Основными частями радиотелескопа есть. Для чего нужны радиотелескопы? §3






Радиотелескоп является разновидностью телескопа и применяется для исследования электромагнитного излучения объектов. Он позволяет изучать электромагнитное излучение астрономических объектов в диапазоне несущих частот от десятков МГц до десятков ГГц. С помощью радиотелескопа ученые могут принять собственное радиоизлучения объекта и, основываясь на полученных данных, исследовать его характеристики, такие как: координаты источников, пространственная структура, интенсивность излучения, а также спектр и поляризация.

Впервые радиокосмическое излучение было обнаружено в 1931 году Карлом Янским, американским радиоинженером. Изучая атмосферные радиопомехи, Янский обнаружил постоянный радиошум. На тот момент ученый точно не мог объяснить его происхождение и отождествил его источник с Млечным путем, а именно с его центральной частью, где находится центр галактики. Только в начале 1940-х работы Янского были продолжены и поспособствовали в дальнейшем развитию радиоастрономии.

Радиотелескоп состоит из антенной системы, радиометра и регистрирующей аппаратуры. Радиометр – это приемное устройство, с помощью которого измеряют мощность излучения малой интенсивности в диапазоне радиоволн (длины волн от 0,1 мм до 1000 м). Другими словами радиотелескоп занимает наиболее низкочастотное положение по сравнению с другими приборами, с помощью которых исследуется электромагнитное излучение (например, инфракрасный телескоп, рентгеновский телескоп и т. д.).

Антенна представляет собой устройство для сбора радиоизлучения небесных объектов. Соновными характеристиками любой антенны являются: чувствительность (то есть минимально возможный сигнал для обнаружения), а также угловое разрешение (то есть способность разделить излучения от нескольких радиоисточников, которые расположены близко друг к другу).

Очень важно, чтобы радиотелескоп обладал высокой чувствительностью и хорошей разрешающей способностью, так как именно это дает возможность наблюдать меньшие пространственные детали исследуемых объектов. Минимальная плотность потока DР, которая регистрируется, определяется соотношением:
DP=P/(S \sqrt(Dft))
где Р - мощность собственных шумов радиотелескопа, S - эффективная площадь антенны, Df - полоса частот, которые принимаются, t - время накопления сигнала.

Антенны, используемые в радиотелескопах, можно разделить на несколько основных типов (классификация производится в зависимости от диапазона длин волн и назначения):
Антенны полной апертуры: параболические антенны (используются для наблюдения на коротких волнах; установлены на поворотных устройствах), радиотелескоп со сферическими зеркалами (диапазон волн до 3-см, неподвижная антенна; перемещение в пространстве луча антенны осуществляется облучением разных частей зеркала), радиотелескоп Крауса (длина волн 10 см; неподвижное вертикально расположенное сферическое зеркало, на которое направлено излучение источника с помощью плоского зеркала, установленного под определенным углом), перископические антенны (небольшие размеры по вертикали и большие в горизонтальном направлении);
Антенны с незаполненной апертурой (два типа в зависимости от способа воспроизведения изображения: последовательный синтез, апертурный синтез – см. ниже). Простейший инструмент данного типа – простой радиоинтерферометр (связанные между собой системы из двух радиотелескопов для одновременного наблюдения за радиоисточником: обладает большей разрешающей способностью, пример: Интерферометр с апертурным синтезом в Кембридже, Англия, длина волны 21 см). Другие типы антенн: крест (крест Миллса с последовательным синтезом в Молонго, Австралия, длина волны 73,5 см), кольцо (инструмент типа последовательного синтеза в Калгуре, Австралия, длина волны 375 см), составной интерферометр (интерферометр с апертурным синтезом во Флерсе, Австралия, длина волны 21).

Самыми точными в работе являются полноповоротные параболические антенны. В случае их применения чувствительность телескопа усиливается за счет того, что такую антенну можно направить в любую точку неба, накапливая сигнал от радиоисточника. Подобный телескоп выделяет сигналы космических источников на фоне разнообразных шумов. Зеркало отражает радиоволны, которые фокусируются и улавливаются облучателем. Облучатель представляет из себя полуволновое диполе, принимающее излучение заданной длины волны. Основная проблема использования радиотелескопов с параболическими зеркалами состоит в том, что при повороте зеркало деформируется под действием сил тяжести. Именно из-за этого в случае увеличения диаметра свыше примерно 150 м увеличиваются отклонения при измерениях. Тем не менее, существуют очень крупные радиотелескопы, которые успешно работают много лет.

Иногда, для более успешных наблюдений, используют несколько радиотелескопов, установленных на определенном расстоянии друг от друга. Такая система называется радиоинтерферометром (см. выше). Принцип его действия состоит в измерении и записи колебаний электромагнитного поля, которые порождаются отдельными лучами на поверхности зеркала или другой точке, через которую проходит тот же луч. После этого записи складываются с учетом фазового сдвига.

Если решетку антенн сделать не сплошной, а разнесенной на достаточно большое расстояние, то получится зеркало большого диаметра. Такая система работает по принципу «синтеза апертуры». В этом случае разрешение определяется расстоянием между антеннами, а не их диаметром. Таким образом, данная система позволяет не строить огромные антенны, а обойтись, как минимум, тремя, расположенными с определенными промежутками. Одной из самых известных систем подобного рода является VLA (Very Large Array). Этот массив расположен в США, штате Нью-Мексико. «Очень большая решетка» была создана в 1981 году. Система состоит из 27 полноповоротных параболических антенн, которые расположены вдоль двух линий, образующих букву “V”. Диаметр каждой антенны достигает 25 метров. Каждая антенна может занимать одну из 72 позиций, передвигаясь по рельсовым путям. VLA по чувствительности соответствует антенне диаметром 136 километров и по угловому разрешению превосходит лучшие оптические системы. Неслучайно именно VLA использовалась при поиске воды на Меркурии, радио-корон вокруг звезд и других явлений.

По своей конструкции радиотелескопы чаще всего открыты. Хотя в некоторых случаях для того, чтобы защитить зеркало от погодных явлений (температурных изменений и ветровых нагрузок), телескоп помещают внутрь купола: сплошного (Хайстекская обсерватория, 37-м радиотелескоп) или с раздвижным окном (11-м радиотелескоп на Китт-Пик, США).

В настоящее время перспективы использования радиотелескопов заключаются в том, что они позволяют наладить связь между антеннами, находящимися в разных странах и даже на разных континентах. Подобные системы называются радиоинтерферометрами со сверхдлинной базой (РСДБ). Сеть из 18 телескопов была использована в 2004 году для наблюдения за посадкой аппарата «Гюйгенс» на Титан, спутник Сатурна. Ведется проектирование системы ALMA, состоящей из 64 антенн. Перспектива на будущее – запуск антенн интерферометра в космос.

Опытные радисты знают: когда в радиоприёмнике иногда раздаются шум и треск, не стоит сразу винить аппаратуру: вполне возможно, что это подаёт голос... Солнце!

Впервые о том, что Солнце имеет собственную «радиостанцию», люди узнали в 30-х годах прошлого века. Открывателем космических радиоволн стал молодой физик Карл Янский. Он работал в одной из американских радиокомпаний, и ему поручили изучить направление прихода атмосферных коротковолновых радиопомех.

Молодой исследователь сконструировал специальную антенну, способную принимать короткие волны. Вооружившись этой антенной, он стал изучать источники радиопомех и их направление. Каково же было его удивление, когда прибор упрямо стал указывать на... солнечный диск! Причем эти шипящие помехи повторялись каждые 24 часа. Это указывало на то, что источник помех может быть связан с Солнцем (24 часа, как мы помним, длятся солнечные сутки на Земле). Но проанализировав полученные данные более тщательно, Карл Янский увидел, что обнаруженный им радиосигнал повторялся на каждые 24 часа, а каждые 23 часа 56 минут - это уже длительность звёздных суток, а не солнечных, то есть период вращения Земли относительно дальних звезд, а не Солнца. Сверившись с астрономическими картами, Карл Янский обнаружил, что источником излучения была область в центре нашей галактики Млечный Путь , в созвездии Стрельца.

Карл Янский опубликовал статью, в которой рассказал о своем открытии, однако ему не поверили. Но факты - упрямая вещь. Радиоголоса были обнаружены и у других звёзд, у планет и прочих небесных объектов. Так было положено начало новой науке - радиоастрономии. Она позволила узнать о Вселенной много такого, о чем люди раньше и не подозревали.


Круговая "антенна-карусель" Карла Янского - первый радиотелескоп

Антенна современного радиотелескопа давно уже не напоминает ту «раскладушку», с которой работал Янский.


Радиотелескоп РТ-32 РАО "Бадары"
Находится в урочище Бадары Тункинского р-на республики Бурятия (Россия).

Чаще всего это гигантская металлическая чаша диаметром в несколько десятков, а то и сотен метров.

Например, крупный радиотелескоп Аресибо расположен в кратере потухшего вулкана на Больших Антильских островах. Склоны кратера выровняли и прикрыли металлическими щитами. Получилась огромная чаша-зеркало, с помощью которой и улавливаются радиоголоса звёзд.


Обсерватория Аресибо (Пуэрто-Рико).
Радиотелескоп Аресибо, построенный в 1963 году,
по размерам уступает только китайскому телескопу FAST, запущенному в 2016 году.
Диаметр зеркала радиотелескопа Аресибо - почти 305 метров

Один из крупнейших радиотелескопов мира РАТАН-600 находится в нашей стране, в районе станицы Зеленчукской в Ставропольском крае.

Даже построив такую махину, астрономы на этом не успокоились. В 1980 году совместными усилиями специалистов стран Восточный и Западной Европы, а также Китая и Южной Африки был создан радиотелескоп, антенна которого оказалась диаметром... в половину земного шара! Самое удивительное, что никаких новых установок при этом не строили.

Вся хитрость в оригинальном подходе, который использовали учёные. Представьте себе, скажем, у нас в Крыму и где-то в Швеции два радиотелескопа направлены на один и тот же небесный объект. На обоих телескопах принятые сигналы записываются и передаются на компьютер. Затем радиоастрономы сравнивают записи, оценивают информацию с помощью электронных вычислительных машин. В итоге получается, что два телескопа работают как один - в общей упряжке.

Причём таким образом не только два, но и большее количество телескопов могут действовать сообща. Антенна такого всепланетарного радиотелескопа получается гигантской, простираясь на тысячи километров. Такие сети радиотелескопов называют РСДБ-сетями (расшифровывается как радиоинтерферометрия со сверхдлинными базами). Метод РСДБ придумали американцы в 1970-х годах. В наше время существует три крупных сети: "КВАЗАР" в России, EVN в Европе (в ней тоже участвуют российские радиотелескопы), и VLBA в США.

В будущем учёные замахиваются создать радиотелескоп размерами во всю Солнечную систему. Каким образом? Точно таким же. Один из радиотелескопов они хотят разместить на борту автоматической межпланетной станции и отравить её куда-нибудь на окраину Солнечной системы, допустим, к орбите Сатурна или Плутона. Другие радиотелескопы включатся на Земле. А когда полученные сведения обработают с помощью сверхмощных компьютеров, получится, будто работал сверхгигантский радиотелескоп.

Первый шаг в этом направлении уже сделан - это международный проект "РадиоАстрон". Размеры этой сети уже превышают диаметр нашей планеты, потому что в неё, помимо наземных радиотелескопов, включен космический радиотелескоп на российском космическом аппарате «Спектр-Р», запущенном на околоземную орбиту в 2011 году.

Зачем учёным такие гулливеровы «игрушки»? Оказывается, чем больше радиотелескоп, тем при прочих равных условиях чувствительнее его «радиоухо». Особенно удобны «упряжки» радиотелескопов для обнаружения источников со сложной пространственной структурой. То есть когда из одного места доносится не один, а сразу хор радиоголосов, и надо разобраться, кому какой принадлежит.

В свою очередь, накопленные знания нужны специалистам, чтобы лучше понять устройство мира. Например, мы до сих пор плохо знаем, как именно шло образование нашей Солнечной системы. Геологические процессы на планетах, химические реакции в их недрах сильно изменили облик небесных тел, и теперь нелегко представить, какими они были первоначально. Так что было бы важно отследить образование какой-либо другой планетной системы. Тогда по аналогии мы могли бы получить наглядное представление и о том, как образовывалась наша.

Так, проводя совместными усилиями «прослушивание» газопылевой туманности в созвездии Ориона, радиоастрономы пяти стран сумели не только услышать в общем хоре отдельные радиоголоса, но и догадаться, о чём шёл «разговор». Скорее всего, полагают учёные, радиотелескопам удалось обнаружить протозвёзды (звёзды, формирование которых ещё не закончено), возможно, даже отдельные далёкие системы, подобные Солнечной, как раз в разгар строительства. Так что, наблюдая за ними, мы можем узнать, судя по всему, немало интересного и о собственной.

Удалось радиоастрономам отыскать и следы Большого взрыва. Радиоастрономы зафиксировали в глубинах Вселенной фоновое или реликтовое радиоизлучение, которое представляет собой не что иное, как эхо Большого взрыва . Представляете, сколько миллиардов лет прошло, а радиоэхо до сих пор разгуливает по просторам Вселенной. И учёным удалось услышать его.

Благодаря РСДБ-сетям, астрономы получили возможность изучать такие загадочные космические объекты, как пульсары, нейтронные звёзды, чёрные дыры .

Появление радиотелескопов изменило характер труда астрономов. Как шутят они сами, многие теперь перестали смотреть по ночам на звёзды через «ночезрительную трубу» обычного, оптического телескопа, бормоча себе под нос стихи М. В. Ломоносова: «Открылась бездна звёзд полна...» Они теперь работают на сверхмощных компьютерах, выполняя сложные астрономические расчёты, напевая слова из романса на слова М. Ю. Лермонтова: «...И звезда с звездою говорит...»

Продолжаю рассказ о новогодней поездке в "страну телескопов", начатый (крупнейший в Евразии оптический телескоп с диаметром главного монолитного зеркала 6 м). На этот раз речь пойдет о двух его родственниках — радиотелескопах РАТАН-600 и РТФ-32. Первый занесен в Книгу Рекордов Гиннеса, а второй входит в единственный постоянно действующий в России радиоинтерферометрический комплекс "Квазар". Кстати, сейчас комплекс "Квазар" играет важную роль в работе системы ГЛОНАСС. Давайте обо всем подробнее и доступнее, по возможности!

А сейчас позанудствуем! :)

Для науки основными преимуществами телескопа является многочастотность (диапазон от 0,6 до 35 ГГц) и большое безаберрационное поле (что позволяет измерять почти мгновенно радиоспектры космических источников в широком диапазоне частот), высокая разрешающая способность и высокая чувствительность по яркостной температуре (которые позволяют проводить исследования протяженных структур, таких как флуктуации микроволнового фонового излучения на малых угловых масштабах, недостижимых даже на специализированных космических аппаратах и наземных инструментах).

Телескоп состоит из двух основных отражателей:

1. Круговой отражатель (справа и вдоль всего снимка).
Это наиболее крупная часть радиотелескопа, она состоит из 895 прямоугольных отражающих элементов размером 11,4 на 2 метра, расположенных по кругу с диаметром 576 метров. Они могут перемещаться по трём степеням свободы. Круговой отражатель разделён на 4 независимых сектора, названных по частям света: север, юг, запад, восток. Общая площадь 12"000м². Отражающие элементы каждого сектора выставляются по параболе, образуя отражающую и фокусирующую полосу антенны. В фокусе такой полосы располагается специальный облучатель.

2. Плоский отражатель (слева).
Плоский отражатель состоит из 124 плоских элементов высотой 8,5 метра и общей длинной 400 метров. Элементы могут вращаться относительно горизонтальной оси, расположенной вблизи уровня земли. Для проведения некоторых измерений отражатель может быть убран совмещением его поверхности с плоскостью земли. Отражатель используется как перископическое зеркало. При работе поток радиоизлучения, попавший на плоский отражатель, направляется в сторону южного сектора кругового отражателя. Отразившись от кругового отражателя, радиоволна фокусируется на облучателе, который устанавливается на кольцевых рельсах. Установкой облучателя в заданную позицию и перестройкой зеркала можно направлять радиотелескоп в заданную точку неба. Также возможен режим слежения за источником, при этом облучатель непрерывно движется, а также перестраивается зеркало.

12. Вид на плоский отражатель с обратной стороны. Видны механизмы, приводящие пластины в движение.

13. На радиотелескопе имеется пять приёмных кабин-облучателей, установленных на железнодорожных платформах с радиоприемной аппаратурой и наблюдателями. Одни напоминают бронепоезд, другие инопланетные корабли. На фото мы видим две такие кабины. По задумке, платформы могут перемещаться по одному из 12 радиальных путей, что обеспечивает набор фиксированных азимутов с шагом 30°. Перестановка облучателей между путями должна была осуществляется с помощью центрального поворотного круга (в центре фото)... Так было задумано, но потом от этого отказались (и так хватает) и поворотный круг не используется, а часть рельсов демонтирована.

14. В конце 1985 года установлен дополнительный конический отражатель-облучатель. Основу составляет коническое вторичное зеркало, под которым расположен облучатель. Он позволяет принимать излучение со всего кругового отражателя, при этом реализуется максимальная разрешающая способность радиотелескопа. Однако в таком режиме можно наблюдать только радиоисточники, направление на которые отклоняется от зенита не более ±5 градусов. Этот облучатель чаще всего фигурирует на иллюстрациях, связанных с телескопом, наверное из-за своего инопланетного вида:)

15. А еще с верхней площадки этого облучателя хорошо снимать общий радиотелескопа. Ну и вообще радует, что есть возможность полазать:) На РТФ-32 такой возможности не было.

Кстати, был курьез, приведший к образованию устойчивой местной "городской легенды". Когда проводились первые наблюдения на РАТАНе, во избежание помех от автотранспорта останавливалось движение по станице Зеленчукской вблизи РАТАНа. Закрытость телескопа и отсутствие достаточной информации об этом близком к станице и впечатляющем своими размерами сооружении породило разнообразные мифы среди местного населения - о том, что РАТАН якобы "облучает". Возможно, этому слуху способствовало еще и названием "облучатели" - хотя на самом деле они абсолютно ничего не излучают, а лишь принимают сигнал.

16. Кабина №1 на позиции, через несколько минут начнутся наблюдения, а пока нас приглашают зайти внутрь этого "бронепоезда".

14. Наш экскурсовод и рабочее место наблюдателя.

Какие же задачи ставятся перед РАТАНом?
- обнаружение большого числа космических источников радиоизлучения, отождествление их с космическими объектами;
- изучение радиоизлучения звезд;
- изучение квазаров и радиогалактик;
- исследование тел солнечной системы;
- исследования областей повышенного радиоизлучения на Солнце, их строения, магнитных полей;
- обнаружения искусственных сигналов внеземного происхождения (SETI);
- исследования реликтового излучения.

Телескоп исследует астрономические объекты во всем диапазоне расстояний во Вселенной: от самых близких - Солнца, солнечного ветра, планет и их спутников в Солнечной системе и до самых далеких звездных систем - радиогалактик, квазаров и космического микроволнового фона. На радиотелескопе выполняется свыше 20 научных программ как отечественных, так и иностранных заявителей.
По проекту "Генетический код Вселенной" на РАТАН-600 исследуются все компоненты фонового излучения на всех угловых масштабах. Ежедневные наблюдения Солнца на радиотелескопе дают уникальную, дополняемую другими инструментами, информацию о свойствах солнечной плазмы в диапазоне высот от хромосферы до нижней короны, то есть тех областей атмосферы Солнца, где зарождаются мощные солнечные вспышки. Эта информация позволяет прогнозировать вспышки солнечной активности, влияющие на самочувствие людей и на работу энергосистем на планете. В настоящее время архив наблюдательных данных РАТАН-600 содержит более полумиллиона записей радиообъектов.

15. А так выглядят радиометры, измерительная и фиксирующая аппаратура. Что-то осталось со времен первых наблюдений, а что-то уже заменено на современное оборудование. Одно можно сказать - радиотелескоп живет и развивается, являясь еще и опытной площадкой для инженеров.

16. На этом завершилась наша экскурсия на РАТАН-600: радиотелескоп загружен наблюдениями и отвлекать работающих там людей нельзя.

Итак, РАТАН-600 до сих пор является крупнейшим в мире рефлекторным зеркалом и основным радиотелескопом России, работающим в центральном "окне прозрачности" земной атмосферы в диапазоне длин волн 1-50 см. Ни один другой радиотелескоп в мире не имеет подобного частотного перекрытия с возможностью проведения одновременных наблюдений на всех частотах. Благодаря ему и БТА по соседству астрономы всего мира знают названия станицы Зеленчукской и Карачаево-Черкесской республики.


17. Сфотографировался на вершине "НЛО", на память:)

P.S. Надеюсь, я вас не сильно утомил техническими деталями?

Основное назначение телескопов - собрать как можно больше излучения от небесного тела. Это позволяет видеть неяркие объекты. Во вторую очередь телескопы служат для рассматривания объектов под большим углом или, как говорят, для увеличения. Разрешение мелких деталей – третье предназначение телескопов. Количество собираемого ими света и доступное разрешение деталей сильно зависит от площади главной детали телескопа - его объектива. Объективы бывают зеркальными и линзовыми.

Линзовые телескопы.

Линзы, так или иначе, всегда используются в телескопе. Но в телескопах-рефракторах линзой является главная деталь телескопа – его объектив. Вспомним, что рефракция – это преломление. Линзовый объектив преломляет лучи света, и собирает их в точке, именуемой фокусом объектива. В этой точке строится изображение объекта изучения. Чтобы его рассмотреть используют вторую линзу – окуляр. Она размещается так, чтобы фокусы окуляра и объектива совпадали. Так как зрение у людей разное, то окуляр делают подвижным, чтобы было возможно добиться четкого изображения. Мы это называем настройкой резкости. Все телескопы обладают неприятными особенностями - аберрациями. Аберрации – это искажения, которые получаются при прохождении света через оптическую систему телескопа. Главные аберрации связаны с неидеальностью объектива. Линзовые телескопы (да и телескопы вообще) грешат несколькими аберрациями. Назовем лишь две из них. Первая связана с тем, что лучи разных длин волн преломляются чуть по-разному. Из-за этого для синих лучей существует один фокус, а для красных – другой, расположенный дальше от объектива. Лучи других длин волн собираются каждый в своем месте между этими двумя фокусами. В результате мы видим окрашенные в радугу изображения объектов. Такая аберрация называется хроматической. Второй сильной аберрацией является аберрация сферическая. Она связана с тем, что объектив, поверхностью которого является часть сферы, на самом деле, не собирает все лучи в одной точке. Лучи идущие на разных расстояниях от центра объектива собираются в разных точках, из-за чего изображение получается нечетким. Этой аберрации не было бы, если бы объектив имел поверхность параболоида, но такую деталь сложно изготовить. Чтобы уменьшить аберрации изготавливают сложные, вовсе не двухлинзовые системы. Дополнительные части вводятся для исправления аберраций объектива. Давно держащий первенство среди линзовых телескопов - телескоп Йеркской обсерватории с объективом 102 сантиметра диаметром.

Зеркальные телескопы.

У простых зеркальных телескопов, телескопов-рефлекторов, объектив - это сферическое зеркало, которое собирает световые лучи и отражает их с помощью дополнительного зеркала в сторону окуляра - линзы, в фокусе которой строится изображение. Рефлекс – это отражение. Зеркальные телескопы не грешат хроматической аберрацией, так как свет в объективе не преломляется. Зато у рефлекторов сильнее выражена сферическая аберрация, которая, кстати говоря, сильно ограничивает поле зрения телескопа. В зеркальных телескопах так же используются сложные конструкции, поверхности зеркал, отличные от сферических и прочее.

Зеркальные телескопы изготавливать легче и дешевле. Именно поэтому их производство в последние десятилетия бурно развивается, в то время как новых крупных линзовых телескопов уже очень давно не делают. Самый большой зеркальный телескоп имеет сложный объектив из нескольких зеркал, эквивалентный целому зеркалу диаметром 11 метров. Самый большой монолитный зеркальный объектив имеет размер чуть больше 8-ми метров. Самым большим оптическим телескопом России является 6-ти метровый зеркальный телескоп БТА (Большой Телескоп Азимутальный). Телескоп долгое время был наикрупнейшим в мире.

Характеристики телескопов.

Увеличение телескопа. Увеличение телескопа равно отношению фокусных расстояний объектива и окуляра. Если, скажем, фокусное расстояние объектива два метра, а окуляра – 5 см, то увеличение такого телескопа будет 40 крат. Если поменять окуляр, можно изменить и увеличение. Так астрономы и поступают, ведь не менять же, в самом деле, огромный объектив?!

Выходной зрачок. Изображение, которое строит для глаза окуляр, может в общем случае быть как больше глазного зрачка, так и меньше. Если изображение больше, то часть света в глаз не попадет, тем самым, телескоп будет использоваться не на все 100%. Это изображение называют выходным зрачком и рассчитывают по формуле: p=D:W, где p – выходной зрачок, D – диаметр объектива, а W – увеличение телескопа с данным окуляром. Если принять размер глазного зрачка равным 5 мм, то легко рассчитать минимальное увеличение, которое разумно использовать с данным объективом телескопа. Получим этот предел для объектива в 15 см: 30 крат.

Разрешение телескопов

В виду того что, свет – это волна, а волнам свойственно не только преломление, но и дифракция, никакой даже самый совершенный телескоп не дает изображение точечной звезды в виде точки. Идеальное изображение звезды выглядит в виде диска с несколькими концентрическими (с общим центром) кольцами, которые называют дифракционными. Размером дифракционного диска и ограничивается разрешение телескопа. Все, что закрывает собою этот диск, в данный телескоп никак не увидишь. Угловой размер дифракционного диска в секундах дуги для данного телескопа определяется из простого соотношения: r=14/D, где диаметр D объектива измеряется в сантиметрах. Упомянутый чуть выше пятнадцатисантиметровый телескоп имеет предельное разрешение чуть меньше секунды. Из формулы следует, что разрешение телескопа всецело зависит от диаметра его объектива. Вот еще одна причина строительства как можно более грандиозных телескопов.

Относительное отверстие. Отношение диаметра объектива к его фокусному расстоянию называется относительным отверстием. Этот параметр определяет светосилу телескопа, т. е., грубо говоря, его способность отображать объекты яркими. Объективы с относительным отверстием 1:2 – 1:6 называют светосильными. Их используют для фотографирования слабых по яркости объектов, таких, как туманности.

Телескоп без глаза.

Одной из самых ненадежных деталей телескопа всегда был глаз наблюдателя. У каждого человека - свой глаз, со своими особенностями. Один глаз видит больше, другой - меньше. Каждый глаз по-разному видит цвета. Глаз человека и его память не способны сохранить всю картину, предлагаемую для созерцания телескопом. Поэтому, как только стало возможным, астрономы стали заменять глаз приборами. Если подсоиденить вместо окуляра фотоаппарат, то изображение, получаемое объективом можно запечатлеть на фотопластине или фотопленке. Фотопластина способна накапливать световое излучение, и в этом ее неоспоримое и важное преимущество перед человеческим глазом. Фотографии с большой выдержкой способны отобразить несравненно больше, чем под силу рассмотреть человеку в тот же самый телескоп. Ну и конечно, фотография останется как документ, к которому неоднократно можно будет в последствии обратиться. Еще более современным средством являются ПЗС - камеры с полярно-зарядовой связью. Это светочувствительные микросхемы, которые подменяют собой фотопластину и передают накапливаемую информацию на ЭВМ, после чего могут делать новый снимок. Спектры звезд и других объектов исследуются с помощью присоединенных к телескопу спектрографов и спектрометров. Ни один глаз не способен так четко различать цвета и измерять расстояния между линиями в спектре, как это с легкостью делают названные приборы, которые еще и сохранят изображение спектра и его характеристики для последующих исследований. Наконец, ни один человек не сможет посмотреть одним глазом в два телескопа одновременно. Современные системы из двух и более телескопов, объединенных одной ЭВМ и разнесенных, порой на расстояния в десятки метров, позволяют добиться потрясающе высоких разрешений. Такие системы называют интерферометрами. Пример системы из 4-х телескопов - VLT. Целых четыре вида телескопов мы объединили в один подраздел неслучайно. Земная атмосфера пропускает соответствующие длины электромагнитных волн неохотно, поэтому телескопы для изучения неба в этих диапазонах стремятся вынести в космос. Именно с развитием космонавтики напрямую связано развитие ультрафиолетовой, рентгеновской, гамма и инфракрасной отраслей астрономии.

Радиотелескопы.

В качестве объектива радиотелескопа чаще всего выступает металлическая чаша параболоидной формы. Собранный ею сигнал принимается антенной, находящейся в фокусе объектива. Антенна связана с ЭВМ, которая обычно и обрабатывает всю информацию, строя изображения в условных цветах. Радиотелескоп, как и радиоприемник, способен одновременно принимать только какую-то длину волны. В книге Б. А. Воронцова-Вельяминова «Очерки о Вселенной» есть очень интересная иллюстрация, напрямую связанная с предметом нашего разговора. В одной обсерватории гостям предлагали подойти к столу и взять с него листок бумаги. Человек брал листок и на обороте читал примерно следующее: «Взяв этот листок бумаги, Вы затратили больше энергии, чем приняли все радиотелескопы мира за все время существования радиоастрономии». Если Вы ознакомились с этим разделом (а следовало бы), то Вы, должно быть, помните, что радиоволны обладают самыми большими длинами волн среди всех видов электромагнитного излучения. Это означает, что соответствующие радиоволнам фотоны переносят совсем немного энергии. Чтобы собрать приемлемое количество информации о светилах в радиолучах, астрономы строят огромные по размерам телескопы. Сотни метров – вот тот не столь уже удивительный рубеж для диаметров объективов, который достигнут современной наукой. К счастью, в мире все взаимосвязано. Строительство гигантских радиотелескопов не сопровождается теми же сложностями в обработке поверхности объектива, которые неизбежны при строительстве оптических телескопов. Допустимые погрешности поверхности пропорциональны длине волны, поэтому, порою, металлические чаши радиотелескопов представляют собой не гладкую поверхность, а попросту решетку, и на качестве приема это никак не сказывается. Большая длина волны также позволяет строить грандиозные системы интерферометров. Порой, в таких проектах участвуют телескопы разных континентов. В проектах есть интерферометры космических масштабов. Если они осуществятся, радиоастрономия достигнет невиданных пределов в разрешении небесных объектов. Кроме сбора излучаемой небесными телами энергии, радиотелескопам доступно «подсвечивание» поверхности тел Солнечной системы радиолучами. Сигнал, посланный, скажем с Земли на Луну, отразится от поверхности нашего спутника и будет принят тем же телескопом, что и посылал сигнал. Этот метод исследований называется радиолокацией. С помощью радиолокации можно многое узнать. Впервые астрономы узнали о том, что Меркурий вращается вокруг своей оси именно таким способом. Расстояние до объектов, скорость их движения и вращения, их рельеф, некоторые данные о химическом составе поверхности – вот те немаловажные сведения, которые по силам выяснить радиолокационными методами. Самый грандиозный пример таких исследований – полное картографирование поверхности Венеры, проведенное АМС «Магеллан» на стыке 80-х и 90-х годов. Как Вы, может быть, знаете, эта планета прячет от человеческого глаза свою поверхность за плотной атмосферой. Радиоволны же беспрепятственно проходят сквозь облака. Теперь мы знаем о рельефе Венеры лучше, чем о рельефе Земли (!), ведь на Земле покрывало океанов мешает проводить изучение большей части твердой поверхности нашей планеты. Увы, скорость распространения радиоволн велика, но не безгранична. К тому же, с удаленностью радиотелескопа от объекта возрастает рассеивание посланного и отраженного сигнала. На дистанции Юпитер-Земля сигнал принять уже сложно. Радиолокация – по астрономическим меркам, оружие ближнего боя.