Окружность и ее свойства. Теорема об угле между пересекающимися хордами

Окружность в математике является фигурой одной из самых главных и важных. Она необходима для множества расчетов. Знания свойств этой фигуры из школьной программы непременно пригодятся в жизни. Длина окружности требуется при расчете многих материалов с круглым сечением. Заниматься чертежами, строить заборчик возле клумбы - для этого понадобится знание геометрической фигуры и ее свойств.

Понятие окружности и ее основные элементы

Фигура на плоскости, состоящая из многочисленных точек, расположенных на равном расстоянии от центральной, называется окружностью. Отрезок, выходящий из центра и соединяющий его с одной из точек, образующих окружность, называется радиусом. Хордой является отрезок, который соединяет пару точек, расположенных по периметру круга, между собой. Если она расположена так, что проходит через центральную точку, то одновременно является диаметром.

Длина радиуса окружности равна длине диаметра, уменьшенной вдвое. Пара несовпадающих точек, находящихся на окружности, делят ее на две дуги. Если отрезок с концами в этих точках проходит через центральную точку (тем самым являясь диаметром), то образуемые дуги будут являться полуокружностями.

Длина окружности

Расчет периметра окружности определяется несколькими способами: через диаметр или через радиус. На практике было выявлено, что длина окружности (l) при делении на ее же диаметр (d) всегда дает одно число. Это число π, которое ровняется 3,141692666… Расчет производится по формуле: π= l/ d. Преобразуя ее, получается длина окружности. Формула такова: l=πd.

Для нахождения радиуса применим следующую формулу: d=2r. Это стало возможным, благодаря делению. Ведь радиус - это половина диаметра. Как только получили вышеуказанные значения, можно вычислить, чему же ровна длина окружности, по формуле следующего вида: l=2πr.

Основные свойства

Площадь круга всегда больше, если сравнивать ее с площадями иных замкнутых кривых. Касательная - это прямая, которая соприкасается с окружностью только в одной точке. Если прямая пересекает ее в двух местах, то она является секущей. Точка, в которой 2 различные окружности соприкасаются друг с другом, всегда находится на прямой, проходящей через их центральные точки. Пересекающимися на плоскости являются такие окружности, которые имеют 2 общие точки. Угол между ними рассчитывается как угол, образованный касательными к точкам соприкосновения.

Если через точку, не являющейся точкой окружности, провести две секущиеся к ней прямые, то образованный ими угол будет равен разности длин дуг, уменьшенной вдвое. Данное правило действует и в противоположном случае, когда речь идет о двух хордах. Две пересекающиеся хорды образуют угол, равный сумме длин дуг, уменьшенной в два раза. Дуги в такой ситуации выбирают в данном углу и углу, расположенному напротив. Оптическое свойство окружности гласит следующее: лучи света, отраженные от зеркал, расставленных по периметру круга, собираются обратно в его центр. В данном случае источник света должен быть установлен в центральной точке круга.

\[{\Large{\text{Центральные и вписанные углы}}}\]

Определения

Центральный угол – это угол, вершина которого лежит в центре окружности.

Вписанный угол – это угол, вершина которого лежит на окружности.

Градусная мера дуги окружности – это градусная мера центрального угла, который на неё опирается.

Теорема

Градусная мера вписанного угла равна половине градусной меры дуги, на которую он опирается.

Доказательство

Доказательство проведём в два этапа: сначала докажем справедливость утверждения для случая, когда одна из сторон вписанного угла содержит диаметр. Пусть точка \(B\) – вершина вписанного угла \(ABC\) и \(BC\) – диаметр окружности:

Треугольник \(AOB\) – равнобедренный, \(AO = OB\) , \(\angle AOC\) – внешний, тогда \(\angle AOC = \angle OAB + \angle ABO = 2\angle ABC\) , откуда \(\angle ABC = 0,5\cdot\angle AOC = 0,5\cdot\buildrel\smile\over{AC}\) .

Теперь рассмотрим произвольный вписанный угол \(ABC\) . Проведём диаметр окружности \(BD\) из вершины вписанного угла. Возможны два случая:

1) диаметр разрезал угол на два угла \(\angle ABD, \angle CBD\) (для каждого из которых теорема верна по доказанному выше, следовательно верна и для исходного угла, который является суммой этих двух и значит равен полусумме дуг, на которые они опираются, то есть равен половине дуги, на которую он опирается). Рис. 1.

2) диаметр не разрезал угол на два угла, тогда у нас появляется ещё два новых вписанных угла \(\angle ABD, \angle CBD\) , у которых сторона содержит диаметр, следовательно, для них теорема верна, тогда верна и для исходного угла (который равен разности этих двух углов, значит, равен полуразности дуг, на которые они опираются, то есть равен половине дуги, на которую он опирается). Рис. 2.


Следствия

1. Вписанные углы, опирающиеся на одну и ту же дугу, равны.

2. Вписанный угол, опирающийся на полуокружность, прямой.

3. Вписанный угол равен половине центрального угла, опирающегося на ту же дугу.

\[{\Large{\text{Касательная к окружности}}}\]

Определения

Существует три типа взаимного расположения прямой и окружности:

1) прямая \(a\) пересекает окружность в двух точках. Такая прямая называется секущей. В этом случае расстояние \(d\) от центра окружности до прямой меньше радиуса \(R\) окружности (рис. 3).

2) прямая \(b\) пересекает окружность в одной точке. Такая прямая называется касательной, а их общая точка \(B\) – точкой касания. В этом случае \(d=R\) (рис. 4).


Теорема

1. Касательная к окружности перпендикулярна радиусу, проведенному в точку касания.

2. Если прямая проходит через конец радиуса окружности и перпендикулярна этому радиусу, то она является касательной к окружности.

Следствие

Отрезки касательных, проведенных из одной точки к окружности, равны.

Доказательство

Проведем к окружности из точки \(K\) две касательные \(KA\) и \(KB\) :


Значит, \(OA\perp KA, OB\perp KB\) как радиусы. Прямоугольные треугольники \(\triangle KAO\) и \(\triangle KBO\) равны по катету и гипотенузе, следовательно, \(KA=KB\) .

Следствие

Центр окружности \(O\) лежит на биссектрисе угла \(AKB\) , образованного двумя касательными, проведенными из одной точки \(K\) .

\[{\Large{\text{Теоремы, связанные с углами}}}\]

Теорема об угле между секущими

Угол между двумя секущими, проведенными из одной точки, равен полуразности градусных мер большей и меньшей высекаемых ими дуг.

Доказательство

Пусть \(M\) – точка, из которой проведены две секущие как показано на рисунке:


Покажем, что \(\angle DMB = \dfrac{1}{2}(\buildrel\smile\over{BD} - \buildrel\smile\over{CA})\) .

\(\angle DAB\) – внешний угол треугольника \(MAD\) , тогда \(\angle DAB = \angle DMB + \angle MDA\) , откуда \(\angle DMB = \angle DAB - \angle MDA\) , но углы \(\angle DAB\) и \(\angle MDA\) – вписанные, тогда \(\angle DMB = \angle DAB - \angle MDA = \frac{1}{2}\buildrel\smile\over{BD} - \frac{1}{2}\buildrel\smile\over{CA} = \frac{1}{2}(\buildrel\smile\over{BD} - \buildrel\smile\over{CA})\) , что и требовалось доказать.

Теорема об угле между пересекающимися хордами

Угол между двумя пересекающимися хордами равен полусумме градусных мер высекаемых ими дуг: \[\angle CMD=\dfrac12\left(\buildrel\smile\over{AB}+\buildrel\smile\over{CD}\right)\]

Доказательство

\(\angle BMA = \angle CMD\) как вертикальные.


Из треугольника \(AMD\) : \(\angle AMD = 180^\circ - \angle BDA - \angle CAD = 180^\circ - \frac12\buildrel\smile\over{AB} - \frac12\buildrel\smile\over{CD}\) .

Но \(\angle AMD = 180^\circ - \angle CMD\) , откуда заключаем, что \[\angle CMD = \frac12\cdot\buildrel\smile\over{AB} + \frac12\cdot\buildrel\smile\over{CD} = \frac12(\buildrel\smile\over{AB} + \buildrel\smile\over{CD}).\]

Теорема об угле между хордой и касательной

Угол между касательной и хордой, проходящей через точку касания, равен половине градусной меры дуги, стягиваемой хордой.

Доказательство

Пусть прямая \(a\) касается окружности в точке \(A\) , \(AB\) – хорда этой окружности, \(O\) – её центр. Пусть прямая, содержащая \(OB\) , пересекает \(a\) в точке \(M\) . Докажем, что \(\angle BAM = \frac12\cdot \buildrel\smile\over{AB}\) .


Обозначим \(\angle OAB = \alpha\) . Так как \(OA\) и \(OB\) – радиусы, то \(OA = OB\) и \(\angle OBA = \angle OAB = \alpha\) . Таким образом, \(\buildrel\smile\over{AB} = \angle AOB = 180^\circ - 2\alpha = 2(90^\circ - \alpha)\) .

Так как \(OA\) – радиус, проведённый в точку касания, то \(OA\perp a\) , то есть \(\angle OAM = 90^\circ\) , следовательно, \(\angle BAM = 90^\circ - \angle OAB = 90^\circ - \alpha = \frac12\cdot\buildrel\smile\over{AB}\) .

Теорема о дугах, стягиваемых равными хордами

Равные хорды стягивают равные дуги, меньшие полуокружности.

И наоборот: равные дуги стягиваются равными хордами.

Доказательство

1) Пусть \(AB=CD\) . Докажем, что меньшие полуокружности дуги .


По трем сторонам, следовательно, \(\angle AOB=\angle COD\) . Но т.к. \(\angle AOB, \angle COD\) - центральные углы, опирающиеся на дуги \(\buildrel\smile\over{AB}, \buildrel\smile\over{CD}\) соответственно, то \(\buildrel\smile\over{AB}=\buildrel\smile\over{CD}\) .

2) Если \(\buildrel\smile\over{AB}=\buildrel\smile\over{CD}\) , то \(\triangle AOB=\triangle COD\) по двум сторонам \(AO=BO=CO=DO\) и углу между ними \(\angle AOB=\angle COD\) . Следовательно, и \(AB=CD\) .

Теорема

Если радиус делит хорду пополам, то он ей перпендикулярен.

Верно и обратное: если радиус перпендикулярен хорде, то точкой пересечения он делит ее пополам.


Доказательство

1) Пусть \(AN=NB\) . Докажем, что \(OQ\perp AB\) .

Рассмотрим \(\triangle AOB\) : он равнобедренный, т.к. \(OA=OB\) – радиусы окружности. Т.к. \(ON\) – медиана, проведенная к основанию, то она также является и высотой, следовательно, \(ON\perp AB\) .

2) Пусть \(OQ\perp AB\) . Докажем, что \(AN=NB\) .

Аналогично \(\triangle AOB\) – равнобедренный, \(ON\) – высота, следовательно, \(ON\) – медиана. Следовательно, \(AN=NB\) .

\[{\Large{\text{Теоремы, связанные с длинами отрезков}}}\]

Теорема о произведении отрезков хорд

Если две хорды окружности пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды.

Доказательство

Пусть хорды \(AB\) и \(CD\) пересекаются в точке \(E\) .

Рассмотрим треугольники \(ADE\) и \(CBE\) . В этих треугольниках углы \(1\) и \(2\) равны, так как они вписанные и опираются на одну и ту же дугу \(BD\) , а углы \(3\) и \(4\) равны как вертикальные. Треугольники \(ADE\) и \(CBE\) подобны (по первому признаку подобия треугольников).

Тогда \(\dfrac{AE}{EC} = \dfrac{DE}{BE}\) , откуда \(AE\cdot BE = CE\cdot DE\) .

Теорема о касательной и секущей

Квадрат отрезка касательной равен произведению секущей на ее внешнюю часть.

Доказательство

Пусть касательная проходит через точку \(M\) и касается окружности в точке \(A\) . Пусть секущая проходит через точку \(M\) и пересекает окружность в точках \(B\) и \(C\) так что \(MB < MC\) . Покажем, что \(MB\cdot MC = MA^2\) .


Рассмотрим треугольники \(MBA\) и \(MCA\) : \(\angle M\) – общий, \(\angle BCA = 0,5\cdot\buildrel\smile\over{AB}\) . По теореме об угле между касательной и секущей, \(\angle BAM = 0,5\cdot\buildrel\smile\over{AB} = \angle BCA\) . Таким образом, треугольники \(MBA\) и \(MCA\) подобны по двум углам.

Из подобия треугольников \(MBA\) и \(MCA\) имеем: \(\dfrac{MB}{MA} = \dfrac{MA}{MC}\) , что равносильно \(MB\cdot MC = MA^2\) .

Следствие

Произведение секущей, проведённой из точки \(O\) , на её внешнюю часть не зависит от выбора секущей, проведённой из точки \(O\) .

А в окружность я влюбился и на ней остановился.”

Информационно-учебный проект.

Тема: окружность

Цель проекта: Изучить свойства, виды разных окружностей и теоремы, с ними связанные.

Я начал свою работу с того, что изучил свойства окружности в школьном курсе геометрии по учебнику А.В.Погорелова “Геометрия 7-9” и материал за рамками школьного курса. При сборе информации из различных источников и в работе над проектом я расширил свои знания и буду продолжать дальше изучать эту тему и делиться знаниями с одноклассниками и всеми, кому это интересно.

Окружность - геометрическое место точек плоскости, равноудалённых от заданной точки, называемой центром, на заданное ненулевое расстояние, называемое её радиусом. Замкнутый круг, не имеющий внутренное пространство.

Другие определения

Окружность диаметра AB - это фигура, состоящая из точек A, B и всех точек плоскости, из которых отрезок AB виден под прямым углом.

Окружность - это фигура, состоящая из всех точек плоскости, для каждой из которых отношение расстояний до двух данных точек равно данному числу, отличному от единицы. (см. Окружность Аполлония)

Также фигура, состоящая из всех таких точек, для каждой из которых сумма квадратов расстояний до двух данных точек равна заданной величине, большей половины квадрата расстояния между данными точками.

Связанные определения

    Радиус - не только величина расстояния, но и отрезок, соединяющий центр окружности с одной из её точек.

    Отрезок, соединяющий две точки окружности, называется её хордой . Хорда, проходящая через центр окружности, называется диаметром .

    Окружность называется единичной , если ее радиус равен единице. Единичная окружность является одним из основных объектов тригонометрии.

    Любые две несовпадающие точки окружности делят её на две части. Каждая из этих частей называется дугой окружности . Дуга называется полуокружностью , если отрезок, соединяющий её концы, является диаметром.

Теорема Птолемея.

Клавдий Птолемей (), живший в конце первого - начале второго века н.э., был древнегреческим ученым-астрономом, математиком, астрологом, географом, оптиком и теоретиком музыки. Он известен как комментатор Евклида. Птолемей пытался доказать знаменитый Пятый постулат. Основной труд Птолемея - “Альмагест”, в котором он изложил сведения по астрономии. Включал “Альмагест” и каталог звездного неба.

Теорема Птолемея. Вокруг четырехугольника можно описать окружность тогда и только тогда, когда произведение его диагоналей равно сумме произведений его противоположных сторон.

Доказательство необходимости . Поскольку четырехугольник вписан в окружность, то

Из треугольника по теореме косинусов находим

Аналогично из треугольника :

Сумма этих косинусов равна нулю:

Отсюда выразим :

Рассмотрим треугольники и и найдем :

что и требовалось доказать.

Попутно мы доказали еще одно утверждение. Для четырехугольника, вписанного в окружность,

Доказательство достаточности. Пусть выполнено равенство

Докажем, что вокруг четырехугольника можно описать окружность.

Обозначим через радиус окружности, описанной вокруг . Из точки опустим перпендикуляры на прямые и и обозначим точки пересечения этих прямых и перпендикуляров к ним через и соответственно. По теореме синсов для треугольника получаем (диаметр описанной окружности для этого треугольника равен ):

По теореме синусов для треугольника имеем

Следовательно,

Таким же образом, рассматривая треугольники и получим соотношения

Отсюда, подставляя эти выражения в исходное равенство, имеем

откуда следует, что точки и лежат на одной прямой.

Докажем теперь, что из этого следует, что вокруг четырехугольника можно описать окружность (достаточное условие теоремы Симсона).

Построим окружности на отрезках и как на диаметрах. Первая из них проходит через точки и (углы и прямые), а вторая - через точки и (). Углы и равны как вертикальные, откуда следует, что , а значит, и . Отсюда , и вокруг четырехугольника можно описать окружность.

Формула Эйлера названа в честь Леонарда Эйлера, который её ввёл, и связывает комплексную экспоненту с тригонометрическими функциями.

Формула Эйлера утверждает, что для любого вещественного числа x выполнено следующее равенство:

где e - основание натурального логарифма,

i - мнимая единица.

Угол, образуемый дугой окружности, равной по длине радиусу, принимается за 1 радиан.

Длина единичной полуокружности обозначается через π.


Геометрическое место точек плоскости, расстояние от которых до данной точки не больше, чем заданное ненулевое, называется кругом .

Прямая, имеющая с окружностью ровно одну общую точку, называется касательной к окружности, а их общая точка называется точкой касания прямой и окружности.

Прямая, проходящая через две различных точки на окружности, называется секущей .

Центральный угол - угол с вершиной в центре окружности. Центральный угол равен градусной мере дуги, на которую опирается.

В данном случае угол АОВ является центральным.

Вписанный угол - угол, вершина которого лежит на окружности, а стороны пересекают эту окружность. Вписанный угол равен половине градусной меры дуги, на которую опирается. В данном случае угол ABC является вписанным.

Две окружности, имеющие общий центр, называются концентрическими .

Две окружности, радиусы которых пересекаются под прямым углом, называются

ортогональными.

Длина окружности: C = 2∙π∙R = π∙D

Радиус окружности: R = C/(2∙π) = D/2

Диаметр окружности: D = C/π = 2∙R

Две окружности, заданные уравнениями:

являются концентрическими (то есть имеющими общий центр) в том и только в том случае, когда A1 = A2 и B1 = B2.

Две окружности являются ортогональными (то есть пересекающиеся под прямым углом) тогда и только тогда, когда выполняется условие

Вписанная окружность

Окружность называется вписанной в угол, если она лежит внутри угла и касается его сторон. Центр окружности, вписанной в угол, лежит на биссектрисе этого угла.

Окружность называется вписанной в выпуклый многоугольник, если она лежит внутри данного многоугольника и касается всех прямых, проходящих через его стороны.

В треугольнике

Свойства вписанной окружности:

    В каждый треугольник можно вписать окружность, притом только одну.

    Если прямая, проходящая через точку О параллельно стороне AB, пересекает стороны BC и CA в точках A 1 и B 1 , то A 1 B 1 = A 1 B + AB 1 .

    Точки касания вписанной в треугольник T окружности соединены отрезками - получается треугольник T 1

    • биссектрисы T являются серединными перпендикулярами T 1

      Пусть T 2 - ортотреугольник T 1 . Тогда его стороны параллельны сторонам исходного треугольника T.

      Пусть T 3 - серединный треугольник T 1 . Тогда биссектрисы T являются высотами T 3 .

  • Центр O вписанной окружности называется инцентром, он равноудалён от всех сторон и является точкой пересечения биссектрис треугольника.

    Радиус вписанной в треугольник окружности равен

В многоугольнике

Если в данный выпуклый многоугольник можно вписать окружность, то биссектрисы всех углов данного многоугольника пересекаются в одной точке, которая является центром вписанной окружности.

    Радиус вписанной в многоугольник окружности равен отношению его площади к полупериметру

Описанная окружность.

Описанная окружность - окружность, содержащая все вершины многоугольника. Центром является точка (принято обозначать O ) пересечения серединных перпендикуляров к сторонам многоугольника.

Свойства

    Центр описанной окружности выпуклого n-угольника лежит в точке пересечения серединных перпендикуляров к его сторонам. Как следствие: если рядом с n-угольником описана окружность, то все серединные перпендикуляры к его сторонам пересекаются в одной точке (центре окружности).

    Вокруг любого правильного многоугольника можно описать окружность, и притом только одну.

Для треугольника :

    Вокруг любого треугольника можно описать окружность, притом только одну. Её центром будет являться точка пересечения серединных перпендикуляров.

    У остроугольного треугольника центр описанной окружности лежит внутри, у тупоугольного - вне треугольника, у прямоугольного - на середине гипотенузы.

    3 из 4 окружностей, описанных относительно серединных треугольников (образованных средними линиями треугольника), пересекаются в одной точке внутри треугольника. Эта точка и есть центр описанной окружности основного треугольника.

    Центр описанной около треугольника окружности служит ортоцентром треугольника с вершинами в серединах сторон данного треугольника.

    Расстояние от вершины треугольника до ортоцентра вдвое больше, чем расстояние от центра описанной окружности до противоположной стороны.

Радиус

Радиус описанной окружности может быть найден по формулам

Где:

a , b , c - стороны треугольника,

α - угол, лежащий против стороны a ,

S - площадь треугольника.

Положение центра описанной окружности

Пусть радиус-векторы вершин треугольника, - радиус-вектор центра описанной окружности. Тогда

где

Уравнение описанной окружности

Пусть координаты вершин треугольника в некоторой декартовой системе координат на плоскости, - координаты центра описанной окружности. Тогда

а уравнение описанной окружности имеет вид

Для точек , лежащих внутри окружности, определитель отрицателен, а для точек вне ее - положителен.

    Формула Эйлера: Если d - расстояние между центрами вписанной и описанной окружностей, а их радиусы равны r и R соответственно, то d 2 = R 2 − 2 Rr .

Для четырехугольника.

Вписанный простой (без самопересечений) четырёхугольник необходимо является выпуклым.

Вокруг выпуклого четырёхугольника можно описать окружность тогда и только тогда, когда сумма его внутренних противоположных углов равна 180° (π радиан).

Можно описать окружность вокруг:

    любого прямоугольника (частный случай квадрат)

    любой равнобедренной трапеции

У четырёхугольника, вписанного в окружность, произведение длин диагоналей равно сумме произведений длин пар противоположных сторон:

|AC|·|BD| = |AB|·|CD| + |BC|·|AD|

Окружность Аполлония - геометрическое место точек плоскости, отношение расстояний от которых до двух заданных точек - величина постоянная, не равная единице.

Биполярные координаты - ортогональная система координат на плоскости, основанная на кругах Аполлония.

Пусть на плоскости даны две точки A и B . Рассмотрим все точки P этой плоскости, для каждой из которых

,

где k - фиксированное положительное число. При k = 1 эти точки заполняют срединный перпендикуляр к отрезку AB ; в остальных случаях указанное геометрическое место - окружность, называемая окружностью Аполлония .

Окружности Аполлония. Каждая голубая окружность пересекает каждую красную под прямым углом. Каждая красная окружность проходит через две точки (C и D) и каждая голубая окружность окружает только одну из этих точек

Радиус окружностей Аполлония равен :

Единичная окружность - это окружность с радиусом 1 и центром в начале координат. Понятие единичной окружности можно легко обобщить до n-мерного пространства ( n 2). В таком случае используется термин «единичная сфера».

Для всех точек на окружности действительно согласно с теоремой Пифагора: x 2 + y 2 = 1.

Не путайте термины «окружность» и «круг»!

    Окружность на данном расстоянии от данной точки, на одной плоскости - кривая.

    Круг - геометрическое место точек, расположенное не дальше чем окружность , на одной плоскости - фигура.

Также к единичной окружности можно отнести раздел алгебры,как тригонометрия.

Тригонометрия.

Синус и косинус могут быть описаны следующим образом: соединив любую точку ( x , y ) на единичной окружности с началом координат (0,0), мы получаем отрезок, находящийся под углом α относительно положительной полуоси абсцисс. Тогда действительно:

cos α = x

sin α = y

Подставив эти значения в вышеуказанное уравнение x 2 + y 2 = 1, мы получаем:

cos 2 α + sin 2 α = 1

Обратите внимание на общепринятое написание cos 2 x = (cos x ) 2 .

Тут же наглядно описывается периодичность тригонометрических функций, так как угол отрезка не зависит от количества «полных оборотов»:

sin( x + 2 π k ) = sin( x )

cos( x + 2 π k ) = cos( x )

для всех целых чисел k , иными словами, k принадлежит Z .

Комлексная плоскость.

В комплексной плоскости единичную окружность описывает множество :

Множество G удоволетворяет условиям мультипликативной группы (с нейтральным элементом e i 0 = 1).

Теорема о секущих - теорема планиметрии. Формулируется следующим образом:

Если из точки, лежащей вне окружности, проведены две секущие, то произведение одной секущей на её внешнюю часть равно произведению другой секущей на её внешнюю часть.

Если перевести это утверждение на язык букв (согласно рисунку справа), то получится следующее:

Частным случаем теоремы о секущих, является Теорема о касательной и секущей:

Если из одной точки проведены к окружности касательная и секущая, то произведение всей секущей на её внешнюю часть равно квадрату касательной.

Использованные интернет ресурсы:

www .wikipedia.org

А также литература: Геометрия 7-11 классы Определения, свойства, методы решения задач в таблицах Е.П.Нелин

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Сначала разберемся в отличии между кругом и окружностью. Чтобы увидеть эту разницу, достаточно рассмотреть, чем являются обе фигуры. Это бесчисленное количество точек плоскости, располагающиеся на равном расстоянии от единственной центральной точки. Но, если круг состоит и из внутреннего пространства, то окружности оно не принадлежит. Получается, что круг это и окружность, ограничивающая его (о-кру(г)жность), и бесчисленное число точек, что внутри окружности.

Для любой точки L , лежащей на окружности, действует равенство OL=R . (Длина отрезка OL равняется радиусу окружности).

Отрезок, который соединяет две точки окружности, является ее хордой .

Хорда, проходящая прямо через центр окружности, является диаметром этой окружности (D) . Диаметр можно вычислить по формуле: D=2R

Длина окружности вычисляется по формуле: C=2\pi R

Площадь круга : S=\pi R^{2}

Дугой окружности называется та ее часть, которая располагается между двух ее точек. Эти две точки и определяют две дуги окружности. Хорда CD стягивает две дуги: CMD и CLD . Одинаковые хорды стягивают одинаковые дуги.

Центральным углом называется такой угол, который находится между двух радиусов.

Длину дуги можно найти по формуле:

  1. Используя градусную меру: CD = \frac{\pi R \alpha ^{\circ}}{180^{\circ}}
  2. Используя радианную меру: CD = \alpha R

Диаметр, что перпендикулярен хорде, делит хорду и стянутые ею дуги пополам.

В случае, если хорды AB и CD окружности имеют пересечение в точке N , то произведения отрезков хорд, разделенные точкой N , равны между собой.

AN\cdot NB = CN \cdot ND

Касательная к окружности

Касательной к окружности принято называть прямую, у которой имеется одна общая точка с окружностью.

Если же у прямой есть две общие точки, ее называют секущей .

Если провести радиус в точку касания, он будет перпендикулярен касательной к окружности.

Проведем две касательные из этой точки к нашей окружности. Получится, что отрезки касательных сравняются один с другим, а центр окружности расположится на биссектрисе угла с вершиной в этой точке.

AC = CB

Теперь к окружности из нашей точки проведем касательную и секущую. Получим, что квадрат длины отрезка касательной будет равен произведению всего отрезка секущей на его внешнюю часть.

AC^{2} = CD \cdot BC

Можно сделать вывод: произведение целого отрезка первой секущей на его внешнюю часть равняется произведению целого отрезка второй секущей на его внешнюю часть.

AC \cdot BC = EC \cdot DC

Углы в окружности

Градусные меры центрального угла и дуги, на которую тот опирается, равны.

\angle COD = \cup CD = \alpha ^{\circ}

Вписанный угол — это угол, вершина которого находится на окружности, а стороны содержат хорды.

Вычислить его можно, узнав величину дуги, так как он равен половине этой дуги.

\angle AOB = 2 \angle ADB

Опирающийся на диаметр, вписанный угол, прямой.

\angle CBD = \angle CED = \angle CAD = 90^ {\circ}

Вписанные углы, которые опираются на одну дугу, тождественны.

Опирающиеся на одну хорду вписанные углы тождественны или их сумма равняется 180^ {\circ} .

\angle ADB + \angle AKB = 180^ {\circ}

\angle ADB = \angle AEB = \angle AFB

На одной окружности находятся вершины треугольников с тождественными углами и заданным основанием.

Угол с вершиной внутри окружности и расположенный между двумя хордами тождественен половине суммы угловых величин дуг окружности, которые заключаются внутри данного и вертикального углов.

\angle DMC = \angle ADM + \angle DAM = \frac{1}{2} \left (\cup DmC + \cup AlB \right)

Угол с вершиной вне окружности и расположенный между двумя секущими тождественен половине разности угловых величин дуг окружности, которые заключаются внутри угла.

\angle M = \angle CBD - \angle ACB = \frac{1}{2} \left (\cup DmC - \cup AlB \right)

Вписанная окружность

Вписанная окружность — это окружность, касающаяся сторон многоугольника.

В точке, где пересекаются биссектрисы углов многоугольника, располагается ее центр.

Окружность может быть вписанной не в каждый многоугольник.

Площадь многоугольника с вписанной окружностью находится по формуле:

S = pr ,

p — полупериметр многоугольника,

r — радиус вписанной окружности.

Отсюда следует, что радиус вписанной окружности равен:

r = \frac{S}{p}

Суммы длин противоположных сторон будут тождественны, если окружность вписана в выпуклый четырехугольник. И наоборот: в выпуклый четырехугольник вписывается окружность, если в нем суммы длин противоположных сторон тождественны.

AB + DC = AD + BC

В любой из треугольников возможно вписать окружность. Только одну единственную. В точке, где пересекаются биссектрисы внутренних углов фигуры, будет лежать центр этой вписанной окружности.

Радиус вписанной окружности вычисляется по формуле:

r = \frac{S}{p} ,

где p = \frac{a + b + c}{2}

Описанная окружность

Если окружность проходит через каждую вершину многоугольника, то такую окружность принято называть описанной около многоугольника .

В точке пересечения серединных перпендикуляров сторон этой фигуры будет находиться центр описанной окружности.

Радиус можно найти, вычислив его как радиус окружности, которая описана около треугольника, определенного любыми 3 -мя вершинами многоугольника.

Есть следующее условие: окружность возможно описать около четырехугольника только, если сумма его противоположных углов равна 180^{ \circ} .

\angle A + \angle C = \angle B + \angle D = 180^ {\circ}

Около любого треугольника можно описать окружность, причем одну-единственную. Центр такой окружности будет расположен в точке, где пересекаются серединные перпендикуляры сторон треугольника.

Радиус описанной окружности можно вычислить по формулам:

R = \frac{a}{2 \sin A} = \frac{b}{2 \sin B} = \frac{c}{2 \sin C}

R = \frac{abc}{4 S}

a , b , c — длины сторон треугольника,

S — площадь треугольника.

Теорема Птолемея

Под конец, рассмотрим теорему Птолемея.

Теорема Птолемея гласит, что произведение диагоналей тождественно сумме произведений противоположных сторон вписанного четырехугольника.

AC \cdot BD = AB \cdot CD + BC \cdot AD