Почему электроны не притягиваются к ядру. Научная электронная библиотека

Китайгородский А.И. Физика для всех. Электроны . Под редакцией Главная редакция физико-математической литературы - М.: Наука, 1979. - 208 c.
Скачать (прямая ссылка): fdvek3kn1979.djvu Предыдущая 1 .. 13 > .. >> Следующая

Итак, сразу же становится ясным, что атомы в основном состоят... из пустоты. Редкие-лобовые столкновения надо понимать так: внутри атома имеется положительно заряженное ядро.. Около-ядра расположены электроны. Они очень легкие и поэтому не составляют серьезного.препятствия для альфа-частицы. Электроны тормозят альфа-частицу, но столкновение с каждым отдельным электроном не может отклонить частицу от ее пути.

Резерфорд допустил, что силы взаимодействия,между одноименно заряженными ядром атома и альфа-частицей являются кулоновскими силами. Предположив далее, что масса атома сосредоточена н его ядре, он рассчитал вероятность отклонения частиц на заданный угол и получил блестящее совпадение теории с опитом.

Вот так физики и проверяют выдуманные ими модели.

Модель предсказывает результаты опыта? - Да. ,

Значит, она отображает действительность?

Ну, зачем же так резко. Модель объясняет ряд явлений - значит, она хороша. А ее уточнение - дело будущего...

Результаты опытов Резерфорда не оставляли сомнения в справедливости следующего утверждения: электроны под действием кулоновских сил движутся около ядра.

Из теории следовали и некоторые количественные оценки, которые подтвердились в дальнейшем. Размеры самых малых атомных ядер оказались равными примерно 10""13 см, в то время как размеры атома - порядка Ю-8 см. ^

Сопоставляя результаты опыта с расчетами, оказалось возможным оценить и заряды сталкивающихся ядер. Эти оценки сыграли большую, если не основную, роль в трактовке периодического закона строения элементов.

Итак, модель атома построена. Но немедленно возникает следующий вопрос. Почему электроны (отрицательно заряженные частицы) не падают на ядро (заряженное положительно)? Почему атом устойчив?

Что же тут непонятного, скажет читатель. Ведь планеты не падают на Солнце.. Сила электрического происхождения является, как и сила тяготения, центростремительной, силой и обеспечивает круговое движение электронов около ядра.

Но в том-то и дело, что аналогия между планетной системой и атомом носит лишь поверхностный характер. Как мы узнаем позже, с точки зрения общих законов электромагнитного поля атом обязан излучать электромагнитные волны. А, впрочем, можно и не знать теорию электромагнетизма. Вещество, т. е. атомы,

способно излучать свет и тепло. Раз так, то атом теряет энергию, а значит электрон должен падать на ядро.

Каков же выход из положения? Он очень «прост»: надо примириться с фактами и возвести- эти факты в ранг закона природы. Этот шаг и был сделан в 1913 г. великим физиком нашего столетия Нильсом Бором (1885-1962).

КВАНТОВАНИЕ ЭНЕРГИИ

Как и все первые шаги, этот шаг был относительно робким. Мы изложим новый закон природы, который ле только спас атом Резерфорда, но и заставил нас прийти к выводу, что механика больших тел неприменима к частицам малой массы.

Природа устроена так, что ряд механических величин, таких, например, как момент импульса и как энергия, для любой системы взаимодействующих частиц не могут иметь непрерывный ряд значений. Напротив, атом, о котором у нас идет речь сейчас, или атомное ядро, о строении которого мы будем говорить позже, имеют свою, свойственную только данной системе последовательность энергетических уровней. Имеется наинизший уровень (нулевой). Энергия системы не может быть меньше этого значения. В случае атома это означает, что есть такое состояние, в котором электрон находится на некотором минимальном расстоянии от ядра.

Изменение энергии атома может происходить только скачком. Если скачок произошел «вверх»г то это значит, что атом поглотил энергию. Если скачок произошел «вниз», то атом излучил энергию.

Мы увидим позже, К?к красиво с этих позиций расшифровываются спектры излучения различных систем.

Сформулированный закон называют законом квантования энергии. Можно также говорить, что энергия имеет квантовый характер. ~

Следует отметить, что закон о квантовании носит совершенно общий характер. Он применим не только к атому, но и к любому предмету, состоящему из миллиардов атомов. Но, имея дело с большими телами, мы можем зачастую «не заметить» квантования энергии.

Дело в том, что, грубо говоря, у предмета, состоящего из миллиарда миллиардов атомов, число энергетических уровней возрастает в миллиард миллиардов раз. Энергетические уровни будут расположены столь близко друг к другу, что практически сольются. Поэтому мы не заметим дискретности возможных значений энергии. Так что та механика, которую мы излагали в первой книге, практически не изменяется, когда речь идет о больших телах.

Во второй книге мы выяснили, что передача энергии от одного тела другому может произойти в форме работы и в форме тепла. Теперь мы в состоянии объяснить, в чем различие этих двух форм передачи энергии. При механическом воздействии (скажем, при сжатии) энергетические уровни системы смещаются. Смещение это очень незначительно и обнаруживается лишь тонкими опытами и лишь если давления достаточно велики. Что же касается теплового действия, то оно состоит в переводе системы с более низкого уровня энергии на более высокий (нагрев) или с высокого на более низкий (охлаждение).

Что удерживает электрон в атоме на орбите атомного ядра?

На первый взгляд, особенно если смотреть на мультяшную версию атома, описанную мною ранее со всеми её недостатками, электроны, двигающиеся по орбите вокруг ядра, выглядят так же, как планеты, двигающиеся по орбите вокруг Солнца. И вроде бы принцип этих процессов одинаков. Но есть подвох.

Рис 1

Что удерживает планеты на орбите вокруг Солнца? В Ньютоновской гравитации (Эйнштейновская сложнее, но тут она нам не нужна) любая пара объектов притягивается друг к другу посредством гравитационного взаимодействия, пропорционального произведению их масс. В частности, гравитация Солнца притягивает к нему планеты (с силой, обратно пропорциональной квадрату расстояния между ними. То есть, если расстояние уменьшается вдвое, сила увеличивается вчетверо). Планеты тоже притягивают Солнце, но оно настолько тяжёлое, что это почти не влияет на его движение.

Инерция, тенденция объектов к перемещению по прямым линиям в случае отсутствия действия на них других сил, работает против гравитационного притяжения, и в результате планеты двигаются вокруг Солнца. Это видно на рис.1, где изображена круговая орбита. Обычно эти орбиты эллиптические – хотя в случае планет они почти круглые, поскольку так формировалась Солнечная система. Для различных мелких камней (астероидов) и глыб льда (комет), двигающихся по орбитам вокруг Солнца, это уже не так.

Сходным образом все пары электрически заряженных объектов притягиваются или отталкиваются друг от друга, с силой, тоже обратно пропорциональной квадрату расстояния между ними. Но, в отличие от гравитации, которая всегда притягивает объекты вместе, электрические силы могут как притягивать, так и отталкивать. Объекты, обладающие одинаковыми, положительными или отрицательными зарядами, отталкиваются. А отрицательно заряженный объект притягивает положительно заряженный объект, и наоборот. Отсюда и романтическая фраза «противоположности притягиваются».

Поэтому положительно заряженное атомное ядро в центре атома притягивает легковесные электроны, двигающиеся на задворках атома, к себе, примерно как Солнце притягивает планеты. Электроны тоже притягивают ядро, но масса ядер настолько больше, что их притяжение почти не влияет на ядро. Электроны также отталкиваются друг от друга, что является одной из причин, по которым они не любят проводить время близко друг к другу. Можно было бы считать, что электроны в атоме перемещаются по орбитам вокруг ядра примерно так же, как планеты перемещаются вокруг Солнца. И на первый взгляд, именно так они и поступают, особенно в мультяшном атоме.

Но вот, в чём подвох: на самом деле, это двойной подвох, и каждый из двух подвохов оказывает эффект, противоположный другому, в результате чего они взаимно уничтожаются!

Двойной подвох: как атомы отличаются от планетных систем


Рис 2

Первый подвох: в отличие от планет, электроны, двигающиеся по орбитам вокруг ядра, должны излучать свет (точнее, электромагнитные волны, одним из примеров которых служит свет). А это излучение должно заставлять электроны замедляться и по спирали падать на ядро. В принципе, в теории Эйнштейна существует схожий эффект – планеты могут испускать гравитационные волны. Но он чрезвычайно мал. В отличие от случая с электронами. Получается, что электроны в атоме должны очень быстро, за малую долю секунды, по спирали упасть на ядро!

И они бы так и сделали, если бы не квантовая механика. Потенциальная катастрофа изображена на рис. 2.

Второй подвох: но наш мир работает согласно принципам квантовой механики! А у неё есть свой удивительный и контринтуитивный принцип неопределённости. Этот принцип, описывающий тот факт, что электроны – это такие же волны, как и частицы, заслуживает своей собственной статьи. Но вот, что нам нужно знать о нём для сегодняшней статьи. Общее следствие этого принципа состоит в том, что невозможно знать все характеристики объекта одновременно. Существуют наборы характеристик, для которых измерение одной из них делает другие неопределёнными. Один из случаев – это местоположение и скорость таких частиц, как электроны. Если вы точно знаете, где находится электрон, вы не знаете, куда он направляется, и наоборот. Можно достичь компромисса и с некоторой точностью знать, где он, и с некоторой точностью знать, куда он направляется. В атоме так всё и получается.

Допустим, электрон по спирали падает на ядро, как на рис. 2. В процессе его падения нам всё точнее и точнее будет известно его местоположение. Тогда принцип неопределённости говорит нам, что его скорость будет становиться всё более и более неопределённой. Но если электрон остановится на ядре, его скорость не будет неопределённой! Поэтому он не может остановиться. Если он вдруг попробует упасть вниз по спирали, ему придётся всё быстрее и быстрее передвигаться случайным образом. И это увеличение скорости уведёт электрон в сторону от ядра!

Так что тенденция падения по спирали будет нейтрализована тенденцией к более быстрому движению согласно принципу неопределённости. Баланс находится, когда электрон располагается на предпочтительном расстоянии от ядра, и это расстояние определяет размер атомов!


Рис 3

Если электрон изначально находится далеко от ядра, он будет двигаться к нему по спирали, как показано на рис. 2, и излучать электромагнитные волны. Но в результате его расстояние от ядра станет достаточно малым для того, чтобы принцип неопределённости запретил дальнейшее сближение. На этом этапе, когда найден баланс между излучением и неопределённостью, электрон организует стабильную «орбиту» вокруг ядра (точнее, орбиталь – этот термин выбран, чтобы подчеркнуть, что в отличие от планет, у электрона из-за квантовой механики нет таких орбит, какие есть у планет). Радиус орбитали определяет радиус атома (рис. 3).

Ещё одна особенность – принадлежность электронов к фермионам – заставляет электроны не спускаться до одного радиуса, и выстраиваться по орбиталям разных радиусов.

Насколько атомы крупные? Приближение на основе принципа неопределённости

На самом деле мы можем примерно оценить размер атома, используя только расчёты для электромагнитных взаимодействий, массу электрона и принцип неопределённости. Для простоты проделаем расчёты для атома водорода, где ядро состоит из одного протона, вокруг которого двигается один электрон.

Принцип неопределённости утверждает:

$$display$$m_e (Δ v) (Δ x) ≥ ℏ$$display$$


где ℏ - это постоянная Планка h, делённая на 2 π. Обратите внимание, он говорит, что (Δ v) (Δ x) не может быть слишком малым, что означает, что обе определённости не могут быть слишком малыми, хотя одна из них может быть очень малой, если другая будет очень большой.

Когда атом устанавливается в предпочтительном основном состоянии, мы можем ожидать, что знак ≥ превратится в знак ~, где A ~ B означает, что «A и B не совсем равны, но и не сильно отличаются». Это очень полезный символ для оценок!

Для атома водорода в основном состоянии, в котором неопределённость положения Δx будет примерно равна радиусу атома R, а неопределённость скорости Δv будет примерно равна типичной скорости V движения электрона вокруг атома, мы получим:


Как узнать R и V? Между ними и силой, удерживающей атом вместе, существует взаимоотношение. В неквантовой физике объект массы m, находящийся на круговой орбите радиуса r, и двигающийся со скоростью v вокруг центрального объекта, притягивающего его с силой F, будет удовлетворять уравнению
К электрону в атоме напрямую это неприменимо, но приближённо это работает. Сила, действующая в атоме, это электрическая сила, с которой протон с зарядом +1 притягивает электрон с зарядом -1, и в результате уравнение принимает вид
где k – константа Кулона, e – единица заряда, c – скорость света, ℏ - это постоянная Планка h, делённая на 2 π, а α – определённая нами постоянная тонкой структуры, равная . Совместим два предыдущих уравнения для F, и оценочное соотношение получается следующим:
Теперь применим это к атому, где v → V, r → R, и m → m e . Также умножим верхнее уравнение на . Это даёт:
На последнем шаге мы использовали наше соотношение неопределённости для атома, . Теперь можно вычислить радиус атома R:
И это оказывается практически точным! Такие простые оценки не дадут вам точных ответов, но очень хорошее приближение обеспечат!

Какие читатели хорошие бывают! Не только любят и уважают учителей природоведения, но и знают, как модель атома Бора объясняет, что электроны на ядра не падают.

Или падают?

В вопросе "почему электроны не падают на ядра" не упоминается про то, что речь идет исключительно об одноэлектронном атоме. Модель атома Бора (и старая квантовая механика в целом) ничего не говорит о стабильности многоэлектронных атомов и молекул. То, что "падения" не происходит в одноэлектронном атоме не гарантирует то же самое про другие системы. Если вы знатоки старой квантовой теории и взялись помогать учителям природоведения, то доведите свои рассуждения до конца. Мне, например, доказательства общего положения неизвестны.

P.S. Моделью Бора можно неплохо описывать синглетные и триплетные состояния простых двухатомных молекул. Обнаружили, это, правда, только в 2005-м, но лучше поздно, чем никогда. Построение довольно лобовое:

Работает немногим хуже первоначальной теории ГЛ о химической связи. По построению электроны гарантированно не падают на ядра (ура!), но сама модель далека по духу от квантования адиабатических инвариантов. Нечто подобное я видел сделанное для H2+ иона, но в более изощренном варианте. Идея была в том, чтобы квантовать не сами интегралы, а их сумму:

Наверно, этим занимались бы лет двадцать-тридцать, не придумай Шредингер свое уравнение. Догадаться, как сделать даже эту малость со старой квантовой механикой - непросто. Пирсон - корифей квантовой химии, член Национальной Академии, Хершбах - к тому же нобелевский лауреат. Перед вами гораздо более сложная задача. Надо создать то, что у Бора не вышло: работающую общую теорию многоэлектронных систем. После этого дело за малым: доказать в общем случае стабильность всех электронных орбит.

Желаю удачи.

PPS. Поскольку у меня нет желания дискутировать на тему, что стабильность многочастичных кулоновских систем в (новой) квантовой механике объясняется самосопряжением гамильтониана, фазами Луны, и т. д., комментаторам рекомендуется к прочтению

Кстати, почему один по себе принцип неопределенности Гейзенберга не объясняет стабильности атома (как утверждают выданные гуглом сливки интернета) написано на стр. 554-555 оного сочинения, часть I.

Положительный заряд ядра и отрицательный - электрона находятся в состоянии баланса, оттого электрон на ядро не падает и не улетает от него. И всё-таки при определённых условиях этот баланс должен нарушаться, то есть электрон обязан в прямом смысле валиться на ядро, вызывая безвременную кончину атома. Но даже из того факта, что планеты, звёзды и люди всё же существуют, очевидно, что происходит это лишь при весьма специфических условиях. Такое состояние наступает при заряде ядра (то есть количестве протонов в нём) выше 137 (недавние вычисления подняли эту цифру до 170), и тогда теоретически электрон должен не просто упасть на ядро, а породить там своих двойников из антимира - позитроны, которые затем улетят в окружающее пространство и натворят всякого.

Искусственное ядро атома, состоящее из пяти димеров кальция на графене, в электронном облаке, находящемся на границе коллапса (здесь и ниже илл. M. Crommie).

«Такие атомы, как ожидалось, сколлапсируют, "забрав" электрон из вакуума, притянув его к ядру и получив избыточный заряд,» - поясняет Леонид Левитов из (США), один из авторов новой работы, посвящённой этой теме.

Казалось бы, отличное предположение - в том смысле, что крепко неопровержимое: ядра атомов выше 118 у нас пока не получается ни в природе найти, ни создать искусственно. Уже много лет физики надеются взять твердыню если не измором, то хитростью. Поскольку таких тяжёлых элементов достать не удаётся, сходного эффекта пытаются добиться, сталкивая два ядра (например, урана с атомным номером 92) на устроителях частиц. «Такие эксперименты проводились десятилетиями», - комментирует ситуацию г-н Левитов. Но, конечно, ясного свидетельства коллапса атома не было.

Поэтому авторы рассматриваемой работы предложили использовать новую хитрость для симулирования такого коллапса. В графене - одноатомной в толщину решётке из атомов углерода - электроны, в силу необычной топологии этого материала, ведут себя как безмассовые частицы, хотя на самом деле масса у них есть. Однако двигаются они со скоростями намного меньшими, чем настоящие безмассовые частицы. А значит, состояния, формально сходные с коллапсами атомов, с участием таких электронов можно вызвать при во столько же раз меньшем заряде ядра.

В качестве заменителей атомных ядер физики использовали пары атомов (димеры) кальция на графеновой подложке. Используя как манипулятор сканирующий туннельный микроскоп, они получили чёткие свидетельства события, полностью аналогичного коллапсу ядер атомов.

Нормальный электрон вокруг нормального ядра (как те, из которых состоим мы с вами) и ультрарелятивистские электроны вокруг неустойчивого сверхкритического ядра.

Как только три таких димера оказались достаточно близко друг к другу, окружающее поле электронов показало специфический спектр резонансов, точно совпадавших с теми, что десятилетие назад были предсказаны для коллапса атома. Наблюдавшиеся резонансы сохранялись и для искусственных «ядер атомов» из четырёх и пяти димеров.

Хотя идея эксперимента была в том, чтобы подтвердить давние квантовомеханические предсказания относительно коллапса атомов, приложения у неё могут быть в меру практическими. Во-первых, как оказалось, так можно изучить многие свойства графена, который сейчас активно продвигается на роль материала для электроники. Во-вторых, такая чувствительность искусственных «атомов» на графене позволяет надеяться на использование подобных структур как детекторов химических и биомаркеров.