клетки сердцевины; периферическую зону, из клеток которой формируется прокамбий; и основную меристему, обеспечивающую образование первичной коры и паренхимы центрального цилиндра.

В кончике корня апикальная меристема расположена в подзоне деления. Из инициальных клеток этой меристемы образуется несколько групп клеток: калиптроген, характерный для однодольных, клетки которого порождают корневой чехлик; дерматоген, дифференцирующийся в эпиблему – первичную покровную ткань корня; периблему, из которой развивается первичная кора корня; плерому, используемую для построения центрального цилиндра.

Интеркалярные меристемы

Интеркалярные, или вставочные, меристемы являются первичными по происхождению. Они представляют собой остатки апикальных меристем и локализованы в базальной части междоузлий и в основаниях листьев. Их клетки длительное время могут находиться в эмбриональном состоянии и значительно отставать в своем развитии от рядом расположенных клеток постоянных тканей. Активное деление клеток интеркалярных меристем начинается по мере замедления и прекращения апикального роста побега. Например, у пшеницы и других мятликовых при длине побега около 1 см конус нарастания дифференцируется и вместо метамеров вегетативной части побега продуцирует метамеры сложного колоса или другого соцветия. К этому времени на побеге образуется 4 – 6 надземных междоузлий, у которых последующий рост в длину обеспечивается делением клеток интеркалярной меристемы и растяжением их производных. Благодаря интеркалярным меристемам лист у покрытосеменных нарастает своим основанием после выхода из почки.

Латеральные меристемы

Латеральные, или боковые, меристемы располагаются в стебле и корне параллельно их поверхности и обеспечивают прирост растений в толщину.

К первичным латеральным меристемам относятся прокамбий и перицикл. Из прокамбия образуются ткани проводящих пучков стебля. Если прокамбий закладывается в конусе нарастания сплошным кольцом, то при последующем развитии формируется стебель непучкового типа строения, как у льна. При заложении прокамбия отдельными тяжами по кругу, в стебле развиваются обособленные проводящие пучки, как, например, у пшеницы и других мятликовых.

Клетки перицикла функционально более многообразны. Из них в стебле образуется механическая ткань склеренхима, в корне – может возникнуть камбий и феллоген (пробковый камбий). Кроме того, клетки перицикла участвуют в образовании боковых корней.

Вторичными латеральными меристемами являются камбий и феллоген, которые образуются либо из перицикла, либо из клеток основной паренхимы; камбий может также возникнуть из прокамбия. Они характерны для осевых вегетативных органов двудольных покрытосеменных и голосеменных. Камбий обеспечивает образование вторичных элементов проводящих тканей и пучков, луба и древесины. Феллоген порождает клетки, из которых образуется пробка и феллодерма. Заложение повторных слоев феллогена в лубе приводит у древесных пород к образованию корки.

Раневые меристемы

При травмировании растений клетки основной паренхимы, расположенные рядом с поврежденным участком, дедифференцируются, т.е. приобретают способность к делению и порождают особую ткань – раневую, или травматическую, меристему, из клеток которой сначала образуется каллюс. Таким образом, эта меристема является вторичной по происхождению. При пропитывании клеточных оболочек каллюса суберином формируется пробка. Каллюс и пробка защищают травмированный участок от поражения патогенами.

Спорогенные ткани

Назначение спорогенных тканей заключается в образовании спор. У цветковых растений они развиваются при формировании цветка в теках пыльников и семязачатках пестиков. В развитых пыльниках спорогенная ткань является многоклеточной, а в семязачатке представлена лишь несколькими клетками. Клетки крупные, тонкостенные, одноядерные, с диплоидным набором хромосом, большим запасом питательных веществ в цитоплазме.

В пыльниках из каждой спорогенной клетки в результате мейоза образуется четыре гаплоидные микроспоры. При последующем митотическом делении из микроспоры образуется пыльца. В семязачатке у большинства покрытосеменных мейотическое деление спорогенной клетки приводит к образованию четырех неравноценных клеток. Из них одна развивается в гаплоидную макроспору, остальные – отмирают. Последующее митотическое деления макроспоры является основой образования зародышевого мешка.



Она делится путем митоза. Образовательная ткань имеет такие характеристики: в ней нет вторичной клеточной стенки; ее клетки постоянно делятся; в ней отсутствуют цветные пластиды, поэтому она почти прозрачная. Меристема бывает первичной (прокамбия, интеркалярная, апикальная) и вторичной (перицикл, камбий, раневая меристема, феллоген

Ткани, состоящие из одного типа клеток, получили название простых, а состоящие из разных типов клеток - сложных, или комплексных. Существуют различные классификации тканей, но все они достаточно условны. Растительные ткани делят на несколько групп в зависимости от основной функции:

1) меристемы, или образовательные ткани (ткани состоящие из живых тонкостенных, интенсивно делящихся клеток);

а) верхушечные (апикальные) меристимы (расположенны на верхушках стеблей и в окончаниях корней) обусловливают рост этих органов в длину;

б) боковые мерестимы – камбий и феллоген (камбий обеспечивает утолщение стебля и корня. Феллоген образует пробку)

2) покровные (защищают внутренние ткани растений от прямого влияния внешней среды, регулируют испарение и газообмен)

а) эпидермис; б) пробка;

3) проводящие (обеспечивают проведение воды, почвенных растворов и продуктов ассимиляции, вырабатываемых листьями. Проводящие ткани по происхождению могут быть первичными и вторичными.);

а) кселима или древесная ткань (ткань проводящая воду)

б) флоэма или луб (ткань проводящая органические вещества, образованные растением в процессе фотосинтеза);

4) механические (обусловливают прочность растения);

а) коленхима (состоит из паренхимы или несколько удлиненных клеток с неравномерно утолщенными целлюлозными стенками);

б) склеренхима (клетки имеют равномерно утолщенные одревесневшие стенки);

1) волокна;2) склериды;

5) основные (состоящие из однородных паренхимных клеток, которые заполняют пространство между другими тканями);

6) секреторные, или выделительные (содержащие продукты отброса).

Лишь клетки меристематических тканей способны к делению. Клетки прочих тканей, как правило, к делению неспособны, и их число увеличивается за счет деятельности соответствующих меристем. Такие ткани называют постоянными. Постоянные ткани возникают из меристем в результате клеточной дифференцировки. Дифференцировка заключается в том, что в ходе индивидуального развития организма (онтогенеза) возникают качественные различия между первоначально однородными клетками, при этом изменяются строение и функциональные свойства клеток. Обычно дифференцировка необратима. На ход ее оказывают влияние вещества, выполняющие роль гормонов.



еристемы (от греч. «меристос» - делимый), или образовательные ткани, обладают способностью к делению и образованию новых клеток. За счет меристем формируются все прочие ткани и осуществляется длительный (в течение всей жизни) рост растения. У животных меристемы отсутствуют, чем объясняется ограниченный период их роста. Клетки меристем отличаются высокой метаболической активностью. Одни клетки меристем, получившие название инициальных, задерживаются на эмбриональной стадии развития в течение всей жизни растения, другие постепенно дифференцируются и превращаются в клетки различных постоянных тканей. Инициальная клетка меристемы принципиально может дать начало любой клетке организма. Тело наземных растений - производное относительно немногих инициальных клеток.

Первичные меристемы обладают меристематической активностью, т. е. способны к делению изначально. В ряде случаев способность к активному делению может вновь возникнуть и у клеток, уже почти утративших это свойство. Такие «вновь» возникшие меристемы называют вторичными.

В теле растения меристемы занимают различное положение, что позволяет их классифицировать. По положению в растении выделяют верхушечные, или апикальные (от лат. «апекс» - верхушка), боковые, или латеральные (от лат. «латус» - бок), и интеркалярные меристемы.

Апикальные меристемы располагаются на верхушках осевых органов растения и обеспечивают рост тела в длину, а латеральные - преимущественно рост в толщину. Каждый побег и корень, а также зародышевый корешок, почечка зародыша имеют апикальную меристему. Апикальные меристемы первичны и образуют конусы нарастания корня и побега (рис. 1).

Латеральные меристемы располагаются параллельно боковым поверхностям осевых органов, образуя своего рода цилиндры, на поперечных срезах имеющие вид колец. Часть из них относится к первичным. Первичными меристемами являются прокамбий и перицикл, вторичными - камбий и феллоген.

Интеркалярные, или вставочные, меристемы чаще первичны и сохраняются в виде отдельных участков в зонах активного роста (например, у оснований междоузлии, в основаниях черешков листьев).

Существуют также раневые меристемы. Они образуются в местах повреждения тканей и органов и дают начало каллюсу - особой ткани, состоящей из однородных паренхимных клеток, прикрывающие место поражения Каллюсо-образовательная способность растений используется в практике садоводства при размножении их черенками и прививками. Чем интенсивнее каллюсообразование, тем больше гарантия срастания подвоя с привоем и укоренения черенков. Образование каллюса- необходимое условие культуры тканей растения на искусственных средах.

Клетки апикальных меристем более или менее изодиаметричны по размерам и многогранны по форме. Межклетников между ними нет, оболочки тонкие, содержат мало целлюлозы. Полость клетки заполнена густой цитоплазмой с относительно крупным ядром, занимающим центральное положение. Вакуоли многочисленные, мелкие, но под световым микроскопом обычно не заметны. Эргастические вещества, как правило, отсутствуют. Пластид и митохондрий мало и они мелки.

Клетки боковых меристем различны по величине и форме. Они примерно соответствуют клеткам тех постоянных тканей, которые из них в дальнейшем возникают. Так, в камбии встречаются как паренхимные, так и прозенхимные инициали. Из паренхимных инициалей образуется паренхима проводящих тканей, а из прозенхимных - проводящие элементы.

Рис. 1. Верхушечная меристема побега элодеи. А - продольный срез; 5 - конус нарастания (внешний вид и продольный срез); В - клетки первичной меристемы;

Г - паренхимная клетка сформировавшегося листа:

1 ~ конус нарастания, 2 - зачаток листа, 3 - бугорок пазушной почки

23 Покровные ткани .

Ее главная функция - защита внутренних живых тканей от избыточного испарения. Покровная ткань предохраняет растения от пeрегрева, проникновения микробов, и от других неблагоприятных внешних воздействий.

Покровные ткани бывают первичными и вторичными. Первичной покровной тканью является эпидермис, вторичной– пробка и корка .

Эпидермис – первичная покровная ткань. Она образуется первичной верхушечной меристемой. Функции двоякие: с одной стороны, эпидермис защищает растение от неблагоприятных факторов внешней среды, с другой – обеспечивает тесную связь его с внешней средой, свободное проникновение света, интенсивный газообмен. Защитная функция эпидермиса усиливается дополнительными образованиями – волосками, кутикулой, восковым налетом.
Волоски Различают два вида волосков – кроющие и железистые. Функции – защита растений от избыточного испарения.
Железистые волоски дольше остаются живыми. Их клетки характеризуются тонкими стенками, содержат вакуолизированную цитоплазму, крупное ядро. Во внешнюю среду волоски выделяют продукты жизнедеятельности растения. - воду, эфирные масла, органические кислоты. Функциональное назначение железистых волосков различное.
Кутикула - это пленка воскподобного вещества кутина на поверхности листьев, плодов, некоторых семян растений. Кутин образуется цитоплазмой, пропитывает клеточную оболочку и, соприкасаясь с воздухом, затвердевает, образуя кутикулу. (листья фикуса, брусники, клюквы)
Восковой налёт выполняет ту же функцию, что и кутикула.
Устьице. Связь листа с внешней средой, процесс газообмена осуществляются посредством устьиц. Это щельмежду двумя специализированными клетками эпидермиса, которые называются замыкающими. Движение устьиц обусловлено тургором клеток. При потере тургора объем клеток несколько уменьшается, клетки спадаются. На тонкой части клеточной оболочки появляется изгиб, выступ. Выступы двух смежных замыкающих клеток соприкасаются и закрывают устьичную щель.
С процессом образования устьиц связано расположение околоустьичных клеток. Околоустьичные клетки в некоторых случаях отличаются от основных клеток эпидермиса своей формой и структурой протопласта. Возможно, что они имеют отношение к движению устьиц.

24 Основные ткани (паренхимы ). Основная паренхима занимает в растении значительное место как по объему, так и по роли. Проводящие и механические ткани как бы погружены в основную паренхиму. Из нее же состоит мякоть плодов, семян, мезофилл листьев.

Клетки основной паренхимы разнообразны по форме, они бывают округлые, овальные, цилиндрические, таблитчатые и др. Цитоплазма в клетках располагается, как правило, постенно. Центральное положение занимает вакуоля Обычны включения – крахмальные зерна, белковые кристаллы, капли масла и др. Оболочки клеток чаще тонкие с простыми порами, реже утолщенные и частично одревесневшие.

Главная функция основной паренхимы – превращение вещества и энергии. В ее клетках протекают разнообразные процессы синтеза и гидролиза, происходит накопление пластинчатых веществ. В зависимости от положении в растении паренхима может выполнять различные функции – запасающую, проводящую, механическую, выделительную, ассимиляционную, может давать начало вторичной образовательной ткани.

В сердцевине стебля, эндосперме семян, в семядолях зародыша, в клубнях, околоплодниках основная паренхима является тканью запасающей.

В сердцевинных лучах стебля и корня паренхима играет проводящую роль. По ней распространяются вода, минеральные и органические вещества Механическую роль клетки основной паренхимы играют главным образом благодаря своему тургору.

Ассимиляционную ткань также можно рассматривать как один из вариантов «перевоплощения» основной паренхимы.

Аэренхима - воздухоносная ткань у растений, построенная из клеток, соединённых между собой так, что между ними остаются крупные заполненные воздухом пустоты (крупные межклетники).

Развитие вторичной образовательной ткани из основной паренхимы можно наблюдать в центральном цилиндре стебля и корне при развитии камбия, при заложении пробкового камбия.

от проводящего пучка к точкам выделения и выводится по межклетникам или через отверстия типа устьиц. Однако размер устьичной щели в гидатоде не регулируется. Капельножидкую воду выделяют и некоторые железистые волоски, которые в таких случаях также играют роль гидатод.

Механические ткани.

Механическая ткань в растении располагается таким образом, что при наименьшей затрате материала обеспечивает наибольшую прочность растения Механическая роль живых клеток обусловлена их тургором. Клетки, насыщенные водой, упруги, хорошо сохраняют форму и объем.

Тургор клетки зависит от внешних условий. В тех случаях, когда тургорное состояние непостоянно или органы растений несут большую механическую нагрузку, развиваются специальные механические ткани. Они разнообразны, но имеют общий признак – толстые клеточные оболочки.

Склеренхима – основной вид механической ткани. Она обеспечивает прочность осевых органов. Клетки склеренхимы прозенхимны по форме. Длина их превышает ширину в десятки и сотни раз.. Клеточные оболочки как правило, одревесневают. Только некоторые имеют склеренхиму, которая не одревесневает или одревесневает слабо. Склеренхима обладает большой прочностью упругостью. Упругость лубяного волокна превышает упругость железа и приближается к упругости стали. Склеренхима в растении находится в осевых органах, в стеблях и корнях. Она входит в состав проводящих пучков.

Колленхима - паренхимная ткань. На поперечном разрезе клетки колленхимы имеют разнообразную форму. Оболочки утолщаются частично и только за счет клетчатки, поэтому содержимое клетки не отмирает, как это наблюдается в большинстве механических тканей. Характерной особенностью колленхимы является наличие в ее клетках хлоропластов.

По характеру утолщений различают три вида колленхимы – уголковую, пластинчатую и рыхлую. В уголковой колленхиме утолщения располагаются по углам клетки. В пластинчатой колленхиме утолщаются наружная и внутренняя. В рыхлой колленхиме хорошо развиты межклетники. Располагается колленхима поверхностно, подстилает эпидермис и обусловливает зеленую окраску стеблей травянистых растений и молодых древесных побегов.

Склереиды имеют паренхимную форму, округлую, яйцевидную. Оболочки этих клеток сильно утолщаются и одревесневают. В клеточных стенках видны многочисленные каналы. Сформировавшиеся клетки мертвы, клеточные полости содержимого не имеют.

Проводящие ткани.

Проводящие ткани в растении развиваются очень рано. В растении существуют два тока жидкости, условие называемые восходящим и нисходящим. Первый представляет собой ток воды и минеральных веществ и направляется от корня к листьям, второй – наоборот. Ложем восходящего тока служит комплексная ткань – ксилема, или древесина, нисходящего – флоэма, или луб.Ксилема . Ксилема состоит их механической ткани, основной паренхимы и сосудов и трахеид.

Трахеиды – прозенхимные клетки длинной несколько миллиметров, шириной в десятые и сотые доли миллиметра.Наряду с водопроводящей трахеиды выполняют и механическую функции.

Сосуды – это длинные полые трубки средней длиной в несколько сантиметров (иногда до 1метра и более.

Клетки, составляющие сосуд, называются члениками сосуда, остатки поперечных стенок между клетками перфорационными пластинками. Форма члеников сосуда различна

У многих paстений с возрастом сосуды закупориваются тиллами. Тиллы - это паренхимные клетки, которые проникают в сосуд через поры в его стенках, разрастаются и закупоривают его, делая непроходимым.

Второй компонент ксилемы - механическая ткань склеренхима. Склеренхима, которая входит в состав ксилемы, называется либриформом или иначе древесным волокном.

У громадного большинства цветковых растений в состав ксилемы входит основная паренхима, называемая древесинной. Клетки ее рассеяны по всей ксилеме или примыкают к сосудам. Клетки древесинной паренхимы несколько вытянуты по оси органа, оболочки их слегка утолщаются и одревесневают.

Различают первичную и вторичную ксилему. Первичная ксилема возникает при формировании первичной структуры тела растения из первичной боковой меристемы - прокамбия. Первые её элементы - мелкие слабоодревесневшие сосуды, спиральные и кольчатые, образующие протоксилему . Развивающиеся несколько позднее элементы ксилемы, относительно более крупные, называются метаксилемой. Вторичная ксилема образуется из вторичной боковой меристемы – камбия. Вторичные ткани обуславливают рост растения в толщину. Вторичная ксилема характеризуется наличием лестничных, сетчатых и точечных сосудов

27 Ксилема выполняет в растении две основные функции: по ней движется вода вместе с растворенными минеральными веществами и она служит опорой органам растения. В состав ксилемы входят гистологические элементы четырех типов: трахеиды, сосуды, паренхимные клетки и волна. Трахеиды представляют собой узкие, сильно вытянутые в длину мертвые клетки с заостренными концами и одревесневшими оболочками. Проникновение растворов из одной трахеиды в другую происходит путем фильтрации через поры - углубления, затянутые мембраной. Жидкость по трахеидам протекает медленно, так как поровая мембрана препятствует движению воды. Трахеиды встречаются у всех высших растений, а у большинства хвощей, плаунов, папоротников и голосеменных служат единственным проводящим элементом ксилемы. У покрытосеменных растений наряду с трахеидами имеются сосуды. Трахеи (сосуды) -это полые трубки, состоящие из отдельных члеников, расположенных друг над другом. В члениках на поперечных стенках образуются сквозные отверстия - перфорации, или эти стенки полностью разрушаются, благодаря чему скорость тока растворов по сосудам многократно увеличивается. Оболочки сосудов пропитываются лигнином и придают стеблю дополнительную прочность. В зависимости от характера утолщения оболочек различают трахеи кольчатые, спиральные, лестничные и др. Первые по времени образования сосуды - протоксилема - закладываются на верхушке осевых органов, непосредственно под верхушечной меристемой, там, где окружающие их клетки еше продолжают вытягиваться. Зрелые сосуды про-токсилемы способны растягиваться одновременно с вытягиванием окружающих клеток, поскольку их целлюлозные стенки еще не сплошь одревеснели -лигнин откладывается в них лишь кольцами или по спирали. Эти отложения лигнина позволяют трубкам сохранять достаточную прочность во время роста стебля или корня. С ростом органа появляются новые сосуды ксилемы, которые претерпевают более интенсивную лигнификацию и завершают свое развитие в зрелых частях органа; так формируется ме-гаксшема. Тем временем самые первые сосуды протоксилемы растягиваются, а затем разрушаются. Зрелые сосуды метаксилемы не способны растягиваться и расти. Это мертвые, жесткие? полностью одревесневшие трубки. Если бы их развитие завершалось до того, как закончилось вытягивание окружающих живых клеток, то они бы очень сильно мешали этому процессу. Длинные полые трубки ксилемы - идеальная система для проведения воды на большие расстояния с минимальными помехами. Вторую свою функцию - механическую - ксилема выполняет также благодаря тому, что она состоит из ряда одревесневших трубок. В первичном теле растения ксилема в корнях занимает центральное положение, помогая корню противостоять тянущему усилию надземных частей, изгибающихся под порывами ветра, В стебле проводящие пучки либо образуют по периферии кольцо, как у двудольных, либо располагаются беспорядочно, как у однодольных; в обоих случаях стебель пронизывается отдельными тяжами ксилемы, обеспечивающими ему определенную опору. Особенно важное значение опорная функция ксилемы приобретает там, где имеет место вторичный рост. Во время этого процесса быстро нарастает количество вторичной ксилемы; к ней переходит от колленхимы и склеренхимы роль главной механической ткани, и именно она служит опорой у крупных древесных и кустарниковых пород. Рост стволов в толщину определяется в известной мере нагрузками, которым подвергается растение, так что иногда наблюдается дополнительный рост, смысл которого состоит в усилении структуры и обеспечении ей максимальной опоры. Древесинная паренхима ксилемы содержится как в первичной, так и во вторичной ксилеме, однако в последней ее количество больше и роль важнее. Клетки древесинной паренхимы, подобно любым другим паренхимным клеткам, имеют тонкие целлюлозные стенки и живое содержимое. Полагают, что древесинные волокна, так же как и сосуды ксилемы, ведут свое происхождение от трахеид.В отличие от сосудов ксилемы древесинные волокна не проводят воду; поэтому у них могут быть гораздо более толстые стенки и более узкие просветы, а значит, они отличаются и большей прочностью, т. е. придают ксилеме дополнительную механическую прочность.

28 ФЛОЭМА Состоит из механической ткани, основной паренхимы и ситовидных трубок. Ситовидные трубки функционально и морфологически – главные элементы флоэмы. Их функция заключается в проведении тока пластических веществ.

Ситовидные трубки состоят из вертикального ряда живых вытянутых клеток, каждая из которых является члеником трубки. Типичные ситовидные трубки состоят из цилиндрических клеток, более примитивные – из клеток прозенхимной формы. Характерной морфологической особенностью ситовидных трубок является строение клеточной оболочки. Она сравнительно тонкая и имеет многочисленные, как правило, сквозные поры. Через поры из одной клетки в другую проникают тяжи цитоплазмы - плазмодесмы. Поры собраны группами на продольных и чаще на поперечных стенках клетки. Участок клеточной оболочки в ситовидной трубке, несущей многочисленные поры, называется ситовидной пластинкой.

Клеточный сок ситовидных трубок содержит сахара, декстрины, белки, аминокислоты, нитриты, нитраты, соли, фосфорные кислоты, энзимы и пр

В состав флоэмы, как и в состав ксилемы, входят механическая ткань склеренхимы и основная паренхима. Склеренхима флоэмы называется лубяным волокном, основная паренхима - лубяной паренхимой. Основная паренхима во флоэме располагается рассеянно и вместе с ситовидными трубками составляет мягкий луб. Участки лубяного волокна называются твердым лубом. Флоэму, так же как и ксилему, различают первичную и вторичную. Первичная флоэма в свою очередь дифференцируется на протофлоэму и метафлоэму.

29 Выделительными называются ткани Различают выделительные ткани Внутренней и Внешней секреции. Выделительные ткани внешней секреции 1. Гидатоды устройства, служащие для выделения воды. У многих растений, разные органы (главным образом листья), выделяют воду в виде капель - Гуттация. Гуттация происходит особенно интенсивно в условиях, затрудняющих транспирацию испарение воды листьями. 2. Весьма разнообразны и широко распространены наружные Эпидермальные железки. У многих растений кожица листьев и стеблей обладает - Железистыми волосками. Эти волоски имеют обычно многоклеточную ножку и округлую одноклеточную головку Эфирные масла заполняют пространство между целлюлозной оболочкой и кутикулой. 3. Особый тип желез наружной секреции представляют Нектарники- они находятся в цветке. 4. самым редким типом являются Переваривающие железки насекомоядных растений. листья росянки. Выделительные ткани внутренней секреции. В зависимости от способа их образования различают: Схизогенные вместилища образуются путем расхождения оболочек клеток, первоначально тесно примыкавших друг к другу. Рексигенные межклетники возникают путем разрыва целых участков тканей, а затем высыхания и отмирания клеток. Лизигенные вместилища появляются при растворении - лизисе клеток и их оболочек. Каналообразные выделительные устройства или ходы образуются преимущественно в стеблях и корнях, реже в листьях. Каналы по их содержимому называют: масляными, смоляными, слизевыми и камедевыми. Своеобразными трубчатыми каналами являются млечные сосуды или Млечники - бывают двух видов: 1) членистые и 2) нечленистые.Нечленистый млечник представляет собой гигантскую многоядерную клетку с одной непрерывной вакуолью. Членистые млечники состоят из многих отдельных млечных клеток.

30. Первичное анатомическое строение корня на примере ириса .

На срезе уже при малом увеличении ясно различаются небольшая внутренняя часть - центральный цилиндр , и наружная первичная кора , покрытая одним слоем клеток с корневыми волосками - ризодермой (эпиблемой ).

Наружный слой первичной коры - экзодерма , состоит из плотно сомкнутых многоугольных клеток, стенки которых впоследствии опробковевают и выполняют защитную функцию. Затем расположена основная паренхима (мезодерма ), составляющая главную массу первичной коры.Внутренний слой первичной коры - эндодерма состоит из одного ряда клеток, с утолщенными радиальными и внутренними стенками. Среди этих клеток имеются тонкостенные живые клетки (расположенные почти напротив мелких сосудов ксилемы), называемые пропускными. Наружный слой центрального цилиндра - перицикл, состоит из одного ряда паренхимных клеток.Внутренняя часть центрального цилиндра занята полиархным радиальным пучком.

31. Вторичное анатомическое строение корня на примере тыквы .

При малом увеличении найти центральный цилиндр с четырьмя лучами первичной ксилемы (тетрархный пучок). Между ними расположены основания четырех крупных открытых коллатеральных проводящих пучков. Эндодерма заметна плохо, так как у ее клеток утолщены лишь радиальные стенки (пятна Каспари). При большом увеличении видно, что клетки тонкостенной паренхимы, лежащей между ксилемой и флоэмой, разделены тангентальными перегородками, а в некоторых местах внутрь от этого слоя заметны только что образовавшиеся и еще не одревесневшие сосуды.Между ксилемой и флоэмой расположена широкая камбиальная зона, имеющая неровные очертания и состоящая из нескольких рядов довольно мелких клеток таблитчатой формы. Вторичное утолщение связано с заложением и деятельностью камбия. Вторичная ксилема значительно превышает по площади флоэму и лежит ближе к центру. Она представлена крупными сосудами, волокнами и мелкими клетками паренхимы. Вторичная флоэма, находящаяся по периферии камбиальной зоны, представлена ситовидными трубками с простыми горизонтальными ситовидными пластинками, клетками-спутницами и паренхимой. Первичная флоэма расположена на самой периферии пучка, ее ситовидные трубки деформированы.Между проводящими пучками находятся широкие первичные лубодревесные лучи, образованные межпучковым камбием. Крупные паренхимные клетки, образующие лучи, несколько вытянуты в радиальном направлении.С поверхности корень тыквы покрыт перидермой.При малом увеличении схематически зарисовать строение корня, обозначив первичную и вторичную ксилему, первичную и вторичную флоэму, камбий, вторичную кору, перидерму.